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Abstract—A DRAM device requires periodic refresh 
operations to preserve data integrity, which incurs 
significant power consumption. Slowing down the 
refresh rate can reduce the power consumption; 
however, it may cause a loss of data stored in a 
DRAM cell, which affects the correctness of 
computation. This paper proposes a new memory 
architecture for deep learning applications, which 
reduces the refresh power consumption while 
maintaining accuracy. Utilizing the error-tolerant 
property of deep learning applications, the proposed 
memory architecture avoids the accuracy drop caused 
by data loss by flexibly controlling the refresh 
operation for different bits, depending on their 
criticality. For data storage in deep learning 
applications, the approximate DRAM architecture 
reorganizes the data so that these data are mapped to 
different DRAM devices according to their bit 
significance. Critical bits are stored in more 
frequently refreshed devices while non-critical bits 
are stored in less frequently refreshed devices. 
Compared to the conventional DRAM, the proposed 
approximate DRAM requires only a separation of the 
chip select signal for each device in a DRAM rank 

and a minor change in the memory controller. 
Simulation results show that the refresh power 
consumption is reduced by 66.5 % with a negligible 
accuracy drop on state-of-the-art deep neural 
networks.    
 
Index Terms—Deep learning, approximate DRAM, 
low power DRAM, bit-level refresh, fine-grained 
refresh  

I. INTRODUCTION 

Deep learning applications require large amounts of 
computation with excessive data traffic from the memory 
[1]. Therefore, DRAM energy consumption is substantial 
in the total system energy. Beside the power consumed 
by data access to DRAM, a significant portion of DRAM 
power is made by refresh operation. It is necessary to 
read out data periodically and then written them back 
into the same memory cells because DRAM cells cannot 
retain the stored data permanently. This refresh operation 
is necessary for all cells in a DRAM, whether they store 
significant data or not. Therefore, this refresh operation 
results in significant power consumption even though 
certain DRAM cells do not store the data that are 
accessed by an active process in the processor. As the 
DRAM density increases, the refresh power consumed 
becomes prominent. In a future 64 Gb DRAM device, the 
refresh operation is expected to account for up to 50% of 
the total power consumption [2]. 

Accordingly, various refresh management techniques 
have been proposed to reduce power consumption [2-7]. 
In three studies, [2-4], the OS is requested by default to 
figure out the retention time information for each DRAM 
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row, and a DRAM controller uses this information to 
selectively perform refresh operation for each row. These 
techniques significantly reduce the refresh power 
consumption by skipping unnecessary refresh commands. 
However, with increasing memory sizes, it is not cost-
effective and not scalable to store the retention time 
information of all the rows of the DRAM. Moreover, 
profiling the retention time information of all DRAM 
cells requires a significant amount of effort, and incorrect 
results may be obtained, as it has to deal with Variable 
Retention Time and Data Pattern Dependencies [8]. Two 
studies in [5] and [6] propose another approach to reduce 
the refresh power consumption by allowing the 
possibility of occurrence of a small amount of errors in 
DRAM cells. In [5], Flikker provides a software solution 
for the approximate memory by partitioning data into 
critical and non-critical data. It leverages the Partial-
Array Self-Refresh Mode (PASR) [9], which supports 
different refresh rates for the different sections of the 
same DRAM bank. However, since all bits of data are 
unprotected from errors, in the case of floating data, an 
erroneous most significant bit (MSB) may change the 
data on a very large scale, which causes overflow in 
computation. Providing a finer-grained refresh control 
than [5], Sparkk in [6], uses varying refresh periods for 
different bits based on their importance. Sparkk protects 
the critical bits of integer data, thus making the 
applications more robust to an error than in the method 
proposed by Flikker; however, it lacks in software 
support and does not provide power measurement and 
performance evaluation based on architectural simulation. 
Different from Sparkk and Flikker, the studies in [7], and 
[18] proposes a transposed approximate memory 
architecture. A row-level refresh scheme is applied to 
refresh data bits according to their criticality. This 
scheme saves 69.68% of the refresh power with a 
negligible accuracy drop. However, a block of data needs 
to be buffered and transposed in the memory controller 
before saving to the external memory. It potentially 
causes the long latency for data access. 

