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Abstract: Recently, convolutional neural network (CNN)-based object detectors such as You Only 
Look Once (YOLO) have been intensively studied for applications in robotics, drones, and 
autonomous driving. Although YOLO can run in real time by using a graphics processing unit, the 
YOLO hardware implementation has received a great deal of interest due to its power efficiency 
and the potential for massive chip production. However, extensive memory access and high 
computation complexity are widely known as bottlenecks in YOLO hardware implementation. A 
common and intuitive approach is to apply quantization, especially binarization, to object detectors. 
However, the existing binarization methods suffer from substantial degradation in detection 
performance. To address the problem, this study proposes an accurate weight binarization scheme 
using two scaling factors. Specifically, a new binary weight optimization problem is formulated, 
and an analytical solution is derived. Experimental results with well-known PASCAL Visual 
Object Classes show that the proposed method reduces the detection accuracy degradation by up to 
32.18% while meeting the memory and computation requirements of state-of-the-art methods.     
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1. Introduction 

In recent years, object detection has been intensively 
studied due to emerging applications such as autonomous 
driving [1-4] and robotics [5]. Especially, with the 
popularity of the convolutional neural network (CNN), 
there are many fast and accurate CNN-based object 
detectors, such as the faster region-based CNN (FRCNN) 
[6], the single shot multibox detector (SSD) [7], and You 
Only Look Once (YOLO) [8-10]. It is widely known that 
YOLOv2 [9] is one of the best detectors to achieve high 
detection accuracy over large numbers of different object 
categories in real time on a graphics processing unit (GPU). 
Because a GPU requires huge amounts of power due to 
extensive memory accesses and high computational 
complexity [11-13], the hardware implementation and chip 
fabrication of CNN-based object detectors (e.g. YOLOv2) 
receive a great deal of interest for their power efficiency 

and the potential for massive production [14, 15]. However, 
YOLOv2, with 23 CNN layers, still requires a 
considerable amount of memory for weights, which is not 
practical when using on-chip memory. Meanwhile, storing 
weights in off-chip memory (i.e., dynamic random access 
memory [DRAM]) causes high latency during memory 
access. As a result, weight quantization or binarization 
becomes an intuitive method to efficiently reduce latency 
and memory size. However, state-of-the-art (SOTA) 
binarization methods [16, 17] suffer from a substantial 
drop in accuracy when applied to the object detection task. 
In particular, being different from a classification task, it is 
not straightforward to train and achieve accurate binary 
object detection, so sequential training or knowledge 
distillation has been used [18]. As shown in Fig. 1, the 
results of three different binarization methods are quite 
different when only a single layer (i.e., either a second 
CNN layer or the last CNN layer) is binarized. To address 



Nguyen et al.: An Accurate Weight Binarization Scheme for CNN Object Detectors with Two Scaling Factors  

 

498 

the above problem, this paper proposes a new binarization 
method by using two scaling factors. Experimental results 
show the proposed method can mitigate the performance 
drop by up to 32.18% on the PASCAL Visual Object 
Classes (VOC) dataset [19] while achieving memory and 
complexity reduction similar to SOTA methods.  

To this end, the contributions of this paper are as 
follows. 

1) A new binarization optimization problem with two 
scaling factors is formulated, and its analytical solution is 
derived.  

2) Experiments are conducted to show the efficiency of 
the proposed method.  

The rest of this paper is organized as follows. Section 2 
describes the related works. In Section 3, the proposed 
optimization scheme for binarization with two scaling 
factors is formulated, and its solution is derived. Section 4 
includes performance evaluations and a discussion of the 
effect of the proposed scheme. Finally, Section 5 
concludes the paper. 

2. Related Works 

In this section, background regarding YOLOv2 and 
binarization are presented. 

2.1 YOLOv2 
The YOLOv2 network comprises two parts. The first 

takes and extracts features from the input image, while the 
second (i.e., the last convolutional layer) is in charge of 
localization and classification. The YOLOv2 network is 
derived from the original Darknet-19 architecture [9]. It 
should be noted that the 32-bit weight file consumes 
193 MB of memory for storage [20]. Therefore, weight 
binarization becomes a promising solution that can reduce 
memory storage by approximately 32 times. 

2.2 Binarization 
Weight binarization can be formulated as an 

optimization problem as follows:  
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where lW  and b

lW  are full-precision and binary weights 
for the l-th convolution layer, respectively, and lα  is a 
scaling factor.  

