1428

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

An Effective DRAM Address Remapping
for Mitigating Rowhammer Errors

Moonsoo Kim

, Jungwoo Choi, Hyun Kim

, and Hyuk-Jae Lee

Abstract—A rowhammer error represents a loss of data stored in a DRAM cell caused by electromagnetic interference due to
repetitive access to the same and/or adjacent rows. Due to the concentrated occurrence of rowhammer errors in specific rows and
columns, these errors cannot be corrected by the conventional error correcting code (ECC) commonly used in DRAM devices. Previous
techniques avoid these errors by having additional refresh operations that require additional hardware resources and/or power
consumption. This paper proposes a different approach to handle rowhammer errors by distributing them across different DRAM rows
and columns so that the attack cells are not concentrated on specific rows and columns. To this end, the distribution of rowhammer
errors is observed with experiments using several commercial DRAM devices by employing state-of-the-art rowhammer attack
techniques. The observation of the rowhammer errors concentrated in specific rows and columns underlies the proposal of an effective
DRAM address remapping scheme for re-distribution of rowhammer errors. By using different address mappings to different chips and
arrays in a DIMM, the proposed remapping effectively distributes errors over different rows and columns. As a result, the proposed
remapping scheme decreases the possibility of multiple errors in a single word, and consequently, reduces uncorrectable errors under
single error or single symbol correcting ECC. Experimental results with commercial DIMMs show that the proposed scheme reduces
uncorrectable errors by about 95 percent while incurring a small additional hardware cost.

Index Terms—DRAM, rowhammer error, fault tolerance, reliability

1 INTRODUCTION

rowhammer error represents a loss of data stored in a

DRAM cell. This is caused by repetitive access to the
same or adjacent rows that creates electromagnetic interfer-
ence amongst these rows. Rowhammer errors do not occur
frequently in DDR2 devices; however, they become serious
for DDR3 devices because of a small feature size and high
operating speed [1], [2], [3]. As a result, DDR4 and next-
generation DDR devices may become even more vulnerable
to rowhammer errors because DRAM manufacturers are con-
tinuously improving their manufacturing process and opera-
tion speed [4]. The difficulty in handling rowhammer errors
lies in the fact that these errors cannot be corrected by conven-
tional error correcting codes (ECCs) because they are likely to
be concentrated in a specific word. Furthermore, recent
developments in [5], [6], [7], [8], [9] makes use of rowhammer
errors for malicious attacks on the security of systems,
increasing the urgency of developing of a method to avoid or
reduce rowhammer errors.

e M. Kim, . Choi, and H.-]. Lee are with the Inter-University Semiconductor
Research Center, Department of Electrical and Computer Engineering, Seoul
National University, Seoul 08826, Korea. E-mail: {kimms213, choijw8525,
hyuk_jae_leej@capp.snu.ac.kr.

e H. Kim is with the Department of Electrical and Information Engineering,
The Research Center for Electrical and Information Technology, Seoul
National University of Science and Technology, Seoul 01811, Korea.
E-mail: hyunkim@seoultech.ac kr.

Manuscript received 26 June 2018; revised 2 Mar. 2019; accepted 13 Mar.
2019. Date of publication 24 Mar. 2019; date of current version 16 Sept. 2019.
(Corresponding author: Hyun Kim.)

Recommended for acceptance by P. Girard.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2019.2907248

4

Since rowhammer errors in DRAM devices are observed
in [1], research activities about rowhammer errors have been
undertaken in two directions: one attempting to avoid or
reduce rowhammer errors and the other making use of row-
hammer errors to attack the security of a system using DRAM
devices. The research in the direction toward security attack
shows that a double-sided rowhammer attack can increase
the error rate by alternately activating the rows above and
below the victim (i.e., target) row [8]. Cacheline-based row-
hammer attack [7] is another technique to increase the error
rate by attacking rows in a cacheline-wise rather than page-
wise fashion. Repeatedly applying these techniques to specific
regions of a DRAM device may result in intensive rowham-
mer errors in the regions. In [5], [6], [7], [9] , rowhammer
attacks make it possible to generate errors in a page mapping
table, which holds the critical information to gain access privi-
leges to a system. Failure to protect this critical information
may result in a fatal flaw in system security.

