
IEIE Transactions on Smart Processing and Computing, vol. 9, no. 5, October 2020
https://doi.org/10.5573/IEIESPC.2020.9.5.413 413

IEIE Transactions on Smart Processing and Computing

Bit-width Reduction in Write Counters for Wear Leveling
in a Phase-change Memory System

Hyokeun Lee1, Hyunmin Jung1, Hyuk-Jae Lee1, and Hyun Kim2,*

1 Inter-university Semiconductor Research Center (ISRC), Department of Electrical and Computer Engineering, Seoul
National University / Seoul 08826, Korea

2 Research Center for Electrical and Information Technology, Department of Electrical and Information Engineering, Seoul
National University of Science and Technology / Seoul 01811, Korea

* Corresponding Author: Hyun Kim, hyunkim@seoultech.ac.kr

Received April 22, 2020; Accepted May 21, 2020; Published October 30, 2020

* Regular Paper

* Extended from a Conference: Preliminary results of this paper were presented at the IEEE International Conference on
Electronics, Information, and Communication (ICEIC) 2020. This paper has been accepted by the editorial board through
the regular reviewing process that confirms the original contribution.

Abstract: Phase-change memory (PCM) has garnered attention as a next-generation memory owing
to its non-volatility and scalability. However, PCM wears out under excessive write accesses;
hence, it must be supported by wear-leveling algorithms to uniformly distribute the number of
accesses across the entire address space. Table-based wear leveling is one of the representative
algorithms that stores a write counter for each address region for remapping frequently accessed
addresses with lower overhead; however, write counters consume resources in a PCM system. In
this study, a bit-width reduction method in write counters for wear leveling is proposed, where the
method utilizes a stochastic finite-state machine to probabilistically count the number of write
accesses. The proposed method shows only a 1.2% lifetime degradation using six bits for each
counter, with 40% fewer resources spent on write counters when the endurance of a 4KB block is
1E+06.

Keywords: Non-volatile memory, Phase-change memory, Wear leveling, Finite-state machine

1. Introduction

As technological processes scale down to nanometers,
non-volatile memory devices such as phase-change
memory (PCM) are expected to be deployed in the
commercial market. Within the modern computer
architecture, PCM has gained attention as a promising
next-generation memory device owing to its non-volatility,
scalability, low power consumption, and low latency [1-3].
These impressive characteristics allow PCM to be placed
as storage-class memory between the main dynamic
random-access memory (DRAM) and NAND flash-based
storage [4-7], because PCM is slower than DRAM but
faster than NAND flash. Accordingly, PCM is expected to
provide power reduction and performance improvement in
applications such as deep neural networks that intensively
access memory in conjunction with the parallelization of
graphics processing units (GPUs) [8, 9]. It should be noted
that reducing the power consumption of main memory is

very important in modern computer architectures [10].
However, PCM is not being deployed due to the cell

endurance problem. PCM cell programming requires
repetitive joule heating to change the resistance of the cell
material [11-13]; hence, excessive write operations on a
PCM cell incur stuck-at fault errors. Unlike hard-disk drive
(HDD) storage or DRAM, the lifetime of a PCM-based
main memory device is primarily limited by the cell or the
page that is the worst damaged. Consequently, a wear-
leveling algorithm, which remaps frequently updated data
to infrequently written cells, must be embedded in the
PCM controller to uniformly distribute the number of write
operations to each cell, and thereby enhance the device
lifetime [14-18].

Table-based wear leveling (TWL) manages address
mapping information in a table-based data structure [19,
20]. TWL has to store a write counter for each address
block to trigger address remapping with lower
performance overhead by mapping mostly hot data to cold

Lee et al.: Bit-width Reduction in Write Counters for Wear Leveling in a Phase-change Memory System 414

physical addresses. Specifically, the write counters take up
more memory resources with the technological scaling of
PCM. A 512GB PCM device requires 8B×512GB/4KB
=1GB in write counters if the memory region is divided
into 4KB units. Therefore, it is crucial to reduce the
resource overhead of the write counters. In [21], Yun et al.
declared that write counters can be roughly maintained for
wear leveling instead of keeping a precise number in each
write counter. Since spatial locality exists in mutually
adjacent logical addresses, previous work maintained a lot
of write counter information in a single counter by
adopting Bloom filters. However, the bit width of write
counters increases as the number of maintained addresses
grows; hence, reducing the bit width of each counter is
also critical for reducing the overall overhead incurred by
write counters.