In [16], the scaling factor was not used, and therefore, 
weights were constrained to two values: -1 and 1. 
Eventually, binary weights are simply defined via sign 
function, as follows:  
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To improve performance, in [17], scaling factor lα  

was used, and this factor is computed as follows:  
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However, these weight binarization methods suffer 

from a substantial drop in detection accuracy [16, 17]. 
Therefore, this study aims to propose a novel binarization 
method that significantly mitigates the accuracy drop. 

2.3 Block Truncation Coding 
Block truncation coding (BTC) [21] is an image 

compression algorithm for grayscale images. It divides an 
image into blocks, and uses a quantizer to reduce the 
number of gray levels for each block while maintaining the 
same mean and standard deviation. BTC is applied for a 
small block size (i.e., 4×4), because pixels in a block are 
usually highly correlated. In this paper, the mathematical 
derivation of BTC is utilized to find scaling factors in the 
proposed binarization scheme, and the details are 
described in Section 3.  

3. The Proposed Scheme 

3.1 The Optimization Problem of Weight 
Binarization using Two Scaling 
Factors 

This subsection presents an accurate weight 
binarization method. First, to use two scaling factors, the 
binary weight optimization problem in (1) is reformulated 
as follows: 
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where lα  and lβ  are two scaling factors for the l-th layer, 
and ln  is the number of weights for the l-th layer. 

To solve (4), consider the design of a one-bit quantizer 
that finds a threshold, lm , and two output levels, lα  and 

lβ , such that: 
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Then, assume q is a number for ( )i
lw  that is greater than lm . 

Consequently, the objective function in (4) can be 
rewritten as follows:  
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Inspired by BTC [21], this subsection presents a 
method to derive lα  and lβ . By setting the partial 
derivatives of MSEJ  with respect to lα  and lβ  to zeros, lα  
and lβ  are derived with 
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Let the first and second moments and the variance of 

the weights be: 
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respectively. Similar to [21], threshold lm  is set to lw . In 
addition, threshold lm  and two output levels, lα  and lβ , 

are set to preserve lw  and 2
lw  as follows: 

 
 ( ) ,l l l l ln w n q qα β= − +  (12) 

 ( )2 2 2 .l l l l ln w n q qα β= − +  (13) 
 
By solving (12) and (13), lα  and lβ  are derived as 

follows: 
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3.2 Training the Binarized YOLOv2 
The proposed binarized YOLOv2 is trained by using 

the stochastic gradient descent (SGD) method as the 
SOTA methods [16, 17]. The difference is that the binary 
weight function is changed to (3) with threshold lm  and 
the two output levels, lα  and lβ , defined in (14) and (15). 
Binary weights are only used for forward propagation, 
while full-precision is used for updating gradients in 
backward propagation.  

4. Performance Evaluation 

4.1 Performance Comparison 
This section compares the proposed method with the 

SOTA approaches on the popular PASCAL VOC dataset 
[19], which consists of 20 classes that include cars, persons, 
bicycles, and buses. The baseline model is a published 
model of YOLOv2 trained on the PASCAL VOC dataset. 
The input image of the model was fixed at 416×416 as a 
baseline. The learning rate was initialized at 0.001, and 
gradually decreased by a scale of 0.1 at epochs 40,000, 
60,000, 80,000, and 100,000. The batch size was 64 with a 
subdivision of 8. The well-known mean average precision 
(mAP) was used for the evaluation metric.  

 

 
(a) (b) (c) 

