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Abstract: This study presents a strategy to remove tetracycline by using magnetite-activated persul-
fate. Magnetite (Fe3O4) was synthesized at high purity levels—as established via X-ray diffractometry,
transmission electron microscopy, and N2 sorption analyses—and tetracycline was degraded within
60 min in the presence of both magnetite and persulfate (K2S2O8), while the use of either substance
yielded limited degradation efficiency. The effects of magnetite and persulfate dosage, the initial
concentration of tetracycline, and the initial pH on the oxidative degradation of tetracycline were
interrogated. The results demonstrate that the efficiency of tetracycline removal increased in line
with magnetite and persulfate dosage. However, the reaction rate increased only when increasing
the magnetite dosage, not the persulfate dosage. This finding indicates that magnetite serves as
a catalyst in converting persulfate species into sulfate radicals. Acidic conditions were favorable
for tetracycline degradation. Moreover, the effects of using a water matrix were investigated by
using wastewater treatment plant effluent. Comparably lower removal efficiencies were obtained
in the effluent than in ultrapure water, most likely due to competitive reactions among the organic
and inorganic species in the effluent. Increased concentrations of persulfate also enhanced removal
efficiency in the effluent. The tetracycline degradation pathway through the magnetite/persulfate
system was identified by using a liquid chromatograph-tandem mass spectrometer. Overall, this
study demonstrates that heterogeneous Fenton reactions when using a mixture of magnetite and
persulfate have a high potential to control micropollutants in wastewater.
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1. Introduction

Pharmaceuticals such as antibiotics, which are highly water-soluble and hardly
biodegradable, have been widely detected in aquatic systems in recent decades, resulting
in serious threats to both public health and the natural environment, due not only to their
toxicity but also to the prevalence of bacteria that have become antibiotic-resistant as a
result of their heavy use [1,2]. Among a number of antibiotics, tetracycline (TC) is one
of the most widely used in veterinary medicine and causes many of the environmental
problems described above [3,4].

Conventional biological wastewater treatment processes, such as activated sludge, are
relatively inefficient at removing TC [5,6]. According to Oulton et al. (2010), the reported
removal efficiency of TC by activated sludge varies widely, ranging from 23% to 91%.
Advanced oxidation processes (AOPs) have recently been proven efficient for removing
non-biodegradable organic substances, including TC [7]. The primary mechanism behind
AOPs involves generating highly reactive free radicals and then exploiting these species
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to degrade organic compounds oxidatively [8]. The Fenton process is a well-known AOP
in which hydroxyl radicals are generated via reactions between iron salts and hydrogen
peroxide (Fe2+/H2O2) [9]. However, it has certain limitations, including the inefficient
utilization of rapidly formed hydroxyl radicals and the ineffective removal of organic
pollutants [10]. AOPs involving sulfate radicals (SO4

•−) have gained great attention as
a means of overcoming these limitations, since they have redox potentials of 2.5 to 3.1 V,
higher than those of hydroxyl radicals (1.8 to 2.7 V). In addition, sulfate radicals live longer
than hydroxyl radicals and are more selective at removing pollutants. Their operating pH
is also much wider than hydroxyl radicals [11,12]. Persulfate (PS, S2O8

2−) is stable at room
temperature and can be activated by using heat, ultraviolet (UV), and transition metals
(e.g., Fe2+ and Co2+) to form highly reactive sulfate radicals, as described in Equation (1)
below [13]:

S2O8
2− + activator→ SO4

•−+ (SO4
•− or SO4

2−) (1)

Specifically, the reaction mechanism of PS activated by Fe2+, as explained in Equa-
tions (2) and (3) [14], is similar to the Fenton process, because the molecular structure of PS
is an asymmetrically substituted derivative of hydrogen peroxide [15]:

S2O8
2− + Fe2+ → SO4

•− + Fe3+ + SO4
2− (2)

SO4
•− + Fe2+ → Fe3+ + SO4

2− (3)

Although the Fe2+/PS process has been improved in terms of redox potentials and
applicable operating pH when compared to the classic Fenton process, it still has several
inherent drawbacks that have limited its broad application in wastewater treatment. First,
excess Fe2+ causes SO4

•− scavenging, which in turn suppresses oxidation of the target con-
taminant via the mechanism described in Equation (3). Second, Fe2+ activation only occurs
effectively under acidic pH conditions (2–4), in order to prevent rapid iron precipitation
such as the formation of ferric hydroxy complexes when the pH is above 4. Moreover, at
the end of the Fe2+/PS process, a large amount of iron sludge is yielded, thereby leading to
additional cost in treating it before discharge [16,17].