Fig. 1. System layout, right, and the proposed method
to reduce write counters, left.

Group-0

Group-31

Group-63

Lower-
numbered lists

Higher-
numbered lists

Fig. 2. Block diagram of the Rejuvenator wear-leveling
algorithm, which has 64 write count groups.

On the other hand, algebraic mapping–based wear
leveling (AWL) performs an algebraic operation on the
logical address to get the physical address in PCM; hence,
the mapping table is not required. However, the write
counter of each address is still required as metadata for
further management by system software, such as operating
systems [19]. In summary, reducing the resource overhead
incurred by write counters is crucial for both TWL and
AWL.

This paper proposes a bit-width reduction method of
write counters for wear leveling in a PCM-based system.
The proposed method manages each counter as a
stochastic finite-state machine (FSM), which has a shorter
bit width than the baseline, to probabilistically count the
number of write commands in each address region. The
proposed work increases the counter number by tossing an
unfair coin instead of increasing the number for each
access. Thus, a shorter bit width can be maintained within
a single counter. Our experiment results indicate that the
proposed method reduces the bit width from 10-bit to 6-bit
when the endurance of a 4KB address region is 1E+06.
Nevertheless, the proposed method shows only 1.2%
degradation in memory lifetime.

The remainder of this paper is organized as follows.
Section 2 explains the background, including the system
architecture and the existing algorithms used in this study.
In Section 3, the proposed method is described.
Subsequently, the evaluation results are presented in
Section 4. Finally, the last section concludes the paper.

2. Background

2.1 System Layout
Fig. 1 depicts the memory controller architecture

adopted in this paper. As shown in the figure, input
commands are stored in the command buffer, waiting for
command scheduling. The write counters are stored in
DRAM cache, where the counter data are loaded into the
write counter register if the scheduled write command is
ready to be processed. Hot address detector table-based
wear leveling (HAD-TWL) is not triggered for every write
command in order to prevent significant performance
degradation. Instead, HAD-TWL launches once it receives

an interrupt signal from the write counter register when the
number reaches a predefined threshold value (e.g., 1024).
The hot address detector determines whether the processed
command is hot (i.e., frequently accessed) or not, and
signals wear leveling if it is hot. Consequently, wear
leveling is performed, and the hot data are remapped to a
cold physical address.

2.2 Hot Address Detector
The TWL algorithm fundamentally remaps a logically

hot address to a physically cold address by leveraging
write counter information. However, it induces significant
performance overhead if the address space range is
considerably large, because searching a target requires
linear search among a number of counters. Therefore, a hot
address detector is required in order to reduce such
overhead. Qureshi et al. proposed a practical address
detector to manage frequently accessed write addresses
within a tiny table, instead of searching the counter [14].
Kim et al. proposed HAD-TWL to perform TWL with the
support of a variable-sized table [19]. In this study, wear
leveling is assumed to be HAD-TWL, as shown in Fig. 1.

2.3 Rejuvenator
As shown in Fig. 2, TWL in this paper, namely

Rejuvenator, is a wear-leveling algorithm designed for
NAND flash memory [22]. The algorithm maintains a
fixed number of linked lists as a moving window, in which
each group of lists roughly corresponds to one erase count
group. Each node in the list maintains a physical block
address number; hence, it can be considered a memory

IEIE Transactions on Smart Processing and Computing, vol. 9, no. 5, October 2020 415

Fig. 4. Distribution of access counts triggering state
transition with regard to different bit widths in the
proposed method when n = 10.

