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Abstract: An analog and mixed-signal (AMS) circuit that draws on machine learning while using
a regression model differs in terms of the design compared to more sophisticated circuit designs.
Technology structures that are more advanced than conventional CMOS processes, specifically the
fin field-effect transistor (FINFET) and silicon-on-insulator (SOI), have been proposed to provide
the higher computation performance required to meet various design specifications. As a result,
the latest research on AMS design optimization has enabled enormous resource savings in AMS
design procedures but remains limited with regard to reflecting the intended operating conditions in
the design parameters. Hereby, we propose what is termed a supervised learning artificial neural
network (ANN) as a means by which to define an AMS regression model. This approach allows
for rapid searches of complex design dimensions, including variations in performance metrics
caused by process—voltage-temperature (PVT) changes. The method also reduces the considerable
computation expense compared to that of simulation-program-with-integrated-circuit-emphasis
(SPICE) simulations. Hence, the proposed AMS circuit design flow generates highly promising
output to meet target requirements while showing an excellent ability to match the design target
performance. To verify the potential and promise of our design flow, a successive approximation
register analog-to-digital converter (SAR ADC) is designed with a 14 nm process design kit. In order
to show the maximum single ADC performance (6-bit~8-bit resolution and few GS/s conversion
speed), we have set three different ADC performance targets. Under all SS/TT/FF corners, £6.25%
supply voltage variation, and temperature variation from —40 °C to 80 °C, the designed SAR ADC
using our proposed AMS circuit optimization flow yields remarkable figure-of-merit energy efficiency
(approximately 15 fJ /conversion step).

Keywords: machine learning; artificial neural network; AMS; FinFET; SOI process; PVT; SAR ADC

1. Introduction

Recent innovation in process technology has changed analog mixed-signal (AMS)
circuits such that they now operate more digitally by incorporating increased transistor
density levels and transistor operating speeds. Hence, design optimization of digital circuits
has been actively conducted via an optimization loop based on a well-formed computer
programming language, such as Verilog and VHDL. Digital circuit design optimization can
easily be bound with both commercial and open-source optimization tools without extra
effort [1]. On the other hand, analog circuit design is governed by human intervention,
such as topology selection and the use of a full custom layout. For this reason, optimizing
the designs of analog circuits often follows well-known design circuit architectures and
focuses more on optimizing each sub-module [2-5] and on finding joint optimum points
during the sub-module integration step [6-11]. Therefore, AMS circuit designs rely heavily
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on the know-how and creativity of the designer and require considerable amounts of time
to adjust the design parameters so as to ensure proper system target performance. In
general, designers have to carefully check three different aspects when optimizing an AMS
circuit sub-module and considering integration between modules: (1) the optimization
flow should reflect the flexible designer’s intention closely; (2) the execution time has to
be quick as multiple iterative evaluations are required for resulting optimum output; and
(3) the performance accuracy has to be guaranteed.

A number of studies have been proposed in an effort to meet these goals. These are
equation-based, SPICE-based, and model (regression)-based methods. First, equation-
based optimization techniques such as OPASYN [12], STAIC [13], OPTMAN [14], DON-
ALD [15], DARWIN [16], and GPCAD [17] offer rapid execution performance as they rely
on mathematical function-based operations. However, their use is limited when the circuit
behavior cannot be expressed in an equation, and the accuracy is insufficient compared
to the outcomes offered by other methods. Second, SPICE-based optimization techniques
(DELIGHT.SPICE [18], ANACONDA [19], and GENOM [20]) are capable of excellent out-
put accuracy with all AMS circuits, but they require the longest execution times among
those discussed here. Last, in order to shorten the design execution time and improve the
accuracy of the results, designs that use a model-based design flow have been applied to
AMS design optimization. As the accuracy of the final circuit is proportional to that of
the trained regression model, the support vector machine (SVM) [21] and neural network
machine (NNM) [22], which have excellent regression model accuracy levels, are widely
used in the AMS circuit design flow.