Heterogeneous Fenton systems that use iron-containing solids (Fe2O3, Fe3O4, FeO(OH),
etc.) as a source of ferrous iron have been introduced to overcome the limitations of ho-
mogeneous Fenton processes [18]. With the use of a heterogeneous Fenton process, the
rate of sludge production can be regulated, and the operating pH can be wider than in the
homogeneous Fenton process. Magnetite (Fe3O4) nanoparticles are considered effective cat-
alysts for heterogeneous Fenton processes, because Fe2+ of Fe3O4 has octahedral sites that
support the decomposition of H2O2 or PS into reactive radicals [19,20]. In addition, Fe3O4
nanoparticles can be easily manufactured, have high biocompatibilities and stabilities, and
are easily separated by using an external magnetic field. These attributes make them highly
suitable as catalysts in the removal of non-degradable organic substances [21,22].

Table 1 summarizes the experimental conditions used in this research compared with
other studies reported in the literature. Heterogeneous Fenton processes that employ
Fe3O4 and PS have been reported to degrade several pharmaceutical compounds, such as
norfloxacin and sulfamethoxazole [23,24]. The use of nanocomposite materials in which
the magnetite was combined with other supporting materials, such as biochar, activated
carbon, and chitosan for degradation of tetracycline, was also reported [25–28]. Several
previous works have reported the inhibitory effect of organic and inorganic substances
individually [21,25,26], but there is no report on the inhibitory effect of actual wastew-
ater samples on TC degradation by the Fe3O4/PS system. Thus, the practicality of a
heterogeneous Fenton process that uses Fe3O4 and PS in real-world applications has yet to
be tested.
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Table 1. Comparison of experimental conditions used in this research with literature.

Catalyst Type Catalyst Dosage
(g/L)

PS Dosage
(mM)

[TC]0
(mg/L) LC-MS Study Water Matrix Tested Ref.

Fe3O4 0.2~2 0.05~1 18.5 O Municipal effluent This study

Fe3O4 0.2 2 50 X X (humic acid) [21]

Fe3O4 0.1~1.5 15~150 (H2O2) 25 O X [22]

Fe3O4/biochar 0.1~0.5 0.1~20 5~40 O
X (inorganic ions;

Cl−, SO4
2−, NO3

−,
HCO3

−, H2PO4
−)

[25]

Fe3O4/biochar 0.5~2 2~16 20 O X (inorganic ions;
Cl−, NO3

−, HCO3) [26]

AC@Fe3O4 0.05~0.4 10~50 10~50 X X [27]

Fe3O4-CS 0.3~0.7 5~40
(H2O2) 44~111 O X [28]

This study evaluates the capacity of Fe3O4 as a catalyst for activating PS to the extent
that it can degrade TC. Fe3O4 nanoparticles were synthesized and subsequently charac-
terized by using nitrogen sorption via Brunauer–Emmett–Teller (BET) analyses, X-ray
diffraction (XRD), and transmission electron microscopy (TEM). The removal efficiency of
TC under various reaction conditions was investigated. Reaction variables include Fe3O4
and PS concentration as well as the initial pH. The effect of the water matrix was evalu-
ated by comparing removal efficiencies from deionized water and wastewater treatment
plant effluent. The TC degradation mechanism was further investigated by analyzing the
reaction intermediate, using the liquid chromatograph-tandem mass spectrometer.

2. Materials and Methods
2.1. Chemicals

Reagent-grade FeCl2·4H2O (99%), FeCl3·6H2O (97%), NH4OH (25~30%), K2S2O8
(98%), HClO4 (≥70%), ethanol [C2H5OH] (99%), and H3PO4 (99%) were purchased from
Samchun Chemical (Seoul, Korea). NaOH (≥93%, reagent grade) was purchased from
SHOWA KAKO Corporation (Osaka, Japan). Tetracycline hydrochloride [C22H25N2O8Cl]
(≥95%, analytical grade), acetonitrile (C2H3N, HPLC grade), methanol (CH3OH, HPLC
grade), and formic acid (CH2O2, HPLC grade) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Ultrapure water was produced by a water purification system (Synergy®,
Merck, Kenilworth, NJ, USA)

2.2. Fe3O4 Preparation

Fe3O4 was prepared by the coprecipitation method under alkaline conditions accord-
ing to Equation (4) [29]

2FeCl3(aq) + FeCl2(aq) + 8NH3(aq)→ Fe3O4(s) + NH4Cl(aq) (4)