Fig. 3. Distribution of access counts triggering a state
transition with regard to different interrupt threshold
values when r = 6.

pool. The objective of this algorithm is to map a logically
hot address and a logically cold address on the lower-
numbered list and higher-numbered list, respectively.
Consequently, all erase count groups slide as remapping is
performed. Since the memory tested in this paper is PCM,
we use the term write count rather than erase count.
Furthermore, the linked lists in Rejuvenator are assumed to
be stored in DRAM cache, as mentioned in Section 2.1.

3. Proposed Method

3.1 A Stochastic FSM in Write Counters
In this study, a method is proposed to significantly

reduce the bit width of a write counter by modeling each
write counter as a stochastic FSM, since a precise write
counter is not required. As shown in the dashed box on the
left side of Fig. 1, the write counter acts as a cyclic FSM,
where the meaning of each state corresponds to the number
of write accesses, as depicted in the rectangular box.
Besides, there are two parameters in the proposed method.
They are:
·IntrPrd: the period value that incurs the HAD-TWL

interrupt, which is the pre-defined threshold value
used by the normal write counter.

·r: shows the bit width of the stochastic FSM that
directly determines the precision of the counter. Since
2r indicates the maximum value that stochastic FSM
can physically represent, it determines the number of
FSM states.

As mentioned above, the number stored in the counter

can be represented as IntrPrd*i/2r, where the currently
stored number, namely i in Fig. 1, represents the state
number ranging from 0 to (2r-1). Therefore, each state
means that an address is written approximately
IntrPrd*i/2r times. Even though the formula has a division
operation, the approximate write count can be obtained
with a mere shift operation, because the operation is a
power of 2. After continuously transferring states, the FSM
interrupts HAD-TWL when the final state is achieved, and

the state reverts to the initial state. On the other hand, the
state transition model is described in the next subsection.

3.2 A Probabilistic State Transition Model
The transition between two states is performed

probabilistically. In this study, the transition is considered
a coin toss model. The transition occurs if the coin is
flipped and comes up heads. According to the predefined
parameters above, the state transition probability is defined
in Eq. (1):

 () 2≡
r

P head
IntrPrd

 (1)

Here, P(head) means the probability that heads come

up during the coin toss. Therefore, the counter remains in
the same state, probabilistically, for approximately
(IntrPrd/2r-1) times, and transits right after that moment.

Bit width r in the state transition model determines not
only the overall resource overhead of the write counters
but also the lifetime and the reliability of the overall
system. Thus, discussing the confidence of the proposed
method is crucial to obtaining a reliable PCM-based
memory system. If it is assumed that n is the original bit
width of the write counter, IntrPrd can be defined as 2n.
Thus, the probabilistic formula (1) becomes P(head)=1/2n-r.
Furthermore, since the access number of an address
triggering the state transition (i.e., the number of trials that
turn up heads) follows a negative binomial distribution
[23], the probability density function of the access number
and its true mean, respectively, can be modeled as seen in
Eqs. (2) and (3). Moreover, if Eq. (2) is substituted into (3),
the true mean becomes 2n.

() () ()() 221
1

2
−−⎛ ⎞

= −⎜ ⎟−⎝ ⎠

rr access

r

access
P access P head P head

access

 (2)

()()

()
2 1

true mean 2
−

= +
r

r
P access

P access
 (3)

Lee et al.: Bit-width Reduction in Write Counters for Wear Leveling in a Phase-change Memory System 416

Table 1. System configuration.

Configuration Description

HAD Initially 128 entries, frequency-based
entry eviction policy

TWL (Rejuvenator) Number of list groups: 16

PCM 16GB, SLC, 4KB block,
Endurance: 1E+05, 1E+06

Write counter
Interrupt HAD for every 1024
accesses.
Allocated for 4KB block address.

Workloads

31 application traces from SNIA
Nexus 5, each application is
scheduled by the round robin
scheduler.

Table 2. Theoretical values and experiment results of
the 90% confidence interval.

