
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020 101

A Low-Cost and High-Throughput FPGA
Implementation of the Retinex Algorithm for

Real-Time Video Enhancement
Jin Woo Park, Student Member, IEEE, Hyokeun Lee , Student Member, IEEE,

Boyeal Kim , Student Member, IEEE, Dong-Goo Kang , Seung Oh Jin,

Hyun Kim , Member, IEEE, and Hyuk-Jae Lee , Member, IEEE

Abstract— For video applications in a special environment
such as medical imaging, space exploration, and underwater
exploration, the video captured by an image sensor is often
deteriorated because of low lighting conditions. Therefore, it is
necessary to enhance the part of the image that is too dark to
distinguish details while maintaining the remaining part with the
same brightness. The retinex algorithm is widely used to restore
naturalness of a video, especially exhibiting outstanding perfor-
mance in the enhancement of a dark area. However, it demands
large computational complexity because of its intricate structure,
such as the Gaussian filter and exponentiation operations, and
consequently, it is difficult to process in real time. This article
presents a low-cost and high-throughput design of the retinex
video enhancement algorithm. The hardware (HW) design is
implemented using a field-programmable gate array (FPGA), and
it supports a throughput of 60 frames/s for a 1920 × 1080 image
with negligible latency. The proposed FPGA design minimizes
HW resources while maintaining the quality and the performance
by using a small line buffer instead of a frame buffer, by applying
the concept of approximate computing for the complex Gaussian
filter, and by designing a new and nontrivial exponentiation
operation. The proposed design makes it possible to significantly
reduce HW resources (up to 79.22% of total resources) compared
to existing systems and is compatible with commercialized devices
through the standard HDMI/DVI video ports.

Index Terms— Approximate computing, field-programmable
gate array (FPGA) implementation, low-cost implementation,
real-time implementation, retinex algorithm, video enhancement.

Manuscript received January 4, 2019; revised April 26, 2019, May 31,
2019, and July 8, 2019; accepted August 10, 2019. Date of publication
September 11, 2019; date of current version December 27, 2019. This
work was supported in part by the Korea Electrotechnology Research
Institute (KERI) Primary Research Program through the National Research
Council of Science and Technology (NST) funded by the Ministry of Science,
ICT and Future Planning (MSIP) under Grant 17-12-N0103-10 and in part
by the National Research Foundation of Korea (NRF) grant funded by the
Korea Government (MSIT) under Grant 2019R1F1A1057530. (Corresponding
author: Hyun Kim.)

J. W. Park, H. Lee, B. Kim, and H.-J. Lee are with the Inter-University
Semiconductor Research Center, Department of Electrical and Computer
Engineering, Seoul National University, Seoul 08826, South Korea
(e-mail: jwpark@capp.snu.ac.kr; hklee@capp.snu.ac.kr; bykim@capp.
snu.ac.kr; hyuk_jae_lee@capp.snu.ac.kr).

D.-G. Kang and S. O. Jin are with the RSS Center, Korea Electrotechnology
Research Institute, Ansan-si 15588, South Korea (e-mail: dgkang@keri.re.kr;
sojin@keri.re.kr).

H. Kim is with the Department of Electrical and Information Engineering,
Seoul National University of Science and Technology, Seoul 01811, South
Korea, and also with the Research Center for Electrical and Information Tech-
nology, Seoul National University of Science and Technology, Seoul 01811,
South Korea (e-mail: hyunkim@seoultech.ac.kr).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2019.2936260

I. INTRODUCTION

AS DIGITAL images are widely used in many applica-
tions, image sensors with their processing techniques

have been actively developed [1]–[3]. For applications such
as space exploration [4], medical imaging [5], and underwater
exploration [6], of which the capturing environment is often
invisible directly for humans, the digital image captured by an
image sensor is important to obtain the information about the
environment. In these applications, it is often the case that the
image quality is degraded because of a poor lighting condition.
Therefore, quality enhancement is essential prior to extracting
the information necessary for a target application. For a digital
image obtained in a poor lighting condition, the difference
between bright and dark areas is very large, which makes it
difficult to distinguish details, especially in dark areas [7]. The
increase of overall brightness makes dark areas look better,
but it results in the saturation in bright areas thereby making
the details in bright areas disappear. Therefore, these images
require enhancement of details only in dark areas.

Medical imaging is a typical application in which the image
quality deteriorates due to a poor lighting condition. When a
camera sensor or a camera lens is inserted into a human body
(for example, during endoscopy or laparoscopy), certain areas
of an image may be very dark because of limited lighting.
Especially when the inside structure of an organ is long and
cylindrical, a low lighting condition makes the image very
difficult to distinguish details. Therefore, an effective image
preprocessing technique is essential to partially enhance the
brightness of dark areas while maintaining the same brightness
of the remaining areas.

Extensive efforts have been made to overcome the low
illumination problem, and as a result, a number of algorithms
have been proposed to brighten dark areas or enhance con-
trast such as gamma correction [8]–[11], histogram equaliza-
tion [12]–[15], and tone mapping [16]. These algorithms often
suffer from over-enhancement if the gray level of an image is
concentrated at a specific intensity [17]. Moreover, the use
of global information may result in intensity saturation such
that enhancement results are inconsistent depending on image
details. To overcome these problems, advanced algorithms
with increased complexity, such as adaptive histogram equal-
ization [18], [19], adaptive contrast enhancement [20], [21],
and retinex algorithm [22]–[25], have been proposed. Adaptive

1063-8210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0003-4855-3600
https://orcid.org/0000-0002-4840-0025
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-6811-9647

102 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

algorithms use local pixel data together with global informa-
tion, which is very effective in enhancing dark areas based
on different image details. However, these algorithms demand
high computational cost, making them difficult to use for
applications that require real-time operation. In particular,
the retinex algorithm is considered highly valuable for medical
imaging [17], [26], thanks to its excellent enhancement in
dark areas without a degradation of image details. How-
ever, its computational cost is very high to process in real
time.

One of the solutions to speed up highly complex algorithms
is the implementation of a dedicated hardware (HW) acceler-
ator using a field-programmable gate array (FPGA) [27]–[30].
Although these HW accelerators achieve real-time operation,
they use large HW resources, thereby demanding an expensive
FPGA device. They require large HW resources because
of the following three reasons. First, the input image is
stored in a memory. Li et al. [27], Marsi and Ramponi [29],
and Tsutsui et al. [30] use external DRAMs on an FPGA to
store image frames, whereas Ustukov et al. [28] use internal
BRAMs instead. If an external DRAM is used, additional
overhead is incurred for memory access and an additional
DRAM controller is required, which increases the HW cost.
If the image is stored in internal BRAMs, the image resolution
is limited to the BRAM size and other HW modules are
also limited due to the limited BRAM. Second, the previous
HW implementation employs image enhancement based on
multiscale retinex (MSR) which requires large HW resources
to utilize the results from multiple Gaussian filters. Third,
the previous implementation does not take advantage of the
tradeoff relationship between performance and HW resources,
and they lack efficiency in terms of HW design. Li [31] has
tried to solve these problems by implementing a low-cost and
high-speed HW with dynamic range compression. However,
because the base algorithm used in [31] is simpler than the
retinex algorithm and the size of the Gaussian filter utilized
in [31] is very small, the techniques in [31] are not appropriate
to be adopted in the retinex algorithm.