Although prior AMS optimization methods have evolved to fulfill certain key re-
quirements (i.e., flexibility to accommodate the designer’s intentions, rapid run times, and
creditable accuracy of the output), operational sensitivity under wild operating environ-
ment changes was somewhat disregarded. Given that advanced technologies such as the
fin field-effect transistor (FinFET) or silicon-on-insulator (SOI) have more process variations
compared to conventional complementary metal-oxide-semiconductor (CMOS) processes,
a sensitivity check step would be an essential procedure during the design optimization
flow to ensure robust operation.

*  We propose a new model-based design optimization technique that adaptively ensures
the robust performance of AMS circuits and systems. Based on our prior research [22],
we enhance the overall process by incorporating a sensitivity check step in order to
offer customized operational environments as intended by the user.

¢ In practice, as there are demands to redesign circuits targeting different operating
conditions with the same structure, this research contributes by greatly economizing
the redesign effort while also increasing the production yield.

*  We applied the overall design flow to an asynchronous SAR ADC architecture. The
asynchronous SAR ADC design is suitable for verifying the performance of the AMS
design algorithm because it is quite difficult to determine the optimal performance
with respect to the key components of the ADC. Regarding the sensitivity performance,
the design example covers the range of the supply voltage deviation of +6.25%, the
temperature from —40 °C to 80 °C, and the process with SS/TT/FF corners. Finally,
the figure-of-merit, which indicates the ADC power efficiency, is compared with the
results when applying the SPICE-based design method.

The remainder of this paper is organized in the following manner: Section 2 introduces
the detailed proposed AMS circuit optimization flow. Section 3 describes a design example
employing the proposed design flow. Section 4 presents the simulated results of ADC final
performance outcomes considering external condition changes. Section 5 discusses the
proposed AMS circuit optimization technique, and Section 6 provides the conclusions.

2. Methods

The overall proposed AMS circuit optimization flow conducts four major steps, as
illustrated in Figure 1. Before starting the design flow, the user has to clarify the target
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circuit (i.e., filter, amplifier, ADC, etc.) and operating conditions. Assuming that the
reference design library is well prepared, the main AMS circuit optimization flow performs
from a given set of user-defined designs and system constraints. In particular, machine
learning techniques (i.e., supervised learning) can be incorporated to identify the least
sensitive and co-optimized output designs while building regression models as well as
sub-module integration procedures. In the following subsections, four major steps are
addressed in more detail.

« Target design specification
« Designer’s target operating condition 1

Step 3: Evaluating performance

Architecture selection Inter-submodule d itivit
(from Ref. design library) Joint optimization GRCSORSIEVILY
& Sensitivity Check _1
—
Sub-module break-down Module level optimization | Selection filter
(follow the Ref. design library) * (FoM & Sensitivity)
Sub-module Regression Final Netlist ti > R It
Sub-module Netlist generation Model Training memmmp Final Netlist creation esu
' Machine learning-based
Testbench Selection Regression model development

(from Ref. design library)

Use Ref. design’s parameter range
' (supervised training)

o | Performance validation
(SPICE)

Process Technology

Step 2: Creating sub-module

Step 1: Preparing a library T T (D

Step 4: Generating final netlist

Figure 1. Top-level system diagram of the proposed AMS circuit optimization flow.

2.1. Step 1: Preparing a Library

This stage is an initial step for collecting appropriate reference designs for smaller
stand-alone modules, such as a unit circuit for a parameterized library. First, each stand-
alone module must be accurately evaluated using a fine SPICE simulator, after which it
can be used for generating a regression model via a neural network training process. This
step is important in terms of building a general-purpose library that can accommodate
the various sub-modules that would compose the different target system. This step has to
be performed precisely because, if the library is built with inaccurate simulation results,
the accuracy of the final result deteriorates further due to the inaccuracy of the regression
model.