R Theoretical values Experimental
results

2 1.6418 1.5944
4 0.8160 0.8105
6 0.3982 0.3974
8 0.1781 0.1779

Fig. 5. Distribution of the sample mean with regard to
different bit widths (r) when n = 10, where the vertical
line in the figure shows the 90% confidence interval of
each graph.

Fig. 3 shows the distribution of Eq. (2) when IntrPrd=

512, 1024, and 2048 when r=6. As shown in the figure, a
smaller interrupt threshold (i.e., IntrPrd) provides better
reliability in the memory system, because n is closer to r
as n becomes smaller. Therefore, a moderate value for
IntrPrd of 1024 was selected in this study. On the other
hand, Fig. 4 shows the distribution of (2) when r varies
from 2 to 8, and n is fixed as 10. As shown in the figure, a
larger r provides a more reliable system; however, greater
resource overhead accompanies the enhanced reliability.

3.3 Confidence of the Proposed Method
Fig. 4 shows that the variance is significant if

considering a single interrupt as r increases. However,
there would be a number of interrupts in HAD-TWL
during the execution of an application in the system. A late
interrupt causes late data remapping, which may degrade
memory lifetime. Conversely, an early interrupt causes
early data remapping, which may prevent the degradation
in lifetime. In other words, these two effects compensate
for each other; hence, it is necessary to discuss the 90%
confidence interval of the average (i.e., true mean) access
number that triggers state transition. According to the
central limit theorem [24], the 90% confidence interval of
the average access number can be expressed in Eq. (4),
where access is the sample mean of P(access), s is the
sample variance, and ρ is the sample number, which is
def in Eq. (5): ined

1.645 2 1.645 90%
⎛ ⎞

− ≤ ≤ + =⎜ ⎟⎜ ⎟
⎝

nsP access access
ρ ⎠

s
ρ

 (4)

2

≈ n

total writenumberρ (5)

Eq. (4) explains that there is a 90% probability that the

sample-mean value (i.e., 2n in the equation) will lie on the

interval 1.645 , 1.645
⎡

− +⎢
⎢⎣

⎤
⎥
⎥⎦

s saccess access
ρ ρ

. Fig. 5

shows the 90% confidence interval when n =10. As shown
in the figure, the confidence interval becomes narrower as
the value of r reaches n. Furthermore, it shows that the
system reliability is high enough even for a small bit width
for the write counter. The experimental verification of this
model is described in the next section.

4. Evaluations

4.1 Configurations
As shown in Table 1, an in-house simulation was

conducted where the system architecture was designed as
seen in Fig. 1. In particular, PCM was configured as a
16GB single-level cell (SLC) array. Endurances of a 4KB
block were selected at 1E+05 and 1E+06 for evaluation.
Each write counter was allocated a 4KB block address.
Furthermore, 31 workload traces of SNIA Nexus 5 were
executed in the simulation environment, where a round-
robin scheduling policy was used for executing these 31
workloads in a single system to simulate a practical server
system.

4.2 Verification of Modeling
Fig. 6 illustrates the distribution of an access number

triggering state transition from a real workload, which
shows that Eq. (2) is well modeled as a mathematical form,
compared with Fig. 3. Moreover, Table 2 shows a
theoretical 90% confidence interval for the true mean, and
the experiment results obtained 90% confidence in the
sample mean. For all values of r shown in the tables, the
90% confidence intervals from the experiment are similar

IEIE Transactions on Smart Processing and Computing, vol. 9, no. 5, October 2020 417

(a) (b) (c)

(d) (e)

Fig. 6. Experimentally obtained access counts triggering a state transition with regard to different bit widths in the
proposed method (a) r = 2, (b) r = 4, (c) r = 6, (d) r = 8, and (e) r = n = 10.

Fig. 8. Normalized swap operations with respect to
different endurances.

to the theoretical values. For r=6, the confidence interval is
0.3974, whereas the theoretical value is 0.3982, which
shows a 2% error. Therefore, this paper assumes r=6 in the
following section, since it provides a negligible error.