Fig. 1. Detection results of binarized YOLOv2 with three binarization methods (a) Binaryconnect [8], (b) XNORNET, 
(c) the proposed method. For visualization, the binarization methods are only applied to one single convolution 
layer (i.e., the second layer or the last layer) of the pre-trained YOLOv2 [20] without retraining the network. In other 
words, the upper image is generated by applying binarization to the CONV layer 2; and the lower image is generated 
by applying the binarization to the last CONV layer before the detection layer.  
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The experimental results are reported in Table 1. In the 
second column, the number of bits used for weight (w) and 
activation (a) is reported for each method. For example, 
[14] uses one-bit weights (1-w) and 32-bit activations (32-
a), while [15] uses one-bit weights and six-bit activations. 
The baseline YOLOv2 was downloaded from a model pre-
trained by the author of [20] and marked with 32-bit 
weights and 32-bit activations. It should be noted that the 
mAP of the pre-trained model was 75.88%, which is 
slightly different than in [1]. Note that compared to the 
baseline, [14] and [15] gave much lower performance, 
because they use a smaller number of layers for hardware 
implementation. Meanwhile, YOLO–Binary Connect 
(YOLO-BC) and YOLO-Binary Weight Network (BWN) 
were directly obtained by applying the binarization 
methods in [16] and [17], respectively, re-training from the 
baseline. It is observed that the binarization method 
without a scaling factor [16] significantly reduced 
detection accuracy by about 14.53%, compared to the 
baseline. One possible reason is that YOLO includes both 
localization and classification tasks, and then depends 
highly on the scaling factor. The binarization method in 
[17] also degraded detection accuracy by about 4.32%. 
The experimental results with the proposed binarization 
using two scaling factors are reported in the seventh and 
eighth rows. It is observed that the proposed method in the 
seventh row can achieve a mAP of 72.45%, mitigating the 
performance degradation by about 20.6%, compared to 
YOLO-BWN [17]. The proposed method can be further 
improved by not applying weight binarization for the input 
layer. It achieves a mAP of 72.95%, and therefore, 
mitigated the accuracy degradation by about 32.18%, 
compared to YOLO-BWN [17].  

4.2 Convergence Speed and Training 
Time 

Table 2 shows the detection accuracy of three 
categories in autonomous driving (cars, persons, and 
bicycles) of the models saved at different epochs during 
the training time. The experimental results demonstrate 
that the proposed method consistently improves the 
detection performance during the training, and has the best 
performance when compared with the previous studies. It 
is interesting to observe that YOLO-BC [16] can reach a 
moderate accuracy level, although it starts with a very low 
performance.  

In terms of training time, the proposed method requires 
more time for backpropagation. In particular, when 
training on a single TITAN X (PASCAL) GPU, it takes 
about 2.225 seconds per epoch. In comparison, YOLO-BC 
[16] and YOLO-BWN [17] required 1.095 and 1.843 
seconds per epoch, respectively. However, considering 
both convergence speed and training time, three 
binarization methods can reach well-trained models after a 
similar amount of time. In addition, it should be noted that 
the training phase is less sensitive to processing speed than 
the inference phase.  

4.3 Weight Distributions 
Fig. 2 shows the weight distributions of convolutional 

layers 2 and 3 of the baseline YOLOv2 and three binarized 
variations. It is interesting to observe that compared to the 
baseline, all three binarized versions encourage more zero-
weights. Among the three versions, the proposed method 
generated more zero weights, and eventually, enhances 
detection accuracy.    

4.4 Binary Weight Optimization and Block 
Truncation Coding 

The derivation of the proposed binary weights in (5) 
and scaling factors in (14) and (15) are similar to BTC in 

Table 1. Experimental results of binarized YOLOv2 
variations on the VOC dataset. 

Method Bits (w-a) mAP (%) Diff. 
Baseline 32-w 32-a 75.88 - 

[14] 1-w 32-a 67.60 -8.28 
[15] 1-w 6-a 65.07 -10.81

Yolo-BC [16] 1-w 32-a 61.35 -14.53
Yolo-BWN [17] 1-w 32-a 71.56 -4.32 

Proposed (w/ input) 1-w 32-a 72.45 -3.43 
Proposed (w/o input) 1-w 32-a 72.95 -2.93 

 
 

 
(a) Convolutional Layer 2 

 
(b) Convolutional Layer 3 

Fig. 2. Weight distributions of the baseline YOLOv2 and 
three binarized variations. 
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image compression [21]. Despite the fact that they share a 
similarity in the mathematical formula, they came from 
different contexts. In other words, BTC comes from the 
concept that the pixel values in a natural image block are 
similar, and can be approximated by using two output 
levels. Meanwhile, there is no clear evidence that the 
convolutional weights are likely similar, and the problem 
is directly derived from the concept of quantization. To 

this end, it is interesting to bridge the binary weight 
problem and the block-based image compression algorithm.  

4.5 Memory Storage for Weights 
Table 3 reports the detailed architecture of the 

YOLOv2 network, which includes the number of input 
channels, the number of output channels, the convolutional 

Table 2. Detection accuracy of car, person, and bicycle categories during training time. 