First, ultrapure water was purged with N2 gas for 1 h. 10 mL of 3.0 M FeCl2·4H2O
(in 2.0 M HCl) and 10 mL of 6.0 M FeCl3·6H2O (in 2.0 M HCl) solutions were prepared
as starting materials. An aqueous solution of ferric chloride and ferrous chloride at a
2:1 molar ratio of Fe3+: Fe2+ was prepared, injected into a 1 L three-necked round flask
containing 600 mL deionized water, and heated to 50 to 60 ◦C with stirring. After 10 min,
200 mL of 2.8 M NH4OH was added dropwise at a constant flow rate for 45 min, and the
pH of the aqueous solution was raised to 10–11. The resulting solution was then heated
and stirred at 50 to 60 ◦C for one hour and then stirred without heating for an additional
hour. The reaction was continuously purged with N2 gas during all of the synthesis steps
described above. The resulting black solid was separated with a neodymium magnet,
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washed with ultrapure water until it assumed a neutral pH, and then washed three times
with methanol. Finally, the product was dried overnight at 50 ◦C in a vacuum oven and
stored in an anaerobic chamber prior to use in experiments.

2.3. Fe3O4 Characterization

The crystal structure of Fe3O4 was analyzed by X-ray diffractometer (XRD, D8 AD-
VANCE, Bruker, Billerica, MA, USA). Morphology and size were observed using a trans-
mission electron microscope (TEM, JEM-2010, JEOL, Tokyo, Japan). The specific surface
areas of the Fe3O4 particles were obtained by applying BET analyses to N2 sorption data
acquired at 77 K and p/p0 = 0.99 (BELSORP-mini II, MicrotracBEL, Osaka, Japan).

2.4. TC Degradation Experiment Using Fe3O4/PS

Fifty milliliters of 41.6 µM of TC dissolved in ultrapure water was transferred to a
glass vial. Fe3O4 and PS were added into the glass vial simultaneously at the start of the
experiment; therefore, this study did not consider the equilibrium time for TC adsorption
on the catalyst. The solution was continuously mixed using a vertical rotating mixer
(VM-80, Miulab, Zhejiang, Hangzhou, China) at a speed of 20 rpm. The batch experiments
were conducted by adjusting the initial concentrations of Fe3O4 and PS from 0.2 to 1 g/L
and 0.05 to 1 mM, respectively, to investigate the impacts of Fe3O4 and PS concentration
on TC removal. To examine the effect of the initial pH on TC removal, it was adjusted by
using 0.1 M NaOH or 0.1 M HClO4 over a range of 3 to 9. As ClO4

− has little impact on the
oxidation process, it is a more appropriate ionic species for adjusting the pH than HCl and
H2SO4 [23]. The reaction time for each batch experiment was 60 min, during which a 1-mL
sample was collected from each vial at specified time intervals, immediately filtered with
a 0.45 µm PES syringe filter, and then quenched by adding 0.1 mL of ethanol to prevent
further side reactions prior to analysis [30]. TC concentration over the experimental time
was plotted by a pseudo first-order kinetic equation:

Ct = C0·exp(−kobs·t) (5)

where k is the observed rate constant (min−1), C0 is the initial concentration of TC, and
Ctis the concentration of TC at time t.

To understand the formation of intermediate product of TC during its reaction with
Fe3O4/PS, a batch experiment was also conducted. TC, PS, and Fe3O4 were added into a
glass beaker with 200 mL of ultrapure water, resulting in initial concentrations of 41.6 µM,
1 mM, and 1 g/L respectively. pH was adjusted to 4.7. Samples were taken at 0, 10, 20, 30,
40, 50, and 60 min, filtered with a 0.45 µm PES syringe filter, and 0.1 mL of ethanol was
added into a 0.9 mL sample to quench the reaction.

To examine the effect of the water matrix on TC removal by Fe3O4/PS, batch experi-
ments using ultrapure water or municipal effluent wastewater from a regional wastewater
treatment plant (WWTP) were performed and their results compared. The common param-
eters of the effluent are presented in the supporting information (Table S1).

2.5. Analytical Methods

For the quantitation analysis in the degradation experiments, TC concentration was
analyzed by high-performance liquid chromatography (HPLC, U-3000, Thermo Fisher,
Waltham, MA, USA). TC was separated in chromatography by using a C18 column (Accu-
core AQ 4.6 × 150 mm, 2.6 µm, Thermo Fisher, Waltham, MA, USA) and was detected at a
280 nm absorbance wavelength. The oven temperature was set at 50 ◦C. The mixture of
0.1% phosphoric acid/acetonitrile (85:15, v/v) was used as isocratic elution at a flow rate
of 1 mL/min. The sample injection volume was 10 µL, while the transformation products
of TC were quantified by HPLC (Vanquish Flex, Thermo Fisher Scientific, Waltham, MA,
USA) coupled with a triple quadrupole mass spectrometer (TSQ Quantis, Thermo Fisher
Scientific, Waltham, MA, USA). Chromatographic separation was performed using a C18
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column (4.6 × 50 mm, 3.5 µm, Agilent, Santa Clara, CA, USA). A detailed description of
the method can be found in Text S1.