4.3 Lifetime and Swap Overhead
Normalized lifetime is defined as the ratio of the total

write counts just before system failure to the maximum
total write counts if all blocks are written uniformly in an
ideal case. Fig. 7 shows the normalized lifetime of the
system when the 31 server workloads are executed
concurrently, and when the bit width of the proposed write
counter is fixed at r=6. When the block endurance is
1E+05, the normalized lifetime is degraded by 5.7%,
compared with the baseline write counter (i.e., n=10) from
Section 3.2. For a block endurance of 1E+06, the
normalized lifetime degradation is as small as 1.2%.

On the other hand, Fig. 8 shows the normalized swap

overhead when the proposed method is adopted. The
normalized swap overhead is defined as the ratio of the
number of swaps adopting the proposed method to the
number of swaps adopting the baseline write counter. As
shown in the figure, the number of swaps is reduced by
75.1% and 36.4% when the endurance values are 1E+05
and 1E+06, respectively. The figure shows that HAD-
TWL is triggered late in most cases, and thereby, the
lifetime is degraded (see Fig. 7). However, a 1.2% lifetime
degradation can be negligible, considering that the
resource overhead of the write counters is reduced by 40%.

Fig. 7. Normalized lifetime with respect to different
endurances.

5. Conclusion

In this paper, a stochastic FSM for reducing the bit
width of write counters in a PCM-based memory system is
proposed and modeled with mathematical equations to

Lee et al.: Bit-width Reduction in Write Counters for Wear Leveling in a Phase-change Memory System 418

verify the system reliability. The proposed method shows a
40% reduction in memory resources consumed by write
counters, along with only 5.7% and 1.2% lifetime
degradation when the endurance values are 1E+05 and
1E+06, respectively. Since the proposed method is verified
in an environment simulating more than 31 workloads
concurrently, it is expected to be adopted not only for
PCM-based memory systems but also for NAND flash
storage systems.

Acknowledgement

This paper was supported in part by the Technology
Innovation Program (10080613, DRAM/PRAM
heterogeneous memory architecture and controller IC
design technology research and development) funded by
the Ministry of Trade, Industry & Energy (MOTIE), Korea,
and in part by a National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No.
2019R1F1A1057530).

References

[1] E. Kultursay, M. Kandemir, A. Sivasubramaniam,

and O. Mutlu, “Evaluating stt-ram as an energy-
efficient main memory alternative,” in IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2013. Article
(CrossRef Link)

[2] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger,
“Architecting phase change memory as a scalable
dram alternative,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture
(ISCA), 2009. Article (CrossRef Link)

[3] S. Mittal, “A survey of soft-error mitigation
techniques for non-volatile memories,” Computers,
vol. 6, no. 1, 2017. Article (CrossRef Link)

[4] Intel. (2015) Intel and micron produce breakthrough
memory technology. [Online]. Available:
https://newsroom.intel.com/news-releases/intel-
andmicron-produce-breakthrough-memory-
technology

[5] S. Sundararaman, N. Talagala, D. Das, A. Mudrankit,
and D. Arteaga, “Towards software defined persistent
memory: Rethinking software support for
heterogeneous memory architectures,” in Proceedings
of the 3rd Workshop on Interactions of
NVM/FLASH with Operating Systems and
Workloads (INFLOW), 2015, pp. 6:1–6:10. Article
(CrossRef Link)

[6] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System
software for persistent memory,” in Proceedings of
the 9th European Conference on Computer Systems
(EuroSys), 2014, pp. 15:1–15:15. Article (CrossRef
Link)

[7] B. Bhattacharjee, M. Canim, C. A. Lang, G. A.
Mihaila, and K. A. Ross, “Storage class memory
aware data management,” Bulletin of the IEEE

Computer Society Technical Committee on Data
Engineering, vol. 33, no. 4, pp. 35–40, 2010. Article
(CrossRef Link)

[8] B. Kim et al., “PCM: Precision-Controlled Memory
System for Energy Efficient Deep Neural Network
Training,” 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2020.
Article (CrossRef Link)