A conventional technique to correct an error is to use an
ECC [10]. Because a DRAM device seldom suffers from errors
in normal operation, the ECC for a DRAM, in general, is not
required to correct multiple errors. On the other hand, row-
hammer errors often occur in multiple bits in the same word.
Therefore, a conventional ECC may not be capable of correct-
ing rowhammer errors [11]. Instead of relying on ECC,
PARA [1], a probabilistic row refresh technique, is proposed
to use a pseudo-random number generation and to proba-
bilistically refresh DRAM rows whenever they are activated.
This technique is simple to implement but it requires a large
number of refresh operations, which may be unnecessary
if no attack is attempted. In [12], a probabilistic technique
to keep track of possible victim rows is proposed. This

0018-9340 © 2019 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
mailto:
mailto:
mailto:

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS

Rank array Bank
I,_—_—_I Ir_—__—l
Chip 0 || chip1 chip7]| :|:|:|:| :|:|: Tile

; | '

| Banik 0|| || Bank 0| |Bank0| /' 2 i i '
B = l00 O
Bank 7|| || Bank 7 Bank 7 : i Subarray
Lo Dupdrrdy

a

5 g CRN | !
\\ | : :

Word (64-bit) Byte [bit0 bitl Bit7)

Fig. 1. The diagram of the DRAM rank, chip, bank and subarray.

technique, called PRoHIT, outperforms PARA by utilizing
previous access history. Another technique to avoid rowham-
mer errors is to count the number of activations per row using
per-row counters, and to refresh adjacent rows whenever the
counter reaches a threshold [13]. The advantage of this tech-
nique lies in the reduction of unnecessary refresh operations
although the per-row counters may increase the hardware
cost. To reduce the hardware cost, a tree-structured counter
implementation is proposed in [14]. It dynamically assigns
the counters to the rows which are accessed frequently, and
thereby reducing the number of counters.

In summary, the previous techniques attempt to avoid
rowhammer errors by aggressively refreshing the rows with
abnormally high activation. Consequently, these techniques
demand additional power consumption for refresh opera-
tions and hardware overhead for the storage of activation
information.

To mitigate rowhammer errors without additional refresh
overhead, this paper proposes a new technique based on
DRAM address remapping. Address remapping, or scram-
bling, is a widely used technique which remaps row and col-
umn addresses within a DRAM subarray [15], [16], [17]. It is
previously used for two reasons. First, it improves the hard-
ware efficiency of the row decoder and column mux [15] in a
DRAM. Second, it hides DRAM address space from users,
and thereby strengthening its tolerance against security
attack. Recently-proposed methods for security attacks,
however, successfully finds the remapped address, and con-
sequently, generates rowhammer errors even for an address-
remapped DRAM [18].

This paper presents a novel two-level DRAM address
remapping to reduce rowhammer errors that cannot be cor-
rected by an ECC. The most important property of the pro-
posed remapping is to use different remapping strategies for
different DRAM chips in a DIMM as well as the arrays even
inside a chip. The first level of the two-level remapping
remaps an address in the chip level to make the address of
each chip to be different. The second level remaps an address
inside a chip, making every bit in a word to be originated
from different address. As a result, rowhammer errors are dis-
tributed evenly over multiple words, and thereby allowing
the word-wise ECC to correct the errors. The contributions of
this paper are summarized as follows.

e An address remapping is proposed to reduce row-
hammer errors by delivering different addresses to
different DRAMs in a DIMM. The remapping is
made in two levels so that its benefit is maximized.

e For the selection of an effective remapping, two main
causes of the rowhammer errors are observed from

1429

experimental results. Then, these causes are mathe-
matically formulated as the necessary conditions to
reduce rowhammer errors.

e Mathematical analysis shows that the proposed
remapping significantly increases the difficulty of
rowhammer attack. The reason is because the proba-
bility of uncorrectable errors (UEs) within a refresh
interval is decreased by 71 times.

e An effective implementation of the proposed remap-
ping is presented with the evaluation of the over-
head. Layout simulation shows that the hardware
overhead is negligible to implement the row decoder
and column mux for the proposed remapping.