2.2. Step 2: Creating Sub-Module with User Intent

Based on the system requirements defined by the user, this step divides the user
requirements into module-level design constraints employing system design formulas and
user preferences, such as those pertaining to occupation and energy efficiency. In this step,
we perform supervised learning based on artificial neural networks (ANNSs) [23-25] to
characterize the regression model.

2.3. Step 3: Evaluating Performance and Sensitivity

To deliver reliable circuits, both the user-intended operation condition and the errors
that occur during the manufacturing process must be considered. This step includes two
main operations: searching for performance changes under the given conditions (e.g.,
process and temperature variations), and adaptively selecting the least sensitive results
within the tolerance level set by the user. Because the cost and time for designing, simulat-
ing, and examining all possible operating conditions are limited, this step is challenging.
However, given that the proposed design method can shorten the simulation time with
its use of the regression model, it enables performance evaluations at a greater variety of
operating points.
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2.4. Step 4: Generating Final Netlist

Based on the prepared module library and user intents for each module, the selection
filter [26] choses the proper modules for each function block, and the generation and valida-
tion of a final netlist are performed. Among the various design candidates correspondingly
optimized at different operation environments, a top-level selection filter accordingly lists
the possible candidates, allowing the user to sign off on the final netlist. As a result, the
user-intended AMS circuit can be obtained while not only satisfying the performance
matrix but also ensuring robust operation at the target environments.

3. Circuit Design
3.1. Topology Selection: Asynchronous SAR ADC

There are numerous types of AMS circuit topologies; among them, ADC is a viable
option here given that it encompasses analog and digital considerations while also stip-
ulating insight into high-speed circuits, such as clocking and high-frequency signaling
circuits. When determining which ADC architecture to use, for proper support of the
upcoming goal of medium resolutions with a GS/s target, the successive approximation
register (SAR) ADC was found to be the best choice for the purposes of this study given
its considerable energy efficiency and small footprint. The SAR ADC is primarily a digital
type of architecture that therefore scales well in conjunction with feature-size scaling given
the straightforward architecture it uses. Typically, the SAR ADC includes a front-end
analog circuit with a switched-capacitor sampler (e.g., T/H), a comparator, along with a
digital-to-analog converter (DAC) for the subsequent digital circuits.

3.2. Step 1: Preparing a Library

Partitioning the entire circuit architecture into multiple modules is the first step in the
regression model-based AMS circuit optimization flow, allowing each module to be easily
configured and simulated quickly (as mentioned in Section 2.1). A digital circuit typically
consists of a SAR ADC architecture including a few analog blocks, such as a comparator,
which is an appropriate candidate for a proof-of-concept, as shown in Figure 2. To evaluate
the SAR ADC performance, the figure-of-merit (FoM) index is defined as follows:

Power dissipation

FoM = D(SNDR-I76)/602 X F @
SNDR =10 log ( Psignal > 2)
10 PT/ H+t Pcomparator + PQuantization ’

In this work, the SAR ADC architecture is divided into T/H, timing controller, and
comparator circuits, as shown in Figure 2. These three modules are then respectively
parameterized to create a module library while covering the target design space. The
module library can be simulated with different combinations of parameters to achieve the
target performance.
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Figure 2. SAR ADC sub-module breakdown and regression models.
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3.3. Step 2: Creating Sub-Module with User Intent

As elaborated in Section 2.2, in order to achieve the precisely desired system-level
performance of the final assembly, accurate sub-module characterization is important for
every sub-module composing the entire ADC. Each module is considered a ‘black box’
while having a relationship between ‘parameters’ and ‘metrics’. Note that ‘parameter’
presents the group of design inputs, and ‘metrics’ presents the output performance. As
the digital circuit can leverage the existing design optimization methods, only a module
training process for the analog circuits has been applied. Regarding the given search space
during a training process, a smart way to select a ‘training’ set is needed because the module
training is not able to cover overall search space. In this work, randomly chosen training
samples are used for module characterization, and the range of the training samples is
provided by existing known good designs. Based on the 1500 training samples uniformly
and randomly selected from the given search space, we created the parameterized module
library and collected their output performance metrics using SPICE simulations.