[9] C. Lee and H. Lee, “Effective Parallelization of a
High-Order Graph Matching Algorithm for GPU
Execution,” in IEEE Transactions on Circuits and
Systems for Video Technology, vol. 29, no. 2, pp.
560-571, Feb. 2019. Article (CrossRef Link)

[10] M. Kim, I. Chang and H. Lee, “Segmented Tag
Cache: A Novel Cache Organization for Reducing
Dynamic Read Energy,” in IEEE Transactions on
Computers, vol. 68, no. 10, pp. 1546-1552, 2019.
Article (CrossRef Link)

[11] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking
database algorithms for phase change memory,” 04
2011, pp. 21–31. Article (CrossRef Link)

[12] H. Lee, M. Kim, H. Kim, H. Kim, and H. Lee,
“Integration and boost of a read-modify-write module
in phase change memory system”, IEEE Transactions
on Computers, pp. 1772–1784, vol. 68, no. 12, 2019.
Article (CrossRef Link)

[13] P. Zhou, J. Y. B. Zhao, and Y. Zhang, “Throughput
enhancement for phase change memories,” IEEE
Transactions on Computers, vol. 63, pp. 2080–2093,
2014. Article (CrossRef Link)

[14] M. K. Qureshi, J. Karidis, M. Franceschini, V.
Srinivasan, L. Lastras, and B. Abali, “Enhancing
lifetime and security of pcm-based main memory
with start-gap wear leveling,” in Proceedings of the
42nd Annual International Symposium on
Microarchitecture (MICRO), 2009. Article (CrossRef
Link)

[15] N. H. Seong, D. H. Woo, and H. H. Lee, “Security
refresh: Protecting phase-change memory against
malicious wear out,” IEEE Micro, vol. 31, no. 1, pp.
119–127, 2011. Article (CrossRef Link)

[16] F. Huang, D. Feng,W. Xia,W. Zhou, Y. Zhang, M. Fu,
C. Jiang, and Y. Zhou, “Security rbsg: Protecting
phase change memory with security-level adjustable
dynamic mapping,” in Proceedings of the 30th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 1081–1090. Article
(CrossRef Link)

[17] H. Yu and Y. Du, “Increasing endurance and security
of phase change memory with multi-way wear-
leveling,” IEEE Transactions on Computers, vol. 63,
no. 5, pp. 1157–1168, 2014. Article (CrossRef Link)

[18] M. Kim, J. Choi, H. Kim and H. Lee, “An Effective
DRAM Address Remapping for Mitigating
Rowhammer Errors,” in IEEE Transactions on
Computers, vol. 68, no. 10, pp. 1428-1441, 1 Oct.
2019. Article (CrossRef Link)

[19] S. Kim, H. Jung, W. Shin, H. Lee and H. Lee, "HAD-
TWL: Hot Address Detection-Based Wear Leveling
for Phase-Change Memory Systems with Low
Latency," in IEEE Computer Architecture Letters,

https://ieeexplore.ieee.org/document/6557176
https://ieeexplore.ieee.org/document/6557176
https://dl.acm.org/doi/10.1145/1555815.1555758
https://dl.acm.org/doi/10.1145/1555815.1555758
https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
https://dl.acm.org/doi/abs/10.1145/2819001.2819004
https://dl.acm.org/doi/abs/10.1145/2819001.2819004
https://dl.acm.org/doi/10.1145/2592798.2592814
https://dl.acm.org/doi/10.1145/2592798.2592814
https://www.researchgate.net/publication/220283175_Storage_Class_Memory_Aware_Data_Management
https://www.researchgate.net/publication/220283175_Storage_Class_Memory_Aware_Data_Management
https://www.date-conference.com/programme
https://ieeexplore.ieee.org/document/8269387
https://ieeexplore.ieee.org/document/8676211
https://www.semanticscholar.org/paper/Rethinking-Database-Algorithms-for-Phase-Change-Chen-Gibbons/1840e4039b5272dbf6f165e271dfb2ac1dc80462
https://ieeexplore.ieee.org/document/8792091
https://ieeexplore.ieee.org/document/6489977
https://ieeexplore.ieee.org/document/5375309
https://ieeexplore.ieee.org/document/5375309
https://ieeexplore.ieee.org/document/5661756
https://ieeexplore.ieee.org/document/7516105
https://ieeexplore.ieee.org/document/7516105
https://ieeexplore.ieee.org/document/6375706
https://ieeexplore.ieee.org/document/8673635