To address these problems of the previous implementations,
this article presents a low-complexity and real-time HW
design of the retinex algorithm proposed by Shin et al. [32]
for efficient naturalness restoration. The main contributions
of the proposed design are as follows. First, the proposed
HW reduces excessive memory access and large memory
latency by employing stream data control. Second, the concept
of approximate computing [33] is applied to the proposed
HW design by trading off HW resources with performance
while maintaining subjective video quality. Particularly in the
Gaussian filter module, which is the most expensive module,
an optimal sigma value is determined and the filter size
is minimized accordingly. Third, external memory access is
further reduced by using only a line buffer to store the pixel
values used by the Gaussian filter module. Fourth, the multi-
plications in convolution operations are approximated and then
implemented only with shifters and adders [34]. Finally, a new
method is proposed to efficiently implement the exponentiation
operation that demands an important part of the total HW
cost. Exponentiation is very challenging to implement in HW,

thereby incurring large HW overhead which is significantly
reduced by the proposed implementation. The proposed HW
design reduces HW resources significantly (up to 79.22% of
total resources compared to those of the previous works) while
supporting the throughput of 60 frames/s for a 1920 × 1080
resolution (FHD) image.

The proposed HW design is implemented using an FPGA,
and it is verified with real-time demonstration using popular
medical devices, namely, a Karl Storz sensor for the input
device and a Sony medical display for the output device. The
standard HDMI/DVI ports are used as the input and output
interfaces so that the proposed FPGA implementation can be
connected to other medical devices as well.

The rest of this article is organized as follows. Section II
introduces the theoretical basis of the proposed work,
the retinex theory, and a few algorithms based on the retinex
theory including efficient naturalness restoration. Section III
describes the characteristics and novelties of the proposed
HW design which is implemented in the register transfer level
(RTL). Section IV discusses the results including the latency,
video quality, and resource utilization. Section V concludes
this article.

II. RETINEX THEORY AND ALGORITHMS

A. Concept of the Retinex Algorithm

The retinex theory proposed by Land and McCann [35]
mathematically shows that both reflectance and illumination
components enter the human eye when recognizing light;
however, the brain perceives the color information mainly by
the reflectance component. Therefore, even if the color and
brightness of different scenes are equally received by the eye,
the brain perceives the scene differently depending on the
composition of the reflectance and illumination components.
The image recognized by the human eye is expressed by the
product of the illumination and reflectance components, and
the reflectance component contains only the color information
of the object regardless of the intensity of the light. There-
fore, if the reflectance component can be extracted from the
input image, the dark area of an unidentifiable image can be
effectively restored through color restoration.

Based on the retinex theory, many researchers including
Jobson et al. [36], Terzopoulos [37], and Kimmel et al. [38]
propose algorithms for the color restoration of the human
optic nerve to apply for computer images. By using a specific
convolution filter, the illumination channel of the input image
is obtained and then the illumination channel is separated
from the original pixel to exclude the reflectance channel. The
reflectance channel accurately represents the color information
of each part in the input image. There are various methods to
estimate the illumination channel such as the inverse square
function proposed by Land [39], the exponential absolute
value proposed by Moore et al. [40], and the Gaussian filter.
Jobson et al. [41] suggest that using Gaussian filters is more
efficient than using other filters because a Gaussian filter
achieves good performance for wide dynamic ranges in various
spatial regions.

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 103

B. Retinex Algorithm Using Gaussian Filters
The retinex algorithm using Gaussian filters, which shows

effective enhancement in dark areas, can be expressed as
follows. First, the input image I (x, y) is expressed by the
product of the illumination channel L(x, y) and the reflectance
channel R(x, y)

I (x, y) = L(x, y) × R(x, y). (1)

To obtain the illumination channel, the Gaussian filter kernel
F(x, y) is obtained using (2) and the input image and the
kernel are convolved (⊗) to obtain the illumination channel,
as shown in (3)

F(x, y) = K e−(x2+y2)/σ 2
(2)

L(x, y) = F(x, y) ⊗ I (x, y) (3)

where K represents the normalization factor which makes the
sum of all F(x, y) become 1 and σ represents the standard
deviation of the kernel which decides the shape of the filter.

To obtain the reflectance channel, the illumination channel
is separated from the input image in a pixel-wise manner and
this operation is expressed by the following logarithmic form:

R(x, y) = log I (x, y) − log(F(x, y) ⊗ I (x, y)). (4)

As described in this section, using a single-scale Gaussian
filter to estimate the illumination channel and to calculate the
reflectance channel is called the single-scale retinex (SSR)
algorithm.

C. Multiscale Retinex Algorithm
The Gaussian filter can be used to efficiently estimate the

illumination channel; however, using one Gaussian filter does
not reflect the delicate nature of the human eye. Especially
when an image has both high-frequency and low-frequency
regions, the SSR cannot achieve good quality. To reduce this
problem, Jobson et al. [36] propose the MSR algorithm which
uses several Gaussian filters with different scales.

The MSR algorithm uses several Gaussian filters of various
scales by adjusting the σn value and creates several kernels
Fn(x, y), as shown in the following equation:

Fn(x, y) = K e
− x2+y2

σ2
n . (5)

For each kernel, the reflectance channels Rn(x, y) are created
by using (6) and the weighted sum is obtained by using the
weight wn to create the MSR reflectance channel, RMSR

Rn(x, y) = log I (x, y) − log(Fn(x, y) × I (x, y)) (6)

RMSR =
N∑

n=1

wn Rn. (7)

The weight value wn is determined such that the sum from
w1 to wn becomes 1. Jobson et al. [36] proposes that using
three different σn and determining each wn to 1/3 generates
the best result.

By using the MSR, the retinex algorithm can be applied to
various frequency domains to effectively estimate the delicate
illumination channels; however, the output reflectance channel
is too extreme and unnatural to use. In addition, the MSR
algorithm requires large computational complexity because of
the utilization of several Gaussian filters.

D. Efficient Naturalness Restoration

To overcome these disadvantages of the MSR algorithm,
Wang et al. [42] propose a naturalness preserved enhance-
ment algorithm. Wang et al. [42] enhance the image using
the retinex algorithm and gain naturalness by adapting
the bright-pass filter to restrict the reflectance channel.
Shin et al. [32] propose an efficient naturalness restoration
algorithm, which has much less computational cost compared
to [42]. By using the maximum value of an RGB channel
called the intensity channel, the illumination channel can be
obtained by performing single-scale Gaussian filtering and
it is modified to obtain the reflectance channel by dividing
pixel-wise from the intensity channel. Furthermore, the illu-
mination channel is modified again and is recomposed with the
reflectance channel to enhance the dark areas of the image by
natural color restoration. It should be noted that the previous
research by Gao et al. [43] shows performance comparison
between different naturalness preserving retinex algorithms,
and the results show that Shin et al.’s algorithm [32] has
achieved lower computational cost even compared to the most
recent works especially when the image resolution is large.

Efficient naturalness restoration can be described as follows.
First, the L(x, y) channel is calculated with the maximum
value of the RGB channel from the input image I c(x, y)
as shown in (8). Then, the L(x, y) channel is filtered using
Gaussian kernel G(x, y) through convolution, which creates
the F(x, y) channel as shown in (9)

L(x, y) = max(I c(x, y)) (8)

F(x, y) = L(x, y) ⊗ G(x, y). (9)

Then, the weighting map channel w(x, y) is generated as
follows:

D(x, y) = |L(x, y) − F(x, y)| (10)

w(x, y) = D(x, y) ⊗ Gw(x, y). (11)

Next, the modified illumination channel Fm(x, y) is gen-
erated by (12). Subsequently, the original RGB channels are
each divided by the Fm(x, y) channel to create the reflectance
channel, as shown in (13)

Fm(x, y) = w(x, y) × L(x, y) + (1 − w(x, y)) × F(x, y)

(12)

Rc(x, y) = I c(x, y)/Fm(x, y). (13)

To gain naturalness, adaptive gamma correction is applied
to the Fm(x, y) channel and creates an Fenh(x, y) channel,
as shown in (14). γ (x, y) and α are derived by (15) and (16),
respectively, where m is the average value of the L(x, y)
channel