A spectrofluorometer (F-7000 Fluorescence Spectrophotometer, Hitachi, Tokyo, Japan)
was used to investigate changes in fluorescence intensity for the samples during the
heterogeneous Fenton reaction.

3. Results
3.1. Physical and Morphological Characteristics of Fe3O4

XRD analyses were conducted to understand the crystallinity of the synthesized
Fe3O4 nanoparticles. The diffraction results, as shown in Figure 1, clearly demonstrate
that the Fe3O4 materials are crystalline, thus indicating a successful synthesis. The XRD
patterns of the synthesized Fe3O4 have peaks at 2θ of 30.06, 35.43, 43.04, 53.55, 57.17, and
62.73, which are assignable to (220), (311), (400), (422), (511), and (440) of cubic Fe3O4,
respectively, according to the Joint Committee for Powder Diffraction Studies (JCPDS No.
19-0629) [26]. In addition, the positions of the diffraction peaks indicate an inverted spinel
structure [31]. The average Fe3O4 particle size can be obtained from the XRD pattern via
the Debye-Scherrer formula D = Kλ/βcos(θ), where K is the Scherrer constant (0.89), λ is the
X-ray wavelength (1.54 Å), β is full width at the half maximum of a given peak, and θ is the
Bragg diffraction angle [17]. Application of the Debye-Scherrer equation to the most intense
peak, i.e., the (311) reflection (Figure 1), establishes an average particle size of 9.59 nm.
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Figure 1. XRD patterns of Fe3O4 nanoparticles.

The morphology of the Fe3O4 particles was further identified by TEM, images for
which are presented in Figure 2. Most of the Fe3O4 nanoparticles were quasi-spherical in
shape with a diameter of 10 nm or less and formed aggregates that ranged in size from
several hundreds of nm to several µm. The individual particle size obtained in the TEM
analysis matched well with the sizes indicated by the XRD analyses. These results are
similar to Kwon et al., who also reported on the properties of Fe3O4 [29]. The specific
surface area of Fe3O4 obtained by BET analysis was 93.82 m2/g.
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3.2. The Catalytic Role of Fe3O4 in TC Degradation

The catalytic activity of Fe3O4 when activating PS and subsequently degrading TC was
evaluated by monitoring TC removal in the presence or absence of PS and Fe3O4. As shown
in Figure 3, PS alone resulted in only 4.4% TC removal efficiency after a one-hour reaction,
while a comparably higher removal efficiency of 49.7% was observed when the only Fe3O4
was used. The dominant removal of TC by Fe3O4 was likely due to adsorption by the
Fe3O4 surface, which is in line with the results from some previous similar studies [16,26].
This was further confirmed by the HPLC chromatography results for samples in the batch
experiment with Fe3O4 alone, which did not show any intermediate peaks (Figure S1).
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tal time ([Fe3O4] = 1.0 g/L, [PS] =1.0 mM, [TC] = 41.6 µM, pH = 4.8).

In comparison to the above results, reactions conducted with both Fe3O4 and PS
exhibited much higher TC removal efficiencies of 90.0% in 30 min and 98.1% in 1 h. An
HPLC chromatogram of the reaction solution revealed several intermediate peaks, thus
establishing that oxidation is involved in TC removal (Figure S2). This result indicated that
the enhanced removal efficiency in Fe3O4/PS was due to the oxidative degradation of TC.
The concentration of total organic carbon (TOC) in the reaction solution also decreased
by more than 50%, indicating that TC species were oxidatively decomposed by catalytic
reactions. The degradation kinetic was further interpreted by the pseudo first-order kinetic.
The high linearity (R2 = 0.9875) of the fitted line indicates that the reaction had pseudo
first-order kinetics, which has been widely observed for similar catalytic systems [26]. The
kobs for the Fe3O4/PS system was calculated as 0.1038 min−1. Soluble iron concentration
was maintained at less than 0.3 mg/L throughout the experiment for all samples, thereby
verifying the high stability of Fe3O4 during the catalytic reaction.