It is widely known that deep learning applications are 
error tolerant [10, 11]. Therefore, based on this property, 
this paper proposes an approximate DRAM with a fine-
grained refresh scheme. The proposed scheme maps bits 
of data to different DRAM devices according to their bit 
significance. The critical bits are stored in more 

frequently refreshed devices to prevent the accuracy drop, 
whereas the non-critical bits are mapped to less frequent 
refreshed device thereby saving refresh power 
considerably. The simulation results show that the 
proposed approximate DRAM can significantly reduce 
the refresh power consumption by up to 66.5% with 
negligible degradation in accuracy. It is worth 
mentioning that this paper is extended from the previous 
work in [28]. In this paper, the hybrid memory 
architecture and evaluation methodology are elaborated 
in more detail. In addition, the evaluation of VGGNet 
inference with the real approximate memory on the 
FPGA platform is added to verify the correctness of the 
assumed error injection model. 

The rest of this paper is organized as follows. Section 
II presents the proposed approximate architecture. 
Section III describes the evaluation methodology. In 
Section IV, the evaluation results are provided, and 
finally the conclusions are presented in Section V. 

II. PROPOSED APPROXIMATE DRAM 

The main goal of the proposed approximate memory 
architecture is to apply different refresh rates to the 
different bits of data depending on the significance of the 
bits. The critical bits (i.e., sign bit and exponent bits) 
should be placed in the error-free zone with the normal 
refresh rate. On the other hand, the non-critical bits (i.e., 
mantissa bits) are placed in the erroneous zone with a 
slower refresh rate to achieve power saving during 
refresh operations. 

A deep learning application, in general, accesses 32-bit 
floating-point data [12]. The effectiveness of the 
approximate memory architecture depends on separating 
important data from the other data and refreshing them at 
the normal rate, while the other insignificant data are 
refreshed at a much slower rate, which may cause errors. 
The more fined-grained the critical data partitioning is, 
the more refresh reduction it can achieve. This paper 
proposes an approximate DRAM architecture, as shown 
in Fig. 1. This architecture is refreshed with different 
fined-grained schemes while protecting the 9 critical bits. 
This architecture, so called APPROX2, refreshes data at 
granularity of 2 bits. The least significant bits (LSBs) of 
the data are refreshed at slower rate than the MSBs. To 
reduce the design effort, hardware overhead, and 
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performance maintenance, this paper proposes a refresh 
scheme at DRAM device granularity. The DRAM 
devices for critical data are called precise devices and are 
marked with a dark color in Fig. 1. The precise devices 
are refreshed at the normal rate. On the other hand, the 
DRAM devices for non-critical data are called 
approximate devices and are marked with a dotted white 
color in Fig. 1. It should be noted that, for simplicity, the 
refresh period of approximate devices should be a 
multiple of the normal refresh period (tRF = 64 ms). In a 
conventional DRAM module, when the memory 
controller issues the refresh command, all the DRAM 
devices in a rank are refreshed simultaneously, and are 
thus refreshed at the same rate. To skip refresh 
operations for the approximate devices, the proposed 
DRAM architecture requires separate chip select signals 
for devices in the same rank, but this separation incurs a 
small area overhead. Furthermore, the design of the 
memory controller for the proposed architecture does not 
change much from the conventional design. To this end, 
in the new memory controller design, besides the refresh 
interval counter (tRFI = 7.8 μs) and row counter, a 
retention time round counter (multiple of 64 ms) is 
needed to decide whether a specific device needs to be 
refreshed during the current 64-ms round. 

In most computing systems, the cache line size is 64 
bytes. To optimize the latency when reading or writing 
cache lines from/to memory, one cache line should be fit 
in one DRAM full burst access (BL = 8). Since this paper 
focuses on the approximate memory for the class of deep 
learning applications, it is assumed that the cache line 
that is evicted/loaded to/from the approximate DRAM 
contains only single-precision floating-point data. 

Therefore, a 64-byte cache line contains 16 data words. 
Since the refresh period is different for each group of 2 

nearby bits, 32/2=16 devices are needed to form a rank. 
To keep the bit width of the DRAM rank unchanged (64 
bits), the ×4 DRAM device is used. The data mapping of 
APPROX2 is also shown in Fig. 1. Two corresponding 
bits of each data are merged and stored in a proper device. 
For example, {DATA1[31:30] and DATA0[31:30]} are 
stored in chip 15, {DATA1[29:28] and DATA0[29:28] 
are stored in chip 14, and so on. To keep the 9 critical 
bits (i.e., DATA[31:23]) protected, the chips 11, 12, 13, 
14, and 15 must be error-free, and therefore refreshed at 
the normal rate. Other chips can contain erroneous bits, 
and are refreshed at a slower frequency. The refresh 
policy for APPROX2 is expressed as follows: 
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where RP(n) represents the refresh period of n-th device 
and (incr, offset) are chosen experimentally. Therefore, a 
maximum refresh power saving of 11/16=68.75% can be 
achieved when the refresh operation of the approximate 
devices is turned off completely. Further evaluation with 
simulation results are provided in Section IV. 