In this work, a neural network comprising multiple hidden layers [27,28] is developed
by using the aforementioned training dataset. Moreover, the constructed module library
expands the search space of each module for predicting non-present module configurations
to compensate for an insufficient training dataset. Depending on the input parameters,
multiple input neurons and 30 neurons in the hidden layers are arranged. The number of
output neurons is followed by the number of output performance metrics. Consequently,
90% of the dataset was used for the neural network training, and the remaining 10% was
used for accuracy validation.

3.3.1. Track-and-Hold Circuit

A transmission gate with a sampling capacitor (Cg) forms a simple top-plate track-
and-hold (T/H) circuit. Since the T/H is a fundamental switched capacitor element, it is
an appropriate candidate to which to apply the proposed design methodology. Figure 3a
illustrates the non-linear transfer function of the T/H. The linearity performance of the T/H
can be enhanced by a properly chosen transmission gate sizing, which results in the highest
linearity performance with the reduced non-linear capacitance, as shown in Figure 3b. As a
result, the properly selected input parameter with well-defined target output performance
metrics enabled us to create the regression model of the T/H circuit. As summarized
in Tables 1 and 2, as input parameters, we defined the ranges of input signal frequency,
sampling speed, supply voltage, input signal swing, sampling capacitor, load capacitor,
aspect ratio of the transmission gate, process corner, and temperature. The harmonic
distortion, the effective number of bits (ENOB), the noise power, and the bandwidth are
defined as performance output metrics.

CLK

Vsic

N/ oK
CLK| #

Wy Ly Cs St
reflecting
Vsie = == loading effect
Transmission Gate el

180
160
140 ——

— ==
120 NMOS dominant G

WelWy

aspect ratio)

MOS dominant

Increase R

Turn-on resistance of
Transmission gate [2]

Roy = function of Vg, 100 | Region x
cMoS Switch Region
CLKT "y
I Cro * ColVsc) 0.1 0.2 0.3 0.4 0.5 0.6 0.8
Ron o (Ly/ W) || (Lp/ W) = Vg6 - Input signal of the T/H
Non-linear during turn-on phase

(a) (b)

Figure 3. (a) Schematic of sampling network (T/H) and (b) turn-on resistance of transmission gate
with different transistor aspect ratios; data from [22].
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Table 1. Design input parameters of the T/H module.

Input Parameter Variable Range Unit
Max[input signal frequency] 0.75~1.2 GHz
Sampling speed 1.5~2.5 GHz
Supply voltage 0.75~0.85 \%
Max[input signal swing] 14 Vpp
Sampling capacitor 2.0~30 fF
Load capacitor 2~10 fF
Aspect ratio[Sampling switch] 0.25~4.0 \Y
Process corner SS, TT, FF -
Temperature —40~120 °C

Table 2. Performance output matrix of the T/H module.

Output Matrix Unit
Harmonic Distortion dBc
ENOB bit
Noise Power V2
Bandwidth GHz

The input signal sampling bandwidth is one of the most important performance
indexes in the T/H circuit. The turn-on resistance (Rpy) values of the transmission gate
and attached capacitor Cg are dominantly determined by the given input signal bandwidth
specification. As the Cg size is generally defined by the required thermal noise level (i.e.,
kT /C), the turn-on resistance property associated with the practical parasitic determines
the dynamic performance of the T/H. According to the operational principle of the T/H,
the transfer function in the s-domain (Hr /1) can be expressed as follows:

1

H =
/H(S) = 757 R(Vsig) - [Cs + CL + Cpo + Cp(Vaig)]

®)

where the non-linear resistance (R) and parasitic capacitance (Cp) are changed by the
magnitude of an input signal Vgic. In this example, there exists a controversial relationship
between the non-linear components R and Cp. In order to reduce one of non-linear portions,
the other portions will grow until an optimum size at which to realize maximum linearity is
reached. However, considering process variations, it is difficult to select a sampling switch
size that satisfies all the corner conditions. Here, we defined seven input parameters—in
this case, the process corners (SS, TT, FF), a supply voltage variation, the input signal
common mode voltage, the transmission gate sizes (PMOS, NMOS), the sampling capacitor
size (Cs), and the output load (Cy). Six output parameters of SFDR and ENOB for all three
corners are defined.