The rest of the paper is organized as follows: Section 2
introduces the background of DRAM organization and the
characteristics of rowhammer errors. Section 3 presents
the experimental observations of the distribution of the
rowhammer errors. In Sections 4 and 5, the proposed two-
level remapping scheme is presented. Section 6 demon-
strates possible attack scenarios. Section 7 shows the expe-
rimental results that show a reduction of rowhammer
errors by the proposed remapping. Finally, Section 8 con-
cludes the paper.

2 BACKGROUND

2.1 DRAM Organization and Access Unit

Fig. 1 shows the typical organization of a DRAM module
which consists of multiple DRAM chips. In this module, eight
4-Gbit DRAM chips with an 8-bit /O channel are combined
to make a module. As a result, this DRAM module has a
32-Gbit storage capacity with a 64-bit I/O bandwidth. The
hierarchy of DRAM chips operating together to offer a wider
bandwidth is called a rank. The rank consists of multiple
banks distributed over DRAM chips. Each chip inside a bank
shares common command, address and data channels so that
all data in the same bank are accessed simultaneously
although they are stored in different chips. A single bank in a
chip consists of matrix of tiles, which are the basic access
units. A row of tiles, termed as a subarray, is always accessed
together. Typically, each bank in a chip includes 64 subarrays.
A column of tiles, termed as array hereafter, shares a column
multiplexer. This means that the array corresponds to a cer-
tain bit location in a byte.

In a rank structure such as that shown in Fig. 1, the read
access is initiated by delivering bank, row and column
addresses to the rank. As every chip shares the same addr-
esses, the row and column addresses are the same for all
DRAM chips. In each chip, a single row is selected by the row
decoder and the entire row is read from the subarray and
stored in a row buffer. Next, the column address is driven to
column multiplexers and the selected column is output from
the bank. In the example in Fig. 1, eight columns are selected
from each DRAM chip. For eight DRAM chips, a total of
64-bit data is transmitted to/from a DRAM module, as shown
in the left of Fig. 1. These 64-bit data correspond to the basic
unit of DRAM access, which is called a word.

Normally, the ECC of the DRAM is applied to each word.
Parity bits of the ECC are stored in an additional chip or
reserved area of the DRAM module. They are accessed and
transmitted together with the DRAM data to a memory

1430 IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019
3 r\/‘/‘/\ 2 4 4 4 4
: [. M\ MMM S I M) JA A S LM , A
| LV R A W B R T IV
0 I L 0 0 0 0 0
1 1 1 1 1 1
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 2. The relative frequency (y-axis) of rowhammer errors per word, with respect to subarray index (x-axis).

controller. The controller decodes the ECC and detects/ cor-
rects an error if it exists.

2.2 Charicteristics of Rowhammer Errors
Rowhammer errors take place when a specific row is acti-
vated repeatedly. Repetitive activation causes the fluctuation
of the wordline voltage which results in electromagnetic inter-
ference affecting the adjacent rows, and thereby causing a
data loss. The row experiencing repetitive activation is called
an aggressor row and the adjacent row experiencing errors is
called a victim row. Because the electromagnetic interference is
larger for the nearby rows, the error rate is larger for the rows
close to the aggressor row. In [1], it is reported that most row-
hammer errors take place in the rows just above and below
the aggressor row.

The current DRAM organization is vulnerable to row-
hammer errors because all DRAM chips in a rank share
DRAM addresses. For example, assume that row 1 is repeat-
edly accessed. Row 1 is accessed for all the arrays in eight
chips, making rows 0 and 2 are vulnerable in all arrays.
When rows 0 or 2 are accessed later, the errors from all
arrays are concentrated in a single word, and thereby mak-
ing it impossible for an ECC to correct the errors.

It is difficult to avoid this rowhammer attack even when a
conventional DRAM address remapping is adopted. Even
though the addresses are remapped, there still exist physi-
cally adjacent rows. For example, there exist rows i, j, and k
that are physically adjacent in the remapped addresses
although they are not in a logical address space. In this case,
rows i and k suffer from rowhammer errors if row j is
attacked. Errors are concentrated in rows i and £ for all
DRAM chips because they are remapped in the same manner
in the conventional remapping.