Fenh(x, y) = Fm(x, y)γ (x,y) (14)

γ (x, y) = (Fm(x, y) + α)/(1 + α) (15)

α = 1 + m. (16)

The original efficient naturalness enhancement algorithm
further modifies Fenh(x, y) via contrast enhancement using
data distribution; however, this requires calculation and the
updation of the histogram. This contrast enhancement method

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 1. Block diagram of the proposed architecture.

is suitable for a single image, but when adapted in a video
stream, it creates a blinking effect where the dynamic range
of the frame varies between frames. In addition, in our pro-
posed system, calculating and updating the histogram causes
frame unit latency. Therefore, we do not adapt the contrast
enhancement method and instead use the Fenh(x, y) channel
to calculate the final result by using the following equation:

Fc
final(x, y) = Fenh(x, y) × Rc(x, y). (17)

The main advantage of the efficient naturalness restoration
algorithm is excellent color restoration, improved natural-
ness in color representation, and low computational com-
plexity compared to the MSR algorithm. In this article,
the most efficient naturalness restoration algorithm proposed
by Shin et al. [32] is implemented in HW targeting an FPGA
device by applying novel optimization techniques for com-
plexity reduction and fast execution while taking advantage of
the properties of the target algorithm. A detailed description
of the implementation is presented in Section III.

III. RTL IMPLEMENTATION AND OPTIMIZATION OF AN

IMAGE ENHANCEMENT ALGORITHM FOR AN FPGA

A. Overview of the Proposed HW Design for Image
Enhancement HW

This section presents the HW implementation of the
efficient naturalness restoration algorithm proposed by
Shin et al. [32] verified with an FPGA to operate in real time.
Real-time FPGA implementation of the target algorithm is
challenging because it involves complex modules, such as
the Gaussian filter and exponentiation operation. In addition,
the target algorithm includes some variables that must be cal-
culated with all pixels in the entire frame, which is difficult to
implement without using a frame memory. Fig. 1 describes the
block diagram of the image enhancement HW design, which
efficiently overcomes these challenges. The proposed HW
design is implemented with seven main modules. Each module
is implemented to process the image enhancement algorithm in
real time by reducing the overall latency. In particular, the data
are processed as a stream between each module from the input
stage to use only the minimum line buffer without using the
frame buffer. In addition, the variables that require the entire
frame data are calculated from the previous frame to refrain
from generating frame-level latency. Furthermore, from the
input stage of the video, each HW module is implemented to
achieve a high-throughput processing one pixel per cycle. The
whole system is implemented in the Verilog HW description
language and Xilinx IPs, and the stream data are processed
using the AXI4 stream bus [44].

TABLE I

FIXED POINT PRECISION FOR EACH MODULE’S OUTPUT CHANNEL

The role of each module is described as follows. The
separate RGBL module separates the intensity channel from
the input image. The intensity channel is created by taking
the maximum value of the RGB channel. The Gaussian filter
module convolves the intensity channel with the predefined
Gaussian kernel to create the F channel, which is used for
illumination estimation. To calculate the convolution between
the kernel and the large pixel window with a low cost, a deli-
cate decision process that chooses the kernel size is used, and
a small line buffer instead of the frame buffer is utilized in this
module. The weighting map generation module calculates the
weight values that are used in the calculate Fm module, which
modifies the F channel to calculate the modified illumination
channel (i.e., Fm channel). The RGB creation module divides
the Fm channel from the RGB channels of the original image
in a pixel-wise manner to create the reflectance channels RR ,
G R , and BR , respectively. The calculate Fenh module performs
adaptive gamma correction with operations including expo-
nentiation by using Fm and the average of intensity channels.
Finally, the Fenh channel and reflectance channels, RR , G R ,
and BR are multiplied to create the output channel Ienh(x, y).
Calculating Fenh channel requires a very complex operation,
namely, exponentiation. A novel method of implementing the
exponentiation is introduced with mathematical developments
and optimization of the HW resources.

A software (SW) algorithm using double-precision floating
point is implemented in RTL with fixed-point precision to
reduce HW resources. The input image is represented by 8 bits
for each RGB channel, and each module is implemented in the
fixed-point precision with 13 fractional bits to minimize the
error. The fixed-point precision of each channel is described
in a Q-format in Table I.

Fig. 2 describes the output results of each module depicted
in the block diagram. Thanks to the effect of the retinex
algorithm, the reflectance channel R(x, y) dramatically boosts
up the color detail of the invisible dark areas in the input
image. However, the result of R(x, y) is boosted too much

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 105

Fig. 2. Block diagram depicting output image of each module.

to lose color naturalness. Therefore, the result of R(x, y) is
multiplied with the Fenh(x, y) channel to create the final output
channel Ienh(x, y).

Sections III-B–III-D describe the efficient input data
processing method, a low-complexity implementation of the
Gaussian filter module with an approximation technique, and
efficient implementation of a nontrivial exponentiation opera-
tion.

B. Input Data Processing Without a Frame Buffer

For processing the input data, only a small line buffer is used
instead of a large frame buffer. Therefore, the whole system
does not use either large internal block memory, or additional
external memory. The entire module transmits and receives
image data by a simple data transfer method, AXI4-stream
bus, and the latency is minimized by designing the modules
to start sending outputs as soon as the required number of
pixels are given as the input data.

For the implementation of the modules that require a certain
amount of pixel data before the operation, the size of the line
buffer is minimized. For example, the Gaussian filter module
uses a pixel window of size N × N , which means that this
module requires a slightly larger line buffer than N to calculate
convolution as soon as the last pixel of the window is received.
In this article, a 29×29 window is used for the Gaussian filter
module, and consequently, 32 lines are buffered considering
the input and output latencies. The input pixels are received
in stream as raster scan order, and some of the input pixel
data as well as the filtered pixel data are used on the later
module. Therefore, 32 lines of the input data are stored in the
line buffer to be used in the Gaussian filter module as well as
the later module that uses the filtered data and the input data.

If the internal block memory is used as the frame buffer,
a single frame requires 49 Mb of memory for an FHD
resolution image. If the frame buffer uses a large resource
from the limited internal block memory, other modules cannot
utilize the internal block memory sufficiently, and the frame
buffer also consumes significant power. If the frame buffer
uses the external memory, an extra module is required to
control the data transfer from the external memory, which

leads to additional HW resource utilization. Moreover, if the
line buffer is used instead of a frame buffer, the internal
block memory resource can be saved considerably because
the required number of pixels to be stored is the number
of required lines multiplied by the image width. In addition,
it can prevent the use of additional HW resources because the
external memory is not required.

C. Approximation in the Gaussian Filter Module

The Gaussian filter module in the target algorithm plays an
important role in image enhancement. The σ value affects the
performance of the whole system, and the target algorithm
achieves better performance if σ has a larger value. However,
a larger σ value requires a larger filter size, which leads to
utilizing more HW resources, such as BRAMs and DSPs.
Furthermore, it increases the line buffer size to store the
number of pixels, which results in the increase of the latency
between input and output.

1) Decision of the Parameters and the Optimum Filter Size:
The Gaussian kernel is created using σ = 10 to enhance the
dark area of the image clearly. Fig. 3 shows the results of
the target algorithm according to the σ value of the Gaussian
filter. As the σ value increases, the image contrast is enhanced.
However, its performance is low when enhancing dark areas.
The proposed design aims to improve the details of invisible
dark areas on an image; thus, excessively high σ value is
unnecessary. As shown in Fig. 3, the dark part reflected on the
window improves the most when the σ value is 10 or 20, and
consequently, σ is set to 10 because a larger σ requires more
HW resources. As mentioned previously, the kernel coefficient
value is set to 13-bit fixed point so that the filter size for all
the Gaussian coefficients having nonzero values is 53 × 53.
(Note that in the case of σ = 20, the filter size is 120 × 120.)
However, the coefficient value, which is far from the center,
is very small; thus, applying the concept of approximation
computing by implementing with a smaller filter with sim-
ilar shape does not affect the subjective quality. A smaller
filter size results in fewer line buffers to use less internal
block memory, thereby greatly reducing the HW resources.
Therefore, the 29 × 29 filter size is used in consideration of

106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 3. Retinex result of different Gaussian filter shapes decided by the sigma value. (a) Original image. (b) σ = 2.5. (c) σ = 5. (d) σ = 10. (e) σ = 20.
(f) σ = 40. (g) σ = 80.