Table 3 shows evaluated errors in percentile after different numbers (500, 1000, 1500,
and 2000) of training sets of the ANN are used. Here, we used 90% of 4096 randomly
generated training references from the SPICE simulation, with the remaining 10% of
references used to verify the accuracy. In this sub-module, two hidden layers with ten
neurons for each layer and an ELU function [29] as an activation function are applied. The
target performance of the T/H circuit is >8 ENOB at all process corners. As shown in
Figure 4, even when the other parameters—in this case, the sampling and load capacitance,
input common mode level, and supply voltage—are varied, the aspect ratio of 2.75 for
the sampling switch mainly contributes to the achievement of peak dynamic performance.
Considering the SFDR and ENOB at the optimum points, the T/H performances were not
constrained by harmonic distortion.
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Table 3. ANN regression accuracy of the T/H module (ENOB).

Number of Epoch | Error | Unit
500 4.9 %
1000 3.1 %
1500 2.6 %
2000 1.7 %

(=]
wn

(=]
o

585 OFF ofTT %g &
= Iﬁﬁ%a FREE

Optimum SW sizing

1%
w

SFDR [dB]
58

B
o

35

025 075 126 175 225 275 326 375 425
Sampling switch Aspect Ratio (Wp/Whn)

(a)

ENOB [bit]

Optimum SW sizing

0.25 0.75 1.25 175 2.25 275 3.25 3.75 425
Sampling switch Aspect Ratio (Wp/Whn)
(b)

Figure 4. (a) T/H circuit’s linearity performance (SFDR) and (b) resolution (ENOB) performance.

3.3.2. Comparator

The comparator converts the input voltage into a digital code. Here, the input signal
is provided by the front-end T/H circuit or a reference switch network during the SAR
charge redistribution procedure. In order to minimize both the active area and power
dissipation, a regenerative strong-arm comparator topology is widely used, as shown in
Figure 5a. The clocked comparator initially stays in a reset mode (ENVcomp is off) and
then resolves the differential output using a built-in regenerative latch circuit (ENVcomp is
on). Furthermore, we can divide the latter resolving phase into sampling and regeneration
phases. The sampling phase begins with the comparator-enabled signal and ends with
an established output voltage, which turns on the back-to-back placed regenerative latch.
Afterward, the comparator causes the differential output to be fully stretched; thus, one
of the comparator outputs is equal to the supply voltage (VDD) but the other decreases
to the ground at the end of the regeneration time, as illustrated in Figure 5b. During the
regeneration time, the stretched down signal causes the ready signal (RDY) to be flagged;
thus, we can measure the comparator resolving time or speed.

Here, we define certain input parameters, including the process corners (SS, TT,
FF), a supply voltage variation, grouped and scaled comparator transistor sizes (input,
regenerative cross-coupled pairs, and reset switch), load capacitor, and temperature, as
summarized in Table 4. Here, the regenerative cross-coupled pairs’ size increases the
regeneration strength, and the reset switch is partially related to the noise power level.
Moreover, we set the performance output metrics of the comparator (Table 5), the noise
power, the power dissipation, and the conversion speed. In comparator design, we can
ignore the linearity performance as we are only interested in the polarity against the
input signal, and the unit transistor size for the comparator core circuit is selected by
an empirical design reference to reduce the search space during the development of the
regression model.
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Figure 5. (a) Schematic of comparator and (b) waveform.
Table 4. Design input parameters of the comparator module.
Input Parameter Variable Range Unit
Operating speed 50~150 psec
Supply voltage 0.75~0.85 \Y%
Input transistor size 1~8 scale
Regeneration strength 1~8 scale
Reset switch size 1~4 scale
Load capacitor size 2~10 fF
Process corner SS, TT, FF -
Temperature —40~120 °C
Table 5. Performance output metrics of the comparator module.
Output Metrics Unit
Noise power V2
Poser dissipation W
Speed psec