The instruction set architecture (ISA), operating 
system (OS), and compiler supports for systems with 
approximate memory are well described in [5] and [13]. 
For the experiments in this study, a custom memory 
allocator is built to allocate the approximate data to the 
approximate memory. Similar to that in [5], the critical 
data partitioning is done by the programmer. Non-critical 
data are allocated in the approximate memory space. On 
the other hand, critical data such as instruction codes are 
stored in the precise memory space. In deep learning 
applications, if slight errors occur in the weights and 
feature maps, the performance might not degrade 
significantly. Therefore, they are non-critical data and 
can be stored in the approximate memory. This study 
uses the aforementioned memory allocator to allocate 
these data to the approximate memory. A pintool is 
written based on the Pin dynamic-instrumentation tool 
[14] to calculate the number of approximate pages over 
the total number of pages accessed by the program. It 
monitors all the memory accesses of the program to the 
approximate memory space and accumulates the total 

D[63:60] D[59:56] D[43:40]D[47:44] D[39:36] D[3:0]

Chip 15 Chip 14 Chip 11 Chip 0Chip 10 Chip 9

31:30 29:28 … 23:22 21:20 19:18 … 1:0DATA0

31:30 29:28 … 23:22 21:20 19:18 … 1:0DATA1

... ...

......

x4 x4 x4 x4 x4 x4

Fig. 1. Approximate memory architecture: APPROX2. Dark 
device: precise, dotted white device: approximate. 
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number of accessed approximate pages. The memory 
footprint profiling results of some deep networks, 
AlexNet [21], VGGNet [15] and GoogleNet [16], listed 
in Table 1 show that the portion of critical data in the 
total memory access is very small. Therefore, the refresh 
power can be considerably reduced by using the 
approximate memory. A practical hybrid memory system 
may contain precise devices and approximate devices, as 
depicted in Fig. 2. 

III. CIRCUIT DESCRIPTION 

1. Architectural Simulation 
 
To estimate the performance and power consumption 

of the proposed system when running deep learning 
applications by simulation, a cycle-accurate integrated 
simulator [17] based on Pin [14] binary instrumentation 
is used for fast simulation, detailed micro-architecture, 
and detailed DRAM memory subsystem. The memory 
bandwidth and detailed power consumption information 
of the memory subsystem can be obtained, which 
calculates the DRAM power consumption by following 
the methodology described in [19]. The front-end Pin-
based simulator is enhanced to emulate the OS kernel 
functionality for custom memory allocation. The non-
critical data of the CNN programs are allocated to 
approximate virtual pages. These approximate virtual 
pages are implicitly assigned to the approximate physical 
page area. The system configuration is described in Table 
2. The system has 4 out-of-order processor cores sharing 
the L2 cache, and each core has its own L1 instruction 
cache and data cache. A single memory channel is 
connected to a 16 GB Micron DDR3-1333 memory 
module consisting of ×4 and ×8 4 Gb devices. 

Based on the pre-trained models from Caffe library 
[20], this study builds the inference code of some state-
of-the-art CNNs such as AlexNet [21], VGGNet [15], 
and GoogLeNet [16] for performing architectural 
simulation and power measurement. The separation of 
approximate data from the normal data may cause 
performance overhead, because it potentially impacts 
locality and parallelism. How this separation affects the 
system performance is presented in Section IV. 

 
 

2. Simulation of Deep Learning Inference with Bit 
Error Injection 

 
The most recent research [22] has shown that the 

retention time is not equal for all DRAM cells. Instead, 
most cells have high retention time (called strong cells) 
while only a few cells (called leaky cells) have low 
retention time. This research also shows that DDR3 
DRAM cells can hold their values longer than 64 ms. At 
extremely high temperatures such as 80 °C and 90 °C, 
the bit flip rate increases exponentially. The bit error 
probability of customized refresh periods used in this 
paper is referred to [7]. For each bit in the approximate 
data, it is injected with an error having a corresponding 
probability depending on its criticality. The simulation of 
the proposed architecture described in Section II is 
injected at a bit granularity. 