3.3. The Effects of Reaction Conditions on TC Removal in Fe3O4/PS
3.3.1. Effect of Fe3O4 Concentration

As discussed in Section 3.2, Fe3O4 was proven as an efficient catalyst for activating
PS in order to remove TC. The effect of catalyst dosage on TC removal by Fe3O4/PS with
various initial Fe3O4 concentrations (0.2–2.0 g/L) was studied. Initial concentrations of
TC and PS were 41.6 µM and 1 mM, respectively. As presented in Figure 4A, the removal
of TC increased when increasing the initial Fe3O4 concentration. For example, when
0.2 g/L, 0.5 g/L, and 1.0 g/L of Fe3O4 were used, the removal efficiencies of TC at a 60-min
reaction time were 29.8%, 79.2%, 95.9%, respectively, and full removal of TC within our
detection limits was achieved at Fe3O4 concentrations of 1.5 g/L or 2.0 g/L. In Figure 4B,
the pseudo first-order rate constants gradually increased from 0.0039 to 0.1309 min−1

along with an increase in initial Fe3O4 concentration. The enhanced kinetic constants in
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increased Fe3O4 addition were attributed to the adsorption and oxidation. The higher
catalyst concentrations accelerate TC decomposition, which can be explained by the greater
concentration of active sites at higher Fe3O4 concentrations. Moreover, the large numbers
of active sites also enhance the adsorption of TC and PS molecules to Fe3O4, leading to
higher reaction kinetics [32].
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3.3.2. Effect of PS Concentration

Similar to the batch study of the effect of Fe3O4 concentration on TC removal in the
above section, the impact of the initial concentration of PS (0 to 1 mM) on TC removal
in Fe3O4/PS was also investigated. As presented in Figure 5A, a system without the
addition of PS had a TC removal efficiency of 43.5%, but this increased to 63.9% even with a
relatively low 0.05 mM PS concentration. Further increasing the PS concentration to 1 mM
PS dramatically raised TC decomposition efficiency to 95.9%. This distinct improvement in
efficiency at higher PS concentrations possibly originates from the greater reactive radical
generation apparent at higher PS concentrations [28,33].
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Based on the kinetic fitting results in Figure 5A, the corresponding rate constants
and removal efficiencies of TC under different PS initial concentrations were obtained
(Figure 5B). PS concentration did not significantly affect the rate constant, in comparison to
the impactor degree of Fe3O4 detailed in Section 3.3.1. Interestingly, TC removal efficiency
after 60 min of reaction increased from 43.5 to 85.2% when PS concentration increased from
0 to 0.2 mM; thereafter, removal efficiency remained stable at above 0.2 mM.

These results clearly indicate that the catalyst concentration determines the reaction
rate in the heterogeneous Fenton system. By comparison, PS does not significantly influence
the reaction rate, because PS is an oxidizing agent that is decomposed by the catalyst. In
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addition, excess PS hinders the overall reaction, due to the generation of sulfate anions via
scavenging reactions among radicals, as shown in Equations (6) and (7) [12,34].

SO4
•− + SO4

•− → S2O8
2− (6)

SO4
•− + S2O8

2− → SO4
2− + S2O8

•− (7)

3.3.3. Effect of Initial pH

The heterogeneous Fenton reaction is influenced by the solution’s pH, because the
dissolution of ferrous iron (Fe2+) depends on pH. Batch experiments under different pH
conditions, ranging from 3.0 to 9.0, were conducted to understand their impact on the re-
moval efficiency of TC by Fe3O4/PS. As presented in Figure 6, TC removal increased under
low pH conditions, and the highest rate constant (0.1530 min−1) was obtained at pH 3.0.
The rate constant decreased under alkaline conditions, and the lowest rate coefficient
value of 0.066 min−1 was observed at pH 9.0. Previous reports demonstrated that when
pH > 4.0, the concentration of soluble Fe2+ ions decreased, due to the formation of Fe2+

complexes and precipitation; subsequently, the activation rates for PS and SO4
•− produc-

tion decreased [26]. In alkaline pH conditions, SO4
•− radicals converted into •OH radicals,

thus serving as scavengers for SO4
•− via the reactions shown in Equations (8) and (9)

below [35,36]:
SO4

•− + •OH→ HSO4
− + 0.5O2 (8)

SO4
•− + H2O→ SO4

2− + •OH + H+ (9)
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However, the change in the reaction rate was not as dramatic as seen in similar
studies [34,37], because, in our study, pH was only adjusted accordingly before starting
the batch experiments, unlike the previous literature that used a pH buffer throughout the
experiments. As a result, the initial pH values of 3.0, 4.8, 7.2, and 9.1 applied to the batch
experiment were changed to final pH values of 3.0, 4.1, 4.2, and 4.5, respectively. No drop
in pH was observed for samples with an initially low pH, while samples with higher initial
pH values experienced more significant drops in this regard. These decreases in pH can be
explained by the production of carboxylic acid products and the decomposition of sulfate
salts [38,39].