Regarding the comparator noise and conversion speed evaluations, we measured the
entire circuit noise at different target speeds. According to an analysis of the comparator
noise (Pcp1p, noise) and operating speed (tcpp), we found that there is a trade-off relationship
between these two output metrics, as follows:

Sm Vi Cr VDD
Temp X & +ayp—= 4+ agln(———— 4
CMP = Temp ng 3 (GCMPVIN> @)
SKTIcpp 2kT

©)

PCMP,nozse 5 ﬁl ngINVth 2 CING%MP
where g1, Cin, Cr, Vi, VDD, Icpmp, Gemp, k, and T are correspondingly the transconduc-
tance, input and output capacitance, threshold voltage of regenerative pair devices, supply
voltage, drain current, comparator voltage gain during the sampling phase, Boltzmann con-
stant, and temperature. The « and § coefficients are topology-dependent scaling constants.

To develop an ANN regression model with the comparator input parameters and
output metrics, we trained it more than 2000 times with uniformly and randomly selected
training references from the SPICE simulation results. Here, four hidden layers with
16 neurons for each layer and the ELU function activation function are employed due to
the increased circuit complexity in comparison with the above T/H example. The target
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performance of the comparator is a speed of 2 to 2.5 GS/s with more than eight ENOBs at
all process corners. Figure 6 shows the ANN regression accuracy of the regenerative strong-
arm comparator in terms of the conversion speed (resolving time), power dissipation, and
noise power in the CDF expressions. It shows challenges in the areas of the comparator
noise model rather than the power dissipation or speed metrics.

8
— Resolving time

- Power |

COF | ‘| ‘

Error [36]

(=] [~]

—
d—E
? |

b
i

=
R
T —

W) u"||
|

Number of Sample

Figure 6. ANN regression accuracy of the comparator.

3.3.3. SAR ADC Timing Controller

A schematic of an SAR ADC timing controller consisting of variable delay cells is
shown in Figure 7. In order to implement an asynchronous SAR operation, the delay cell
creates voltage-dependent delayed pulses associated with the supporting digital circuits.
The conversion time for a typical N-bit resolution SAR ADC is calculated by adding an
input signal tracking-or-sampling time (Tt/5y), a charge redistribution time in capacitive
DAC (C-DAC) during the comparator reset period (TRrg), resolving time of the comparator
(Tcmp), and logic delay time (TLogic). A single period of the ADC operation (Tperioq) can be
calculated as follows:

i=N
Tperiod = Tr/u + ), (Temp[i] + Trs + Trogic)) (6)
i=1

Tcwmp is already covered by the comparator, and Tpogic is generally determined once the
technology has been decided. Therefore, the remaining Trs must be optimized by selecting
the proper size of the delay cell. In contrast with the former circuits, the timing controller
behaves as a digital circuit and is relatively simpler in terms of performance predictions.
We defined several input parameters, including the process corners (SS, TT, FF), supply
voltage variation, scaled logic gate size, load capacitor, and temperature (Table 6). Since the
SAR ADC timing controller includes both analog and digital circuits, such as mixed-mode
circuits, we can set the aspect ratio (i.e., ratio between width and length of the transistor)
and leverage the scaling factor as denoted in a unit of a logic gate size. In addition, the
power dissipation, scaled active area, and conversion speed were set as the performance
output metrics of the SAR ADC timing controller, as summarized in Table 7. Note that the
digital circuit prioritizes the silicon occupation factor since it can be normalized.

Table 6. Design input parameters of the asynchronous clock control module.