This study uses the pre-trained model from the Caffe 
library for GoogLeNet [13] as the baseline for analyzing 
the accuracy effect of approximate memory. The 
simulation results for other networks such as AlexNet 
and VGGNet are expected to be similar to GoogleNet as 
shown in [7]. 

Table 1. Memory footprint profiling from [18] 

Deep Networks AlexNet VGGNet GoogLeNet
Proportion of approximate pages 99.78% 99.85% 99.67% 

 

CPU

Cache 
hierarchy

Precise 
DRAM

Approximate 
DRAM

 

Fig. 2. Hybrid memory system. 
 
Table 2. System configuration 

Parameters Values 

Processor 
4 out-of-order cores 2.53 GHz, 8-issue per core, 
128 instruction queue, 64 ROB size, ×86 ISA 
support 

L1I, L1D cache 16 KB per core, 4-way associative 

L2 cache 1 MB shared cache, 4-bank, 16-way associative 

Memory Controller Single channel, open page, FR-FCFS, 64-entry 
queues per rank 

DRAM 16 GB DDR3-1333 using 4 Gb ×4, ×8 Micron 
devices 
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A set of 10,000 test images from ImageNet 2012 
dataset [23] is used to measure the accuracy of the CNNs 
using the proposed approximate memory. The inference 
accuracy of each test is the Top-1 accuracy normalized to 
the accuracy of the corresponding test without using 
memory approximation. The experiments are conducted 
with various (offset, incr) values under different working 
temperatures. 

 
3. CNN Tests on Real Approximate DRAM on FPGA 

 
To verify the practicality of the error injection model, 

this study presents a hardware platform as shown in Fig. 
3. An FPGA board is connected to the host computer via 
the Peripheral Component Interconnect Express (PCIe) 
port. The Direct Memory Access (DMA) module 
transfers data between the host computer and the DDR3 
DRAM. The memory controller of the DRAM is 
customized to study the behavior of the approximate 
DRAM through long refresh periods. Because a device 
for temperature control is not available, these 
experiments are conducted at room temperatures. At low 
temperatures, the refresh period can be set even up to 100 
s. A pre-trained model of VGGNet is used in this test. It 
should be noted that the CNN algorithms run on the host 
computer, not on the FPGA board. 

The role of the approximate DRAM on the FPGA 
board is to inject error into the CNN model at runtime. 
For each test, the CNN model is temporarily saved in the 
approximate DRAM for a refresh period, then copied 
back to the host PC to run the classification. 

IV. SIMULATION RESULTS 

1. Performance and Refresh Power Reduction 
 
For the proposed approximate architecture, the 

reduction of refresh power consumption is derived 
mathematically from the following equations: 
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where (offset, incr) are the aforementioned parameters. 
The refresh power reduction of the proposed architecture 
with respect to their parameters is shown in Fig. 4. When 
the offset is 4,096 ms, the refresh power reduction is 
almost saturated. Thus, for the approximate devices, the 
refresh period needs not be longer than 4,096 ms. 

The system performance of the three deep networks is 
listed in Table 3. The baseline represents the results of 
the inference programs running on conventional memory, 
whereas the others represent the results of programs 
running on the proposed approximate memory. The 
proposed architecture has a similar instruction per cycle 
(IPC) to baseline. This is because the approximate 
architecture requires no change in the DRAM’s number 
of IOs and cache line size. 

The breakdown of the power consumption is depicted 
in Fig. 5. The simulation assumes that one-fourth of the 
memory space is precise and three-fourths is approximate. 
This assumption makes sense as the memory footprint 
profiling results listed in Table 1 indicate that most of the 
memory accessed pages can be approximated. The 
approximate part is refreshed during a long period so that 
the refresh power is almost zero. In addition, the power 
consumption of the proposed scheme is normalized with 
the baseline, which uses conventional memory. 
APPROX2 consumes more background power than the 
baseline because it uses twice more DRAM chips (×4 

PCIe
Core

Direct 
Memory 
Access

Memory 
controller

DDR3 
DRAM

AXIFIFOPCIe

FPGA boardHost PC -
Linux

CNN 
inference 
code() ?