Fig. 4. Normalization factor value of different Gaussian filter sizes.

the tradeoff between performance and HW resource (see the
B1 results in Section IV). The Gaussian coefficient values are
normalized to make the sum equal to 1 by the normalization
factor, which is the sum of the coefficients of the small filter.
If the normalization factor has a larger value, the output of the
Gaussian filter has a larger error. Fig. 4 shows the value of the
normalization factor according to the filter size when σ = 10.
When the filter size is 29 × 29, the normalization factor is
0.9599, which does not create a noticeable error, and the size is
small enough to effectively reduce HW resources. If a smaller
filter size is chosen, the gradient of the normalization factor
increases exponentially, and the error exhibits the same trend.
Fig. 5 depicts the shapes of the approximated kernel and the
original kernel. It is observed that there is almost no difference
between the two kernels. However, if the size of the filter is
smaller than 29×29, the shape difference becomes noticeable
and the error generated in the Gaussian filter module becomes
significant.

2) Approximations on Convolution: The HW resources used
in the Gaussian filter module are reduced by replacing the
fixed-point multiplication operation with shifter and adder
operations. Instead of multiplying the 13-bit fixed point of
Gaussian coefficients, each coefficient is modified to use at
most three shifters and two adders. The i th Gaussian coeffi-
cient fi is defined as in (18), and the multiplication between
fi and pixel p is described as (18)

fi = 2ai ± 2bi ± 2ci (18)

p ∗ fi = p � ai ± p � bi ± p � ci . (19)

TABLE II

APPROXIMATED GAUSSIAN FILTER KERNEL OF SIGMA 10

Fig. 5. Gaussian kernel shapes of full-size filter and approximated filter.

The 13-bit fixed-point coefficient of the modified kernel and
the equation notation of fi from number 1–15 are presented
in Table II. The coefficient values of number 16–29 are
symmetrical with the previous coefficients. The difference
between these two values is negligible; thus, by using shifters
and adders, Gaussian filter multiplication is implemented with
reduced HW resources.

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 107

Fig. 6. Padding edge pixels to form a Gaussian filter window. Coordinates
of pixels are marked on each pixel.

Finally, to implement a Gaussian filter of size 29×29, a line
buffer of size 1920×32 is utilized. Instead of using a 2-D filter,
where 29 × 29 operations between a pixel and a coefficient
value are required for convolution, two 1-D filters are used
vertically and horizontally to reduce the number of operations
to 29×1 plus a small number of additional adders. For filtering
the edge of the image, the pixel window contains an inexistent
area of the image. To overcome this problem, a method of
constructing a Gaussian window by padding the edge area
is shown in Fig. 6. As shown in Fig. 6, the pixel value of
this part is used by copying the edge part of the image when
applying 1-D filtering to the pixel at the required position,
so that additional memory and latency are not generated.

D. Implementation of Exponentiation Operation

The module for calculating Fenh computes the adaptive
gamma correction on the Fm channel using the average
value of the intensity channel to create the Fenh channel.
Calculating the Fenh channel for each pixel is expressed
in (14). To calculate Fenh(x, y), an exponentiation operation is
required. Both the base and the exponent are variables in this
operation, and consequently, this operation is nontrivial and
very complicated to be implemented in RTL. In this article,
the exponentiation HW module with minimal HW resources
is optimized considering the bit width required for the image
enhancement algorithm.

The proposed exponentiation HW module is implemented
by decomposing the operation with base 2 logarithm and
exponential operation. By substituting the base and the expo-
nent as x and y, respectively, the exponentiation equation to
calculate Fenh(x, y) in (14) is written with base 2 logarithm
and exponential as follows:

BaseExponent = 2Exponent×log2Base. (20)

The exponent part of (20) is composed by a multiplication of
Exponent and log2 Base. To calculate this exponent, the multi-
plication and logarithm operations are required. The exponent
part is expressed as the sum of the integral part (Iexp) and the

Fig. 7. Block diagram of the proposed exponentiation function.

fraction part (Fexp) as follows:
Exponent × log2 Base = Iexp + Fexp. (21)

By expressing the exponent as the sum of these two parts,
exponentiation in (20) is expressed as follows:

2Exponent×log2Base = 2Iexp+Fexp = 2Iexp × 2Fexp . (22)

The base 2 exponential of the integral part is replaced with
shift operation; thus, the entire operation is expressed as
follows:

2Iexp × 2Fexp = 2Fexp � |Iexp|. (23)

It should be noted that the input variable Base of the expo-
nentiation used in this article always has a range smaller
than 1; thus, the absolute value of Iexp can be used for
the right-shift operation, as shown in (22). By decomposing
the exponentiation operation, it is obtained by multiplying,
adding, shifting, base 2 logarithm and exponential operations.
Multiplying, adding, and shifting can be performed in less
than one cycle in RTL; however, the base 2 logarithm and
exponential operations still require complex implementation.
Two LUTs are used to perform the logarithm and exponential
operations because both the range of the input value and the
output bit width is fixed in the efficient naturalness restoration
algorithm. Decomposed exponentiation operation using LUTs,
a multiplier, and a shifter are depicted as an RTL block
diagram in Fig. 7.

The sizes of the two LUTs decide the HW resource utilized
in this module. Each LUT has its own input and output bit
width, and the size of each LUT is decided by the bit width.
The size of the LUT is expressed as follows:

Size(LUT) = 2nbits,in × nbits,out. (24)

As shown in (24), the output bit width nbits,out affects the
LUT size linearly while the input bit width nbits,in affects
it exponentially. Therefore, the appropriate selection of the
input bit width for each LUT is critical. In this article, bit
width is chosen by analyzing the error caused by selecting the
fixed-point bit width.

As we have implemented the operation to function with
a specific purpose of image enhancement, the range of the
possible input and output values is set. The range of the
base is 0 ≤ Fm(x, y) ≤ 1, where 0 indicates that the input
image is entirely black, and 1 indicates that it is entirely
white. The range of the exponent is (1/2) ≤ γ (x, y) ≤ 1,
where 1/2 indicates that the input image is entirely black and
1 indicates that it is entirely white. Based on these ranges,

108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 8. Error analysis of the two LUTs according to the input bit width.

experiments have been conducted to analyze the error for all
possible calculation of BaseExponent and the results are depicted
on Fig. 8.

The max error is calculated from the difference between
the implemented exponentiation function and the MATLAB
double-precision power function. As shown in the graph
in Fig. 8, both LUTlog2 and LUTexp2 have the minimum
error when the input bit width is 12 bits. It is noteworthy
that the max error value remains constant even if the bit
width is larger. The max error is 1/212, which is the unit
difference of the 12-bit fixed point used as the output of the
overall exponentiation. This implies that a function with max
error 1/212 will produce either the most or the second most
accurate calculation result when rounded to the nearest 12-bit
precision. Therefore, we have created LUTs with input bit
widths of 12 bits. The size of each LUTs is 49 kb.

This HW module of exponentiation operation is imple-
mented efficiently with minimal HW resource while hardly
affecting the performance. Therefore, the HW module for
image enhancement, such as the Gaussian filter, can afford
to utilize sufficient resources to utilize BRAMs and DSPs.
In addition, the decomposition of the complex operation to a
few simple operations saves the number of cycles required to
perform the operation, and consequently, the proposed design
with a low latency is suitable for real-time image processing.