Input Parameter Variable Range Unit
Supply voltage 0.7~0.9 \%
Logic gate size 1~25 scale

Load capacitor size 2~10 fF
Process corner SS, TT, FF -

Temperature —40~120 °C
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iied sIZ\)eIay cell

Figure 7. Schematic of SAR ADC timing controller consisting of variable delay cells.

Table 7. Performance output metrics of the asynchronous clock control module.

Output Metrics Unit
Power dissipation W

Area scale

Speed psec

The performance of the SAR ADC timing controller is evaluated in terms of its ability
to predict the active area, power dissipation, and load condition trade-off, as shown in
Figure 8. According to the results shown in Figure 8a, the overall power consumption is
increased by larger device size, which would increase the loading capacitor on a driving
circuit. Figure 8b shows measured delay variations at 100 mV supply voltage change.
Although the higher supply voltage would lead to a wide range of controllable delay in
time, it requires more power dissipation and undesired delay variations. According to the
logic gate size, a duty cycle of the control pulse was evaluated, as shown in Figure 8c. An
increasing logic gate size can reduce the pulse duty cycle variation, and an optimum logic
gate size can be defined by the first-order derivative of the logic gate size versus the duty
cycle variation range relationship.

After the generation of the regression model for the SAR ADC timing controller is
complete, delay and duty cycle variations are checked in comparison with the SPICE
simulation results. Since an energy-efficient delay controller design eventually saves a large
portion of dynamic power dissipation of the entire SAR ADC, a reliable SAR ADC timing
controller design with low-power consumption is critical. Therefore, the proper logic gate
sizing would be executed by the target user-defined specifications.

Delay change Pulse duty cycle variation
% LI T 1
)l

! ‘IN”N | |

60 H I 53.
|

°

52.5

Power(uW)

Delay [psec]
8
Duty cycle [%]

20

30 [ 515
200
20 51.0
100 Normalized

: : . . . 50.5
50 Area 070 075 080 085 090 0 5 10 15 20 25

[fF] VDD Logic gate size
(a) (b) (c)

Figure 8. (a) Evaluated area/power dissipation/load (parasitic) relationship of the SAR ADC timing
controller, (b) delay change, and (c) pulse duty cycle variation.



Electronics 2022, 11, 408

11 of 15

3.4. Step 3 and 4: Evaluating Performance and Sensitivity and Generating Final Netlist

In this work, we aim to build a regression model-based circuit design flow. Based
on the user intent submitted to the system, the desired design flow automatically selects
corresponding modules for the target application. Given the user intents, such as the
desired ENOB, the conversion rate, and the required input signal bandwidth, all the
module specifications are calculated from the high-level design analysis; thus, the module
library can find each candidate in the asynchronous SAR ADC design, as shown in Figure 9.
Compatibility is checked through appropriate boundary conditions (i.e., searching for
applicable input and output load conditions). Therefore, we follow a design flow to
attain the best candidate, using a variety of selection criteria and priorities with respect to
the required high-level specifications that users provide. Based on the sensitivity check
procedure (mentioned in Section 2.3), a system-level performance variation chart is devised
as a result of weight parameter expansion and perturbation. Consequently, the user can
choose the desired final netlist (related to Section 2.4). The circuit optimization flow is
finally validated against a set of designs by conducting individual performance evaluations.
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Figure 9. Regression model (ANN)-based asynchronous SAR ADC design flow.

4. Simulation Results

Figure 10 shows a performance plot from the final verification step in our AMS design
flow. The target specification is 8-bit 2-GS/s; thus, the Nyquist input signal bandwidth is
1 GHz. Although the final performance at the Nyquist input frequency is slightly lower than
that of the target ENOB, we achieved remarkable energy efficiency (<15 fJ /conversion step),
as defined by the figure-of-merit (FoM). Moreover, the final result of the sensitivity check
was determined under PVT variations, as shown in Figure 11. According to the process and
temperature sweep test to confirm our design flow step 3 and 4 (refer to Section 3.4), the
result proves the robust operation of the proposed design given the absence of remarkable
performance degradation. However, the supply voltage sweep clearly shows a performance
drop at a supply voltage of 0.75 V. This is mainly caused by deterioration of the speed
and linearity of the transistor in the front-end T/H circuit, which occurs when the power
supply voltage is reduced. Although the achieved ENOB is lower than the target level, the
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ADC energy efficiency indicates that it has been optimized to perform best in any given
situation.