(a) 
 

(b) 

Fig. 3. Hardware platform for CNN testing on real approximate 
DRAM (a) Block diagram, (b) Hardware setup for test. 
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devices) in a rank and the background power consumed 
by the ×4 chip is larger than the power half-consumed by 
the ×8 device. However, because refresh power is 
forcefully reduced, the total power consumption of 
APPROX2 is less than that of the baseline. It skips 68.1% 
of the refresh operations for the approximate part, while 
preserving system performance. Fig. 5 shows that 
APPROX2 saves up to 11.1 % of the total power 
consumption. More saving in the future is expected when 
the computing system uses larger memory modules 
composed of higher density devices such as 16, 32, and 
64 Gb memory. As predicted in [2], the refresh power 
accounts for 50% of the total power consumption when 
using 64 Gb devices. Therefore, the refresh saving can 
achieve 25.5% (=0.75×50%×68.1%) of the total energy 
for the hybrid memory system assumed in this 
experiment. 

2. Simulation of Classification Tasks with Bit Error 
Injection 

 
At temperatures lower than 60 °C, the accuracy loss is 

negligible with all (offset, incr) pairs. However, the 
accuracy drop is significant for temperatures higher than 
60 °C. It can be seen in Fig. 6 that with offset = 3072, 
4096 ms, an accuracy degrades significantly. On 
contradictory, with offset = 1024 ms, the accuracy loss is 
negligible (within 1%) at both 80 and 90 °C. The refresh 
saving achieved with the (1024, 256) option is as high as 
66.5%. 

 

3. CNN Tests on Real Approximate DRAM on FPGA 
 
Fig. 7 shows that the error injection model simulates 

well the error pattern of real approximate DRAM. Fig. 
7(a) shows the result of the FPGA test and Fig. 7(b) is 
constructed based on the test results of the bit error 
model. The experimental results show that the 
performance of the real approximate DRAM is slightly 
better than that of the error injection. This is because the 
error probabilities used in the bit injection are the worst-
case values measured in the real approximate DRAM 
[22]. At room temperature, although there is no critical 
bit protection, the refresh period can be prolonged to tens 
of seconds with very small performance loss. 

 

4. Comparison with the Previous Works 
 
This study attempts another approach that greatly 

reduces the power consumption by allowing the error 
occurrence in the DRAM cells. Previous studies on 
approximate memory through refresh control are 
presented in [5] and [6]. In [5], the experiments show a 
slight reduction of 20-25% self-refresh power in the idle 
mode only. Research in [6] does not indicate any power 
measurements. The transposed architecture in [7] saves 
70% of refresh power consumption at cost of additional 
buffers and control logics. On the other hand, the 
proposed approximate memory design requires only 
separate chip select signals for DRAM devices in the 
same rank and minor change in the memory controller. 
Meanwhile, the proposed architecture reduces 66.5% of 
the refresh power with negligible performance loss at any 
operating temperatures. It should be noted that the 

Fig. 4. Refresh power reduction of APPROX2 w.r.t. (offset, 
incr). 
 
Table 3. System performance (IPC) 

Networks Test scenario IPC 

AlexNet Baseline 
APPROX2 

1.561 
1.563 

VGGNet Baseline 
APPROX2 

1.212 
1.211 

GoogLeNet Baseline 
APPROX2 

1.798 
1.804 

 

Fig. 5. Power breakdown of some deep networks. 
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proposed architecture compensates for the problems of 
previous studies by reducing a significant amount of 
power consumption at various temperatures. 

There are various compression methods such as 
pruning [24] and quantization [25-27], which 
aggressively reduce the memory access, thereby reducing 
DRAM power consumption. Different from low-bit 
quantization, the proposed scheme does not require 
additional effort of fine-tuning or retraining to preserve 
the accuracy of the networks. Therefore, a floating-point 
data in original CNN model trained by GPU can be used 
directly in the proposed architecture. 

Compared to relevant research in [7, 18], which is able 

to reduce 26.0 % of the total energy for the hybrid 
memory, the proposed design achieves a competitive 
performance. Moreover, it does not require additional 
hardware overhead for multiple transposed buffers and 
address translation. 

V. CONCLUSIONS 

This paper presents an efficient approximate DRAM 
design which can save 66.5 % of refresh power 
consumption and up to 25.5% of the total memory power 
consumption for future 64Gb device. The error 
robustness of the proposed scheme is confirmed by 
testing at extremely high operation temperature. It is 
noteworthy that the proposed approximate DRAM 
requires a minor change in the memory controller 
without changing the DRAM device or incurring any 
significant additional hardware resources. 
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