E. HDMI/DVI Compatibility With Negligible Latency

Many commercial video devices transmit and receive video
data through the HDMI or DVI port for input and output;
thus, the proposed FPGA system is designed to support the
HDMI/DVI interface. For the input, the Digilent FMC-HDMI
expansion card is used, and for the output, the built-in HDMI
output port of ZC706 evaluation board is used. It is worth
mentioning that DVI port can be used with the HDMI port
with a simple gender. The video data received from the HDMI
port are transferred to the image enhancement module using
the AXI4-stream bus without holding the data in any form of
a frame buffer and are transmitted to the output HDMI port
using the same bus protocol. All the data are transmitted at
the rate of one pixel per cycle, which is the same as the video
stream data transfer protocol.

For this compatibility to be a great advantage, it is important
to eliminate any latency in the communication between the
devices and the image enhancement HW module. As described
in Section III-A, a use of a line buffer instead of a frame buffer

Fig. 9. Value of α on consecutive frames on a 60 frames/s video.

makes it possible to implement the proposed image enhance-
ment HW module with negligible latency, and consequently,
it interacts smoothly with commercial devices. It should be
noted that the proposed system creates a latency of only a
half the line buffer size, which results in a very small latency.

Furthermore, an additional implementation technique to
achieve negligible latency is applied to the Fenh channel.
The Fenh channel requires a variable α, which is calculated
using the average of the channel values of the entire frame.
However, the derivation of α using the current frame creates
at least a single frame delay. Therefore, the average of the
intensity channel is calculated from the previous frame to
prevent a delay of an entire frame. Experimental results show
that the derivation of α using the previous frame does not
create a noticeable error because the target video operates at
60 frames/s and therefore two consecutive frames have very
little difference in their average of intensity. Fig. 9 shows the
value of α for first 100 frames of several video sequences.
As the frame changes, the value of α changes with a relatively
large difference; however, the average difference between two
consecutive frames is only 0.001272, which is 0.08% of the
average α. The largest difference between two consecutive
frames is 0.01687, and this is only 1.14% of α. This shows
that in most cases, sudden change of α is unexpected, and it
is reasonable to use the α calculated from the previous frame.

However, despite the rarity of the case, the system can
suffer from the sudden change of the frame which leads
to inappropriate usage of α. Even when the α is misused,
the retinex algorithm functions normally and restores color
information successfully, but the overall intensity is affected.
However, when the scene is dramatically changed, it is likely
to be in the process of moving the region of interest for
the observer, and the importance of the observing this scene
would be very low. Because the importance of observing the
dramatically changing scene is very low, and this case is
rare according to Fig. 9, the α calculated from the previous
frame can be used for low latency design in the proposed HW
implementation without performance degradation.

In conclusion, the proposed HW module operates with
negligible latency and supports the HDMI/DVI port; thus,
it can be used with various commercial devices in which image
enhancement is required.

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 109

Fig. 10. Images with strong sunlight. (a) Original image. (b) Full-size filter. (c) Approximated filter.

TABLE III

LATENCY COMPARISON BETWEEN FRAME BUFFER AND LINE BUFFER

1920 × 1080 60 FRAMES/S VIDEO AT 148.5 MHz, 1 PIXEL PER CYCLE

IV. RESULTS AND DISCUSSION

A. Real-Time System With Negligible Latency

The proposed HW module processes the input of FHD
resolution in real-time (i.e., 60 frames/s) and creates the output
sequence with the same resolution and frame rate. The imple-
mented module operates with the AXI4-stream bus, which
transmits the video stream at the rate of one pixel per cycle;
thus, a minimum clock frequency of 1920×1080×60125 MHz
is required to satisfy FHD 60 frames/s throughput. In gen-
eral, the video processing module supported by Xilinx uses
148.5-MHz clock frequency to process an FHD 60 frames/s
video [45]; thus, the proposed system is also designed to
operate with 148.5-MHz clock frequency. The increased clock
frequency improves the throughput, but it also causes large
power consumption. Therefore, a proper clock frequency is set
to obtain the desired throughput while avoiding unnecessary
power consumption.

As mentioned above, it is important to minimize the latency
between the input and output videos because of the character-
istics of the image enhancement system. Therefore, the latency
is minimized through the proposed design method that does
not use the frame buffer. Table III shows the comparison
of the number of required cycles and latency between input
and output videos according to the data processing method.
When using a frame buffer, a delay of one frame or more is
inevitable, resulting in a latency of at least 13.96 ms based on
the FHD 60 frames/s video at 148.5 MHz. If double or triple
frame buffers are used, the latency is even increased. On the
other hand, the use of a line buffer minimizes the latency
generated while processing the pixel data.

Among various modules used in this design, the Gaussian
filter has the most complicated structure and generates the
most latency. The Gaussian filter module with a 53 × 53 filter
generates a latency of at least 0.349 ms even if the line buffer
is used. This means that it is possible to create a filter window
and process the Gaussian filter with a very low latency of 2.5%
compared to that produced using a frame buffer. The idea of
approximated computing is additionally applied to the design
of the Gaussian filter to construct a 29 × 29 window, and
consequently, the latency of the module is further decreased
to 0.194 ms (57.3% reduction as compared to that using a
53×53 filter). The overall latency including the Gaussian filter
module and all the other modules is measured as 0.241 ms,
which is only 1.7% of that produced using a frame buffer.
Therefore, it is possible to eliminate the latency between the
input and output in commercial display devices satisfying FHD
60 frames/s even at 148.5 MHz. The value of 0.241 ms is only
2.67% of the smallest input lag of commercial display devices
(9 ms) [46]; thus, the latency is unnoticeable even when the
input and the output videos are displayed side by side.

B. Evaluation and Comparison of Image Quality

To show that the approximated computing does not degrade
the subjective quality, Figs. 10–12 depict the results of three
cases (i.e., original image, enhanced image with a full-
size filter, and enhanced image with an approximated filter)
with three test images provided at NASA retinex image
processing webpage [47], and Fig. 13 depicts the results of
three cases with the images inside the artificially generated
internal human abdominal captured by a laparoscopy camera.
As shown in these figures, a clear difference is observed
between the original image [i.e., (a)] and the full Gaussian
[i.e., (b)]/approximated Gaussian [i.e., (c)] images because
the retinex algorithm improves the dark area of the image.
Moreover, difference is unnoticeable between the results of the
full-size Gaussian filter and the results of the approximated
29 × 29 Gaussian filter. Even in the enlarged part of each
image, the results of both the full and approximated filters
show the same effect on improving the dark part and the
details are maintained in both images. In Fig. 10, the edges
of the tire and the details of the boy’s head are improved
and, in Fig. 11, the restoration of the details of the girl’s face
and the invisible leaves in the background are retained in the
approximated filter. In Fig. 12, the detail of the leaves and

110 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

Fig. 11. Images with dark reflection area on a tinted window. (a) Original image. (b) Full-size filter. (c) Approximated filter.

Fig. 12. Images with loss created by shadows. (a) Original image. (b) Full-size filter. (c) Approximated filter.

Fig. 13. Images of a phantom taken with a laparoscopic camera. (a) Original image. (b) Full-size filter. (c) Approximated filter.

TABLE IV

AVERAGE OF ABSOLUTE DIFFERENCE BETWEEN FULL-SIZE
FILTER AND APPROXIMATED GAUSSIAN FILTER

the color restoration of the building wall is also maintained.
In Fig. 13, the effect of improving the details of the artificial
organ is not different between the two filters. This result shows
that the effect of improving the dark part is reliably maintained
even if approximation computing is applied to the Gaussian
filter.