3.4. Effect of the Water Matrix

As mentioned in the introduction, the water matrix effect of actual wastewater on
TC removal by Fe3O4/PS system have not been reported; therefore, we examined the
effect of the water matrix on the removal of TC by Fe3O4/PS by using municipal effluent
wastewater from a local WWTP, while ultrapure water was used in the comparison batch
study (Figure S3).
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The rate constants were similar in both batch studies, namely 0.100 min−1 in the
municipal effluent and 0.107 min−1 in the ultrapure water, but removal efficiency at 60 min
was significantly different at 88.3% and 96.0%, respectively. This clearly demonstrates a
key role of the water matrix on the heterogeneous Fenton reaction for TC degradation.
The consumption of PS in the municipal effluent was comparatively greater, due to the
presence of other organic and inorganic matter, which by comparison did not affect the
reaction rate. Additional experiments were conducted to interrogate how Fe3O4 and PS
concentration influence TC removal in municipal effluent. The results of these experiments
are summarized in Table 2.

Table 2. TC removal efficiencies in ultrapure water and municipal effluent according to various
reaction conditions.

Fe3O4 Dosage (g/L) PS Dosage (mM)
TC Removal Efficiency at 60 min (%)

Ultrapure Water Municipal Effluent

0 1.0 4.4 ± 1.0 42.5 ± 3.3

0.5 1.0 79.2 ± 3.2 54.2 ± 2.1

1.0

0.0 49.7 ± 5.1 55.2 ± 5.9
0.1 78.4 ± 2.1 53.6 ± 3.2
0.2 89.7 ± 2.0 60.0 ± 0.4
0.5 92.3 ± 0.7 64.2 ± 0.2
1.0 95.9 ± 0.1 78.3 ± 1.3

Overall, TC removal efficiency was lower in the municipal effluent than that in the
ultrapure water, thereby suggesting that the generated oxidative radicals were consumed
by organic/inorganic matter in the effluent and TC, which were competing with each
other. Interestingly, when only the PS was introduced without Fe3O4, relatively higher TC
removal efficiency was observed in the batch experiments treating the municipal effluent
(42.5%) than those treating ultrapure water (4.4%). This may have been the result of
the presence of metal cations (Mn, Cu, Ni) in the municipal effluent (Table S1) acting as
persulfate activators (Equation (10)) [40–42]. Li et al. (2016) reported that the very low
concentration of Mn2+, such as 0.5 mg/L, was enough to produce the hydroxyl radicals in
the presence of hydrogen peroxide [43]. Moreover, organic matters, such as quinones and
phenols, can also activate PS for subsequent degradation of organic matters, as reported by
Fang et al. (2013) and Ahmad et al. (2013) [44,45].

S2O8
2− + Mn+ →Mn+1 + SO4

2− + SO4
•− (10)

When the initial PS concentration was fixed at 1 mM, increasing Fe3O4 concentrations
also led to improvements in TC removal efficiencies, namely 42.5%, 54.2%, and 78.3%
at 0 g/L, 0.5 g/L, and 1.0 g/L of Fe3O4, respectively. A similar trend was observed in
ultrapure water. The effect of PS concentration was also probed in municipal effluent.
In ultrapure water, increasing the dosage of PS from 0 to 0.2 mM yielded a logarithmic
increase in TC degradation efficiency, which plateaued at PS concentrations from 0.2 to
1.0 mM. By comparison, in municipal effluent, TC removal efficiency gradually increased
with PS content at low PS concentrations (0 to 0.5 mM), albeit it sharply increased at 1.0 mM.
The low enhancement of TC removal efficiency with greater PS concentration is likely the
result of TC competing with other organic and inorganic matter in the municipal effluent,
which consumes radical species. Sulfate radicals can be scavenged at high-pH, organic
carbons, and various anionic species, including Cl−, HCO3

−, and CO3
2− that are present

in effluent via the reactions in Equation (11) to (13) [40,46]. TOC removal efficiencies were
50 to 17% for ultrapure water and municipal effluent, respectively, indicating that TC
degradation was hindered by organic and inorganic matter in the municipal effluent. The
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consumption of oxidative radicals by such compounds in the municipal effluent resulted
in lower TC removal efficiencies:

SO4
•− + Cl− → Cl• + SO4

2− (11)

SO4
•− + HCO3

− → HCO3
• + SO4

2− (12)

SO4
•− + HCO3

− → CO3
•− + SO4

2− (13)

Changes in organic matter with Fe3O4/PS were further analyzed by using excitation-
emission matrix (EEM) fluorescence analyses. EEM data collected from TC-spiked munici-
pal effluent (Figure 7A) show peaks in the 360–380 nm/520–540 nm (excitation/emission)
and 230–240 nm/520–540 nm (excitation/emission) regions, corresponding to humic acid-
like and fulvic acid-like groups, respectively. After 1 h of the TC degradation reaction
(Figure 7B), overall peak intensity decreased by approximately half, indicating the degrada-
tion of organic matter during the Fe3O4/PS experiments. Moreover, peak intensities in the
230–240 nm/340–400 nm region comparatively increased after the reaction, thus indicating
the presence of low-molecular-weight organic substances such as tryptophan-like and
other protein-like compounds [47,48].
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Figure 7. Excitation-emission matrix results acquired from the municipal effluent spiked with TC,
before (A) and after (B) treating with Fe3O4/PS [Fe3O4] = 1 g/L, [PS]0 = 1 mM, [TC]0 = 41.6 µM).

The EEM matrices were further analyzed by the humification index (HIX), which is
the ratio of the integral of the emission spectrum (excited at 255 nm) over the spectral range
of 434 to 480 nm to the integral of the emission spectrum over the spectral range of 330
to 346 nm (also excited at 255 nm) [49]. High-molecular-weight organic compounds are
characterized by high HIX values. Table 3 summarizes the HIX values obtained for several
water samples, municipal effluent, municipal effluent spiked with TC before the Fe3O4/PS
experiment, and Fe3O4/PS-treated water. The HIX value was 6.51 for the municipal
effluent, and this dramatically increased to 21.53 upon adding TC (41.6 µM). The HIX value
for the Fe3O4/PS-treated water was relatively lower at 7.55, which is similar to the HIX
value for municipal effluent.

Table 3. Humidification index and SUVA254 for the various water samples.

Municipal Effluent Municipal Effluent
Spiked with TC Fe3O4/PS Treated

HIX 6.51 21.53 7.55
SUVA (L/mg·m) 1.51 4.13 2.20
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Similar trends were observed in the SUVA254 value, which is the ratio of decadal
absorbance at 254 nm to the dissolved organic carbon concentration (DOC). Typically, the
SUVA254 ranges from 1.2 to 2.6 L/mg·m for secondary effluents [50]. The SUVA254 value
for the municipal effluent in this study was 1.51 L/mg·m, which falls within the reported
range. By comparison, municipal effluent spiked with TC exhibited a relatively greater
SUVA254 of 4.13, which subsequently reduced to 2.20 after Fe3O4/PS treatment. As the
HIX and SUVA254 are measures of the aromaticity of organic matter, we conclude that the
aromatic rings in the TC molecule degraded during the reaction promoted by the Fe3O4/PS.
The reduced aromaticity resulting from the Fe3O4/PS agrees well with related studies
reporting on the mechanism of TC degradation in the Fenton reaction [21,51].