In addition, we prepared three ADC specifications with different ADC resolutions,
conversion speeds, and process conditions in order to check whether the proposed opti-
mization method works well for different requirements. Table 8 summarizes and compares
the SAR ADC performance of the proposed optimization method with the SPICE simu-
lation results at the different target operating conditions, respectively. Here, the SPICE
simulation results (in Table 8) are gold-standard references to evaluate our achieved SAR
ADC performance. In essence, the error percentage (in Table 8) represents the accuracy
loss in our approach. The proposed AMS optimization technique achieved excellent ADC
performance and showed acceptably creditable accuracy. In the comparison of the proposed
AMS circuit optimization method and SPICE-based approach, errors of 17.2% and 12.8%
can be ignored considering that the ADC FoM generally stays around 15~20 {fF/conversion
step in an 8-bit 1.5-GS/s SAR ADC. Other than these errors, the overall accuracy of our
proposed approach results is 90% or more.
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Table 8. Figure-of-merit comparisons at each target ADC specification; data from [22].

Spec Corner SPICE Sim. AMS Sim. Error
pec. FoM(f]/c.s) FoM(f]/c.s) %

Ss 6.8 5.8 17.2

8-bit 1.5-GS/s TT 6.0 5.5 9.1
FF 53 47 12.8

Ss 125 11.9 5.04

8-bit 2.0-GS/s TT 9.8 9.1 7.7
FF 11.8 9.9 7.7

SS 122 11.8 34

6-bit 2.5-GS/s TT 10.0 9.2 8.7
FF 8.5 7.7 104

5. Discussion and Future Research Orientations

By adopting a regression-model-based AMS design flow instead of an expensive SPICE
simulator from the initial design phase, the circuit design time can be effectively reduced.
However, ambiguities exist when determining the appropriate number of reference samples,
especially during the development of known good design-based libraries. Because the
performance of an ANN model depends on the number of reference samples, deriving
an appropriate number of samples through an empirical study or selecting an effective
sampling method can be an important factor in this method. Moreover, uniform input
sampling over a given range can degrade the accuracy of the regressor because more
training samples are required to approximate a sudden sharp surface. In this work, a
manually defined range of input parameters with uniform sampling was inevitably applied
to focus more on our AMS design flow. Hence, in order to resolve this limitation, we plan to
study the design and application of an adaptive input data sampling algorithm as a future
study. In addition, employing a higher-level transfer learning technique would enable
our regression-model based optimization flow to be more generalized [30-32]; thus, it is
expected to create technological synergy, such as dramatically preventing human error.

6. Conclusions

In this research, we propose a regression model-based AMS circuit design optimization
flow utilizing parameterized operating conditions. For proof of concept, an asynchronous
SAR ADC considering practical environment changes has been successfully evaluated.
First, parameterized module library preparation for characterizing module-level operation
is performed to apply the scheme to the enlarged design space. Subsequently, a regression
model based on an ANN is trained to extract the representative features of modules for
the target design space. Afterward, the performance sensitivity is assessed to ensure that
the system can meet the user-intended PVT variation target. Lastly, a final performance
evaluation at both the module level and the overall system level is done to validate the
effectiveness of the proposed AMS design flow. To reflect the design complexity, an
advanced technology 14 nm predicted process design kit is used. Given the skewed PVT
conditions, the design output successfully shows robust operation of the asynchronous
SAR ADC without instances of abrupt performance degradation.
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