Table IV presents the average absolute difference per pixel
between the results of the target algorithm using the full-size

Gaussian filter and the result of approximation computing for
the same four images. The results show that there is less
than 0.42-pixel difference in all images and the average differ-
ence is approximately 0.33 per pixel. The average difference
of 0.33 per pixel is 0.1% error rate, which is smaller than the
unit difference of 8-bit precision pixel. This result shows that
the approximate computing with a small-sized Gaussian filter
does not make a significant difference in performance.

C. Evaluation of FPGA Implementation

The proposed design for image enhancement is imple-
mented using the Xilinx ZC706 evaluation board. All image
processing modules are implemented using only FPGA
resources without access to an external memory. The effect
of resource saving by applying the approximate computing
to the Gaussian filter (i.e., using a reduced-size filter and
replacing the multiplier with shifters and adders) is shown

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 111

TABLE V

RESOURCE COMPARISON OF APPROXIMATED GAUSSIAN FILTER

in Table V. When approximation computing is applied, only
35.61% of the slice LUT, 58.42% of the slice register, and
42.86% of the memory are used compared to those used
with a full filter design, and the DSPs are not used at all.
Nevertheless, the subjective quality degradation is negligible
as shown in Figs. 10–13, and summarized in Table IV.

Table VI represents the FPGA implementation resource
utilization. The Gaussian filter module uses the most resources
in the entire system. Therefore, the approximate computing
of the Gaussian filter module effectively reduces the overall
HW resources. In addition, it is possible for the proposed HW
module to be used as a preprocessing system in other complex
image processing modules to be implemented in a single
FPGA board because the utilization ratio of the proposed HW
module in the entire FPGA board is very low because of the
low-cost implementation.

D. Comparison of FPGA Implementation

Table VII shows the comparison with the previous FPGA
implementations of the retinex algorithm using Gaussian
filters, developed by Li et al. [27], Ustukov et al. [28] and
Marsi and Ramponi [29]. The target FPGAs and the target
resolution of the previous implementations differ from those
of the proposed implementation; thus, a reasonable metric
is required to compare the HW with regards to different
specifications.

To generate a reasonable comparison metric, each resource
of different types, namely, LUT, register, block memory, and
external memory@comm is normalized into memory bits
according to the user guide of each FPGA fabric [48], [49].
In [48], the work is implemented on Xilinx Virtex-4, and each
LUT and register used can be substituted with 16-bit memory.
The work in [49] and the proposed system are implemented
on Virtex-7 and Zynq7000, respectively, and these seven-
series FPGA’s LUT and registers can be used as 32-bit
memory. In Marsi’s [29] work, the system is implemented on
Cyclone III. According to an article analyzing the difference
between the two FPGA fabrics [50], one unit of the logic
element used in Cyclone III is 1.3 times larger than one unit of
LUT used in Virtex-4, so the resource utilization is converted
into the estimated amount of LUTs of Virtex-4. This method
of normalizing HW resources between different FPGA fabric
usages for comparison has been adopted by Choi [51].

The eighth row of Table VII shows the normalized HW
resources in megabits. As shown in Table VII, even without
considering the throughput of the entire system, the proposed
system utilized the least amount of resources because all

three systems from the previous works utilized the frame
buffer while the proposed system used the line buffer instead.
The proposed system requires only 89.37% of the resources
for [27], 20.78% of that for [28], and 41.51% of that for [29],
while also exhibiting an improved throughput.

The throughput of the system is considered and the nor-
malized HW resources per 1000 pixels (i.e., resource per
throughput) are calculated in the ninth row of Table VII. The
throughput can be calculated by considering the resolution and
the frame rate. While considering the throughput, the proposed
system utilizes only 5.96%, 3.08%, and 6.92% of the resources
required for [27]–[29], respectively.

To demonstrate that the proposed system achieved low-cost,
a comparison with HW implementations of local tone mapping
algorithms proposed in [52] and [53] is shown in Table VIII.
Because the complexity and the performance of the algorithms
differ, a direct comparison of the resource usage may not be
simple. However, it is comparable in some fashion, as these
different algorithms function to enhance low dynamic range
images to high dynamic range images. It should be noted that
the algorithm used for tone mapping is much less complex
than the retinex algorithm used in the proposed system [54].

Two studies using tone mapping and HDR method use
a smaller size Gaussian filter; a 4 × 4 filter is used
by Licciardo et al. [52] and a 5 × 5 filter is used by
Ambalathankandy et al. [53]. Because the filter size plays a
crucial role in determining the resource size, the comparison
of the resource usage is based on the estimation of the HW
resource, assuming the use of a 5×5 Gaussian filter instead of
the 29×29 for the proposed system. The resources used for the
proposed system are estimated by substituting the utilization of
Gaussian filter of Table VI with the resources of the weighting
map generation module, because a 5 × 5 sized Gaussian filter
is used in this module.

The comparison between these works is also based on the
normalization methodology stated earlier. The resource unit of
Virtex-6 is similar to that of the seven series, and each LUT
and register can be considered as 32-bit memory [55]. The
resource usage of [53] is converted using the same method
used to convert [29].

As shown in Table VIII, the proposed system utilized
94.51% of the resources used in [52] and 120% of the
resources used in [53]. The resource usage is similar,
or slightly larger, compared to other implementations. How-
ever, because the complexity of retinex is at least 168%
greater than that of the local tone mapping algorithms as
found in [54], we can assume that the proposed system
successfully implemented the more complex algorithm with
relatively low-cost HW resources.

E. HDMI/DVI Compatibility With Consumer Devices

The proposed FPGA implementation is tested by connecting
it to the computer HDMI output, DVI output, and general
display devices at FHD 60 frames/s. In addition, the proposed
HW module is tested by connecting it to Karl Storz’s Image
1 Hub image processor and Sony LMD-2760MD medical
display. Karl Storz is a leading manufacturer of endoscopic and

112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

TABLE VI

RESOURCE UTILIZATION OF SELECTED MODULES OF THE PROPOSED SYSTEM

TABLE VII

COMPARISON RESULTS OF HARDWARE PERFORMANCE

TABLE VIII

COMPARISON RESULTS OF HARDWARE PERFORMANCE OF SIMILAR ALGORITHM IMPLEMENTATION

laparoscopic devices and is used by many medical researchers
and hospitals [56], [57]. The Sony medical display is a
widely used medical device because of its high-quality display
capability. Therefore, verification with these devices validates
the compatibility and commercialization possibility of the
proposed HW module.1

V. CONCLUSION

In this article, the algorithm used for improving the dark
part of an image is implemented using an FPGA with a
low-cost design to operate in real-time while maintaining
the image quality. For a low-cost HW design, the efficient

1The real-time demo of the proposed retinex HW module connected to
consumer devices can be found at http://capp.snu.ac.kr/?p=research#Demos.

naturalness restoration algorithm is selected instead of MSR;
the frame buffer is removed and complex modules, such
as the Gaussian filter or exponentiation, are approximated
and optimized considering the tradeoff between performance
and HW resources. As a result, the proposed HW module
implemented using an FPGA operates at 60 frames/s in real
time with the FHD resolution even at a low operating clock
frequency of 148.5 MHz, and the latency between the input
and the output is unnoticeable. The proposed system saves
up to 79.22% of HW resources compared to the existing
retinex HW design without a noticeable subjective quality
degradation. Furthermore, it can be used in various systems
because of its high compatibility with commercialized video
devices thanks to the support of the HDMI/DVI port. The

PARK et al.: LOW-COST AND HIGH-THROUGHPUT FPGA IMPLEMENTATION OF THE RETINEX ALGORITHM 113

proposed design is expected to be widely used in real-time
video processing where the improvement in dark areas is
required.