3.5. Transformation Products and Proposed Pathways

Intensity development during the reaction between TC and Fe3O4/PS for the TC peak
eluted at 5.09 min, and six major peaks inferred to the transformation products (TPs) can be
seen in total ion chromatography in Figures 8 and S4. The TPs were found at elution times
ranging from 10 to 14 min, namely, TP 1(m/z = 344, 10.69 min), TP 2 (m/z = 358, 11.06 min),
TP 3 (m/z = 274, 11.77 min), TP 4 (m/z = 290, 12.02 min), TP 5 (m/z = 256, 12.92 min), and
TP 6 (m/z = 284, 13.82 min). TC peak intensity significantly decreased over time, while the
TP 6 peak intensity increased over time. Unlike TP 6, the intensities of TP 1–5 peaks initially
increased but then decreased. These TPs with their predicated molecular structures, and
the corresponding mass spectrum intensities, are illustrated in Table S2 and Figure S5.
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A possible TC degradation pathway is proposed in Figure 9. First, the formation of TP
with an m/z = 417 was the result of losing dimethyl amino at C4 of TC (m/z = 445), due to
low N-C bond energy [28]. TP with an m/z = 401 formed through the dehydration pathway
from C6 of the TP with an m/z = 417 [52]. Through the deamidation reaction, namely, the
loss of the acylamino group at C1 of TP with an m/z = 401 [53], the formation of TP 2
(m/z = 358) was observed. Thereafter, TP 1 (m/z = 344) was found, due to the cleavage
of the carboatomic ring of TP 2 [54], followed by decarboxylation, which converted TP 1
to the TP with an m/z = 300 [55]. After dimethyl and deformaldehyde process by H
addition, TP with an m/z = 279 was obtained, while the formation of TP 6 (m/z = 284) was
attributed to TP with an m/z = 279 of decarboxylation and H addition reaction to C-H
double bond on benzene ring as well as carboxyl addition. TP 6 was also identified as one
of the transformation products for previous references using the photocatalyst to remove
TC [56,57]. Unlike the pathway from an m/z = 300 to an m/z = 284, TP 4 (m/z = 290) was
formed by adding dimethyl and H to the C-O double bond of the TP with an m/z = 300.
Based on TP 4, TP 3 was formed due to its decarboxylation, while TP 5 was obtained
through its dimethyl decarboxylation and H addition reaction to a C-H double bond on a
benzene ring. When compared to TP 3, TP 3 (a) had the same m/z as TP 3 but a different
molecular structure and was directly derived from TC. TP 3 (a) was also found in a previous
study using a catalyst regenerated from Fenton sludge containing heavy metal, in order to
active persulfate for TC degradation [53].
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1g/L, [PS]0 = 1 mM, [TC]0 = 41.6 μM), Figure S4: the total ion chromatogram (HPLC-MS/MS) of tet-
racycline removed by Fe3O4/PS and its transformation products in samples taken over the reaction 

Figure 9. A possible TC degradation pathway in the Fe3O4/PS system.

4. Conclusions

This study presents a new understanding of the degradation of TC via a heterogeneous
Fenton system using Fe3O4 and persulfate. Fe3O4 was successfully synthesized by using
the coprecipitation method under alkaline conditions, and the resulting materials were
characterized via XRD, TEM, and BET analyses. The catalytic roles of Fe3O4 for persulfate
activation and TC degradation were evaluated by monitoring TC reduction in the presence
or absence of persulfate and Fe3O4. TC was removed from solutions by adsorption onto
Fe3O4 surfaces, where the TC was then oxidatively degraded by the Fenton reaction. The
effects of various reaction conditions, including Fe3O4 concentration, PS concentration,
and the initial pH, were further interrogated to understand the reaction mechanism. The
kinetics of TC decomposition gradually increased in line with an increase in Fe3O4 con-
centration, thus indicating the catalytic role of Fe3O4. Increasing the concentration of
PS influenced TC removal efficiency but not TC removal kinetics, because persulfate is
an oxidizing agent that is decomposed by the catalyst. Excess PS hindered the overall
reaction by scavenging sulfate radicals. Lower initial pH conditions enhanced the overall
reaction kinetic by increasing Fe2+ generation. The effect of the water matrix was further
investigated by using WWTP effluent. Overall, TC removal efficiency was lower in the ef-
fluent versus ultrapure water, due to TC competing with organic and inorganic matter that
consumes generated oxidative radicals. DOM analyses, e.g., EEM and SUVA254, revealed
that reactions promoted by the HFS break the aromatic ring moieties of TC molecules. The
oxidative degradation of TC was nonetheless maintained in the effluent, and TC removal
efficiency in WWTP effluent could be increased by raising the concentration of PS. The
tetracycline degradation pathway through the magnetite/persulfate system was identified
by using a liquid chromatograph-tandem mass spectrometer. Thus, the heterogeneous
Fenton process with Fe3O4 and PS appears to have significant potential for use in removing
and controlling micropollutants in wastewater.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092292/s1, Text S1: HPLC-MS/MS operational parameters for identifying the transfor-
mation product of tetracycline removed by magnetite/PS, Table S1: common parameters of municipal
effluent wastewater, Table S2: transformation products (TPs) of tetracycline removed by Fe3O4/PS,
Figure S1: HPLC peak when TC was removed by only Fe3O4, Figure S2: HPLC peak when TC
was removed by Fe3O4/PS, Figure S3: reduction in TC concentration in (red) municipal effluent
and (black) ultrapure water ([Fe3O4] = 1 g/L, [PS]0 = 1 mM, [TC]0 = 41.6 µM), Figure S4: the total
ion chromatogram (HPLC-MS/MS) of tetracycline removed by Fe3O4/PS and its transformation

https://www.mdpi.com/article/10.3390/nano11092292/s1
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products in samples taken over the reaction time, Figure S5: intensity of the fragment chart analysis
relating to the transformation products of TC eluted at different retention times.
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