IEIE Transactions on Smart Processing and Computing, vol. 9, no. 5, October 2020 419

2019. Article (CrossRef Link)
[20] Y. Chang, P. Hsiu, Y. Chang, C. Chen, T. Kuo, and C.

M. Wang, “Improving PCM Endurance with a
Constant-Cost Wear Leveling Design”, ACM
Transactions on Design Automation of Electronic
Systems, vol. 22, no. 1, 2016. Article (CrossRef
Link)

[21] J. Yun, S. Lee, and S. Yoo, “Dynamic wear leveling
for phase change memories with endurance
variations,” IEEE Transactions on Very Large-Scale
Integration (VLSI) Systems, vol. 23, no. 9, pp. 1604–
1615, 2015. Article (CrossRef Link)

[22] M. Murugan and D. H. C. Du, "Rejuvenator: A static
wear leveling algorithm for NAND flash memory
with minimized overhead," 2011 IEEE 27th
Symposium on Mass Storage Systems and
Technologies (MSST), Denver, CO, 2011, pp. 1-12.
Article (CrossRef Link)

[23] Negative binomial distribution, April, 2020, Article
(CrossRef Link)

[24] Central limit theorem, April, 2020, Article (CrossRef
Link)

Hyokeun Lee received a BSc in
electrical and computer engineering
from Seoul National University, Seoul,
South Korea, in 2016, where he is
currently working toward an integrated
MSc and PhD in electrical and
computer engineering. His current
research interests include non-volatile

memory controller design, hardware persistent models for
non-volatile memory, and computer architectures.

Hyunmin Jung received a BSc in
electric engineering from Kyung Hee
University, Yongin, South Korea, in
2014, and an MSc in electrical and
computer engineering from Seoul
National University, Seoul, in 2016,
where he is currently working toward
a PhD in electrical and computer

engineering. His research interests include immersive
media, virtual reality, augmented reality, and light field
processing.

Hyuk-Jae Lee received a BSc and an
MSc in electronics engineering from
Seoul National University, Seoul,
South Korea, in 1987 and 1989,
respectively, and received a PhD in
electrical and computer engineering
from Purdue University, West
Lafayette, IN, USA, in 1996. From

1998 to 2001, he was a Senior Component Design
Engineer in the Server and Workstation Chipset Division
of Intel Corporation, Hillsboro, OR, USA. From 1996 to
1998, he was a Faculty Member in the Department of
Computer Science, Louisiana Tech University, Ruston, LA,
USA. In 2001, he joined the School of Electrical
Engineering and Computer Science, Seoul National
University, where he is a Professor. He is the Founder of
Mamurian Design, Inc., Seoul, a fabless SoC design house
for multimedia applications. His current research interests
include computer architectures and SoCs for multimedia
applications.

Hyun Kim received a BSc, an MSc,
and a PhD in electrical engineering and
computer science from Seoul National
University, Seoul, South Korea, in
2009, 2011, and 2015, respectively.
From 2015 to 2018, he was a BK
Assistant Professor for BK21 Creative
Research Engineer Development for IT,

Seoul National University. In 2018, he joined the
Department of Electrical and Information Engineering,
Seoul National University of Science and Technology,
Seoul, where he is an Assistant Professor. His current
research interests include algorithm, computer architecture,
memory, and SoC design for low-complexity multimedia
applications and deep neural networks.

Copyrights © 2020 The Institute of Electronics and Information Engineers

https://ieeexplore.ieee.org/document/8766892
https://dl.acm.org/doi/10.1145/2905364
https://dl.acm.org/doi/10.1145/2905364
https://ieeexplore.ieee.org/document/6893041
https://ieeexplore.ieee.org/document/5937225
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