REFERENCES

[1] W. Niblack, An Introduction to Digital Image Processing. London, U.K.:
Prentice-Hall, 1986.

[2] D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS
image sensor with ultrawide dynamic range floating-point pixel-level
ADC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1821–1834,
Dec. 1999.

[3] T. Fukushima, Y. Kobayashi, K. Hirasawa, T. Bandoh, M. Ejiri, and
H. Kuwahara, “An image signal processor,” in IEEE Int. Solid-State
Conf. Circuits (ISSCC) Dig. Tech. Papers, Feb. 1983, pp. 258–259.

[4] R. Molina, A. K. Katsaggelos, and J. Mateos, “Bayesian and regulariza-
tion methods for hyperparameter estimation in image restoration,” IEEE
Trans. Image Process., vol. 8, no. 2, pp. 231–246, Feb. 1999.

[5] P. K. Saha, R. Strand, and G. Borgefors, “Digital topology and geometry
in medical imaging: A survey,” IEEE Trans. Med. Imag., vol. 34, no. 9,
pp. 1940–1964, Sep. 2015.

[6] Y.-T. Peng and P. C. Cosman, “Underwater image restoration based on
image blurriness and light absorption,” IEEE Trans. Image Process.,
vol. 26, no. 4, pp. 1579–1594, Apr. 2017.

[7] M. Kim, D. Park, D. K. Han, and H. Ko, “A novel approach for denoising
and enhancement of extremely low-light video,” IEEE Trans. Consum.
Electron., vol. 61, no. 1, pp. 72–80, 2015.

[8] Y.-C. Chang and J. F. Reid, “RGB calibration for color image analysis in
machine vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 5, no. 10,
pp. 1414–1422, Oct. 1996.

[9] N. Moroney, “Local color correction using non-linear masking,” in Proc.
8th Color Imag. Conf., Nov. 2000, pp. 108–111.

[10] X. Guan, S. Jian, P. Hongda, Z. Zhiguo, and G. Haibin, “An image
enhancement method based on gamma correction,” in Proc. IEEE Int.
Symp. Comput. Intell. Design, Dec. 2009, pp. 60–63.

[11] H. Farid, “Blind inverse gamma correction,” IEEE Trans. Image
Process., vol. 10, no. 10, pp. 1428–1433, Oct. 2001.

[12] Y.-T. Kim, “Contrast enhancement using brightness preserving bi-
histogram equalization,” IEEE Trans. Consum. Electron., vol. 43, no. 1,
pp. 1–8, Feb. 1997.

[13] Y. Wang, Q. Chen, and B. Zhang, “Image enhancement based on equal
area dualistic sub-image histogram equalization method,” IEEE Trans.
Consum. Electron., vol. 45, no. 1, pp. 68–75, Feb. 1999.

[14] T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification
framework and its application for image contrast enhancement,” IEEE
Trans. Image Process., vol. 18, no. 9, pp. 1921–1935, Sep. 2009.

[15] S. Battio, A. Castorina, and M. Mancuso, “High dynamic range imaging
for digital still camera: An overview,” J. Electron. Imag., vol. 12, no. 3,
pp. 459–469, Jul. 2003.

[16] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone
reproduction for digital images,” in Proc. SIGGRAPH Annu. Conf.
Comput. Graph., Jul. 2002, pp. 267–276.

[17] S. Setty, N. K. Srinath, and M. C. Hanumantharaju, “Development
of multiscale retinex algorithm for medical image enhancement based
on multi-rate sampling,” in Proc. IEEE Conf. Signal Process., Image
Process. Pattern. Recognit., Feb. 2013, pp. 145–150.

[18] J.-Y. Kim, L.-S. Kim, and S.-H. Hwang, “An advanced contrast enhance-
ment using partially overlapped sub-block histogram equalization,” IEEE
Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 475–484,
Apr. 2001.

[19] T. K. Kim, J. K. Paik, and B. S. Kang, “Contrast enhancement system
using spatially adaptive histogram equalization with temporal filtering,”
IEEE Trans. Consum. Electron., vol. 44, no. 1, pp. 82–87, Feb. 1998.

[20] S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, “Efficient contrast enhance-
ment using adaptive gamma correction with weighting distribution,”
IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032–1041, Mar. 2013.

[21] D. Zhang, W. J. Park, S. J. Lee, K. A. Choi, and S. J. Ko, “Histogram
partition based gamma correction for image contrast enhancement,”
in Proc. IEEE 16th Int. Symp. Consum. Electron. (ISCE), Jun. 2012,
pp. 1–4.

[22] Z.-U. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing
for automatic image enhancement,” J. Electron. Imag., vol. 13, no. 1,
pp. 100–110, 2004.

[23] C.-T. Shen and W.-L. Hwang, “Color image enhancement using Retinex
with robust envelope,” in Proc. IEEE Int. Conf. Image Process.,
Nov. 2009, pp. 3141–3144.

[24] B. Li, S. Wang, and Y. Geng, “Image enhancement based on Retinex
and lightness decomposition,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2011, pp. 3417–3420.

[25] M. K. Ng and W. Wang, “A total variation model for Retinex,” SIAM
J. Imag. Sci., vol. 4, no. 1, pp. 345–365, 2011.

[26] W. Ma, J.-M. Morel, S. Osher, and A. Chien, “An L1-based variational
model for Retinex theory and its application to medical images,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 153–160.

[27] Y. Li, H. Zhang, Y. You, and M. Sun, “A multi-scale retinex implemen-
tation on FPGA for an outdoor application,” in Proc. IEEE Int. Congr.
Image Signal Process., Oct. 2011, pp. 1788–1792.

[28] D. I. Ustukov, Y. R. Muratov, and V. N. Lantsov, “Modification of
Retinex algorithm and its stream implementation on FPGA,” in Proc.
IEEE Medit. Conf. Embedded Comput., Jun. 2017, pp. 1–4.

[29] S. Marsi and G. Ramponi, “A flexible FPGA implementation
for illuminance-reflectance video enhancement,” J. Real-Time Image
Process., vol. 8, no. 1, pp. 81–93, Mar. 2011.

[30] H. Tsutsui, H. Nakamura, R. Hashimoto, H. Okuhata, and T. Onoye,
“An FPGA implementation of real-time Retinex video image enhance-
ment,” in Proc. IEEE World Autom. Congr., Sep. 2010, pp. 1–6.

[31] S.-A. Li and C.-Y. Tsai, “Low-cost and high-speed hardware implemen-
tation of contrast-preserving image dynamic range compression for full-
HD video enhancement,” IET Image Process., vol. 9, no. 8, pp. 605–614,
2015.

[32] Y. H. Shin, S. Jeong, and S. Lee, “Efficient naturalness restoration for
non-uniform illumination images,” IET Image Process., vol. 9, no. 8,
pp. 662–671, 2015.

[33] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. IEEE Eur. Test Symp.,
May 2013, pp. 1–6.

[34] H. Seong, C. E. Rhee, and H. Lee, “A novel hardware architecture of the
Lucas–Kanade optical flow for reduced frame memory access,” IEEE
Trans. Circuits Syst. Video Technol., vol. 26, no. 6, pp. 1187–1199,
Jun. 2016.

[35] E. H. Land and J. J. McCann, “Lightness and Retinex theory,” J. Opt.
Soc. Amer., vol. 61, no. 1, pp. 1–11, 1971.

[36] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “A multiscale Retinex
for bridging the gap between color images and the human observation
of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976,
Jul. 1997.

[37] D. Terzopoulos, “Image analysis using multigrid relaxation meth-
ods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 2,
pp. 129–139, Mar. 1986.

[38] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, “A variational
framework for Retinex,” Int. J. Comput. Vis., vol. 52, no. 1, pp. 7–23,
2003.