Detection accuracy (mAP) of the models in each epoch   
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Baseline 0.8003 0.8003 0.8003 0.8003 0.8003 0.8003 0.8003 0.8003 0.8003
BinConnect [16] 0.2737 0.4776 0.623 0.6964 0.6908 0.6962 0.7063 0.7086 0.6922

BWN [17] 0.7145 0.7315 0.7395 0.7794 0.7830 0.7828 0.7852 0.7870 0.7865
Car 

Proposed 0.7361 0.7579 0.7639 0.786 0.7844 0.7830 0.7905 0.7839 0.7861
Baseline 0.7787 0.7787 0.7787 0.7787 0.7787 0.7787 0.7787 0.7787 0.7787

BinConnect [16] 0.3362 0.4590 0.6136 0.6670 0.6648 0.6713 0.6792 0.6827 0.6709
BWN [17] 0.6852 0.6978 0.7039 0.7335 0.7332 0.7369 0.7409 0.7407 0.7426

Person 

Proposed 0.6795 0.7144 0.7110 0.7321 0.7436 0.7399 0.7476 0.7489 0.7521
Baseline 0.8390 0.8390 0.8390 0.8390 0.8390 0.8390 0.8390 0.8390 0.8390

BinConnect [16] 0.1618 0.3288 0.5522 0.7020 0.7041 0.7149 0.7086 0.7217 0.7127
BWN [17] 0.7145 0.7315 0.7395 0.7794 0.7830 0.7828 0.7852 0.7870 0.7865

Bicycle 

Proposed 0.7335 0.7706 0.7804 0.8021 0.8087 0.8193 0.8169 0.8169 0.8196
 

Table 3. Weight sizes of the YOLOv2 baseline and the three binarized methods. 

  No. of input 
channels 

No. of output 
channels 

Filter 
size No. of weights Baseline (bits) BC [16] (bits) BWN [17] 

(bits) 
This work 

(bits) 
conv01 3 32 3 864 27648 864 1888 2912 
conv02 32 64 3 18432 589824 18432 20480 22528 
conv03 64 128 3 73728 2359296 73728 77824 81920 
conv04 128 64 1 8192 262144 8192 10240 12288 
conv05 64 128 3 73728 2359296 73728 77824 81920 
conv06 128 256 3 294912 9437184 294912 303104 311296 
conv07 256 128 1 32768 1048576 32768 36864 40960 
conv08 128 256 3 294912 9437184 294912 303104 311296 
conv09 256 512 3 1179648 37748736 1179648 1196032 1212416 
conv10 512 256 1 131072 4194304 131072 139264 147456 
conv11 256 512 3 1179648 37748736 1179648 1196032 1212416 
conv12 512 256 1 131072 4194304 131072 139264 147456 
conv13 256 512 3 1179648 37748736 1179648 1196032 1212416 
conv14 512 1024 3 4718592 150994944 4718592 4751360 4784128 
conv15 1024 512 1 524288 16777216 524288 540672 557056 
conv16 512 1024 3 4718592 150994944 4718592 4751360 4784128 
conv17 1024 512 1 524288 16777216 524288 540672 557056 
conv18 512 1024 3 4718592 150994944 4718592 4751360 4784128 
conv19 1024 1024 3 9437184 301989888 9437184 9469952 9502720 
conv20 1024 1024 3 9437184 301989888 9437184 9469952 9502720 
conv21 512 64 1 32768 1048576 32768 34816 36864 
conv22 1280 1024 3 11796480 377487360 11796480 11829248 11862016 
conv23 1024 125 1 128000 4096000 4096000 4096000 4096000 

Size (MB)         193.16 6.51 6.55 6.59 
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filters, and the number of weights. There are 23 layers. For 
simplicity, the number of biases and normalization 
parameters (i.e., scales, means, and variances) are not 
included, since they are equal to the number of output 
channels. For each layer, the weights are grouped based on 
the number of output channels. Therefore, the proposed 
method slightly increases the memory size, when 
compared to BinaryConnect [16] and BWN [17]. The sizes 
of the baseline and the three models for binarized 
YOLOv2 are shown in the fifth, sixth, seventh, and eighth 
columns, respectively. The baseline takes about 193.16 
MB, while BinaryConnect [16], BWN [17], and the 
proposed method take only 6.51 MB, 6.55 MB, and 6.59 
MB, respectively, achieving an approximate 30× memory 
usage reduction. It should be noted that binarization was 
not applied to the last detection layer. 

5. Conclusion 

This research proposed a weight binarization 
optimization problem with two scaling factors and derived 
its analytical solution. The proposed method outperformed 
the existing binarization methods in accuracy, while 
meeting similar memory and computation requirements.  
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