[39] E. Land, “An alternative technique for the computation of the designator
in the Retinex theory of color vision,” Proc. Nat. Acad. Sci. USA, vol. 83,
pp. 3078–3080, May 1986.

[40] A. Moore, J. Allman, and R. M. Goodman, “A real-time neural sys-
tem for color constancy,” IEEE Trans. Neural Netw., vol. 2, no. 2,
pp. 237–247, Mar. 1991.

[41] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “Properties and
performance of a center/surround Retinex,” IEEE Trans. Image Process.,
vol. 6, no. 3, pp. 451–462, Mar. 1997.

[42] S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness preserved
enhancement algorithm for non-uniform illumination images,” IEEE
Trans. Image Process., vol. 22, no. 9, pp. 3538–3578, Sep. 2013.

[43] Y. Gao, H.-M. Hu, B. Li, and Q. Guo, “Naturalness preserved nonuni-
form illumination estimation for image enhancement based on Retinex,”
IEEE Trans. Multimedia, vol. 20, no. 2, pp. 335–344, Feb. 2018.

[44] AMBA AXI4-Stream Protocol Specification. Accessed: Aug. 29, 2018.
[Online]. Available: http://www.arm.com

[45] Xilinx Intellectual Property Video and Image Processing Pack. Accessed:
Aug. 29, 2018. [Online]. Available: http://www.xilinx.com

[46] Display Input Lag Database. Accessed: Sep. 19, 2018. [Online]. Avail-
able: https://displaylag.com/display-database/

[47] NASA Retinex Image Processing. Accessed: Aug. 29, 2018.
https://dragon.larc.nasa.gov

[48] Virtex-4 FPGA User Guide. Accessed: Apr. 22, 2019. [Online].
Available: https://www.xilinx.com/support/documentation/user_guides/
ug070.pdf

[49] 7 Series FPGAs Configurable Logic Block. Accessed: Apr. 22, 2019.
[Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf

114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 28, NO. 1, JANUARY 2020

[50] FPGA Logic Celss Comparison. Accessed: Apr. 22, 2019. [Online].
Available: http://ee.sharif.edu/~asic/Docs/fpga-logic-cells_V4_V5.pdf

[51] J. Choi, B. Kim, H. Kim, and H.-J. Lee, “A high-throughput hardware
accelerator for lossless compression of a DDR4 command trace,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 1, pp. 92–102,
Jan. 2019.

[52] G. D. Licciardo, A. D’Arienzo, and A. Rubino, “Stream processor
for realtime inverse tone mapping of full-HD images,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 11, pp. 2531–2539,
Nov. 2015.

[53] P. Ambalathankandy, A. Hore, and O. Yadid-Pecht, “An FPGA imple-
mentation of a tone mapping algorithm with a halo-reducing filter,”
J. Real-Time Image Process., vol. 116, no. 4, pp. 1317–1333, Sep. 2016.

[54] G. M. S. Nunes, “Evaluation of tone-mapping algorithms for focal-
plane implementation,” M.S. thesis, Dept. Elect. Eng., Fed. Univ.
Rio de Janeiro, Rio de Janeiro, Brazil. Accessed: Apr. 22, 2019.
[Online]. Available: http://www.pee.ufrj.br/index.php/pt/producao-
academica/dissertacoes-de-mestrado/2018/2016033238-evaluation-of-
tone-mapping-algorithms-for-focal-plane-implementation/file

[55] Virtex-6 FPGA Configurable Logic Block. Accessed:
Apr. 22, 2019. [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ug364.pdf

[56] G. H. KleinJan et al., “Optimisation of fluorescence guidance during
robot-assisted laparoscopic sentinel node biopsy for prostate cancer,”
Eur. Urol., vol. 66, no. 6, pp. 991–998, Dec. 2014.

[57] R. Dutta et al., “Clinical comparison of conventional and mobile
endockscope videocystoscopy using an air or fluid medium,”
J. Endourol., vol. 31, no. 6, pp. 593–597, Jun. 2017.

Jin Woo Park (S’19) received the B.S. degree
in electrical and computer engineering from Seoul
National University, Seoul, South Korea, in 2014,
where he is currently working toward the integrated
M.S. and Ph.D. degrees in electrical and computer
engineering.

His current research interests include accelerating
image matching and image enhancement algorithms
using field-programmable gate array (FPGA).

Hyokeun Lee (S’19) received the B.S. degree in
electrical and computer engineering from Seoul
National University, Seoul, South Korea, in 2016,
where he is currently working toward the integrated
M.S. and Ph.D. degrees in electrical and computer
engineering.

His current research interests include nonvolatile
memory controller design, hardware persistent
model for nonvolatile memory, and computer
architecture.

Boyeal Kim (S’19) received the B.S. degree in
electrical and computer engineering from the Seoul
National University of Seoul, Seoul, South Korea,
in 2017, where he is currently working toward the
integrated M.S. and Ph.D. degrees in electrical and
computer engineering.

His current research interests include high band-
width memory, computer architecture, and hardware
accelerator design.

Dong-Goo Kang received the B.S. degree (summa
cum laude) in electronics engineering from Sogang
University, Seoul, South Korea, in 2000, and the
M.S. and Ph.D. degrees in electrical engineer-
ing from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2002 and 2007, respectively.

From 2007 to 2015, he was a Research Staff
Member with the Samsung Advanced Institute of
Technology (SAIT), Suwon, South Korea. He is
currently a Senior Researcher with the Korea Elec-

trotechnology Research Institute (KERI), Seongju-dong, South Korea. His
current research interests include image processing and computer vision for
medical imaging.

Dr. Kang is a member of the Alpha Sigma Nu Honor Society. He was
a recipient of the 11th Samsung Humantech Paper Award (Gold Prize) by
Samsung Electronics, Co., Ltd., in 2005, and the SAIT Researcher of the Year
by the Samsung Advanced Institute of Technology in 2012. He has served as a
Program Committee Member of the International Forum on Medical Imaging
in Asia (IFMIA) in 2011 and 2012, and currently serves on the Board of
Directors of the Institute of Electronics and Information Engineers (IEIE)
and also serves as an Editor for the IEIE.

Seung Oh Jin received the B.S. and M.S. degrees in
electrical engineering from Changwon National Uni-
versity, Changwon, South Korea, in 1996 and 1998,
respectively, and the Ph.D. degree in Nanoscale
Semiconductor Engineering from Hanyang Univer-
sity, Seoul, South Korea, in 2005.

Since 1998, he has been with the Korea Elec-
trotechnology Research Institute (KERI), Seongju-
dong, South Korea, where he is currently a Principal
Researcher. He developed several medical imaging
and image processing systems for digital radiogra-

phy, tomosynthesis, and computed tomography. His current research interests
include embedded systems, image processing, compressed sensing, and med-
ical imaging@perio.

Hyun Kim (M’12) received the B.S., M.S., and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2009, 2011, and 2015, respectively.

From 2015 to 2018, he was a BK Assistant
Professor with the BK21 Creative Research Engi-
neer Development for IT, Seoul National University.
In 2018, he joined the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, where he is
currently an Assistant Professor. His current research

interests include the areas of algorithm, computer architecture, memory, and
SoC design for low-complexity multimedia applications and deep neural
networks.

Hyuk-Jae Lee (M’04) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, USA, in 1996.

From 1998 to 2001, he was a Senior Component
Design Engineer with the Server and Workstation
Chipset Division, Intel Corporation, Hillsboro, OR,
USA. From 1996 to 1998, he was with the Faculty
of the Department of Computer Science, Louisiana

Tech University, Ruston, LS, USA. In 2001, he joined the School of Electrical
Engineering and Computer Science, Seoul National University, where he is
currently a Professor. He is a Founder of Mamurian Design, Inc., Seoul. His
current research interests include the areas of computer architecture and SoC
design for multimedia applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