In double-sided rowhammer attack, the possibility of error
concentration increases significantly. This attack is a tech-
nique to increase the probability of rowhammer errors, made
by repetitive activations of two aggressor rows that are next
to the victim row. For example, rows 0 and 2 are the aggressor
rows to attack row 1 which is the victim row. With the repeti-
tive activations of rows 0 and 2, the probability of rowham-
mer errors in row 1 is larger than that with the activation of a
single row (either row 0 or row 2). For all DRAM chips, the
victim row is row 1 in which errors take place. Therefore, the

concentrated errors in row 1 make the accessed word having
multiple errors when any word from row 1 is accessed. Con-
sequently, the multiple errors in the accessed word make it
difficult to correct them even with an ECC.

3 ROWHAMMER ERROR DISTRIBUTION

3.1 Vulnerable Rows and Columns

The first step to reduce the possibility of rowhammer errors is
to observe the characteristics of rowhammer errors. It is not
easy to create rowhammer errors because they do not occur
frequently. Therefore, the dedicated program to generate
rowhammer attaks is executed for the creation of rowham-
mer errors. Experiments are conducted with six commercial
DIMMs to execute the dedicate program repeatedly and then
to observe the distribution of rowhammer errors. These
DIMMs consist of eight DRAM chips with 8-bit width and
2-4 GB capacity and they are installed in a host PC with an
x86 CPU. The rowhammer attack program used in the experi-
ment is based on [8], and it is modified to make double-sided,
unit based attacks as in [7]. To this end, the conventional
address remapping is revealed as explained in [18]. For every
unit in each memory module, the number of rowhammer
errors is counted, which is used to create the distribution of
rowhammer errors.

Fig. 2 shows the relative frequency of rowhammer errors in
each word, which represents the number of rowhammer
errors divided by the average number of errors for all words.
Modules A from F represent the six commercial DIMMs
which are used in experiments, respectively. In Fig. 2, the hor-
izontal axis represents the subarray index. The relative fre-
quency varies significantly depending on the subarray index.
The maximum relative frequency is greater than 2 for all
modules, which means that a specific subarray exhibits 2
times more errors than the average. Also, there are many sub-
arrays where rowhammer errors do not occur at all.

In Fig. 3, the horizontal axis represents the column
addresses, clustered to 128 bins. The relative frequency varies
significantly depending on the column address. For example,
module B varies most significantly, ranging from 0.2 to 2.
Fig. 4 shows the relative frequency of every unit with respect
to a row address. The variation of the relative frequency is
even larger than that in Fig. 3 such that the minimum

1 127 1 127 1 127

(a) Module A (b) Module B (c) Module C

1 127 1 127 1 127

(d) Module D (e) Module E (f) Module F

Fig. 3. The relative frequency (y-axis) of rowhammer errors per word, with respect to column address (z-axis).

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS 1431
8 8 8 8 8 8
4 4 4 4 4 4
0 0 0 0 0 0
1 127 1 127 1 127 1 127 1 127 1 127
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 4. The relative frequency (y-axis) of rowhammer errors per word, with respect to row address (z-axis).

frequency is 0 whereas the maximum is almost 7. Moreover,
in most modules, there is a clear distinction between no-error
rows and multiple-error rows.

The experimental results shown in Figs. 2, 3, and 4 indicate
that each module includes specific rows or columns which
are very vulnerable to rowhammer errors. It has been
reported that there exist certain DRAM cells of which reten-
tion times are shorter than the other cells. These cells are
located close to each other in certain regions of a DRAM lay-
out [19], [20]. The short-retention times may be caused by the
variation in manufacturing process creating a higher vulnera-
bility in certain rows/columns than others. Another reason
might be defects in the circuit design steps. No matter what
the reason is, the addresses of the vulnerable rows or columns
may differ from one module to another. Nonetheless, the
important fact is that all the modules used in the experiment
include vulnerable rows or columns. If these vulnerable rows
or columns are attacked repetitively, they may suffer from a
data loss due to rowhammer errors which cannot be detected
or corrected by a conventional ECC.

3.2 Statistical Analysis for the Redistribution
of Rowhammer Errors

This section presents the possibility of the redistribution of
rowhammer errors and the reduction of UEs which are the
errors that cannot be corrected by an ECC. Table 1 shows
the number of words in which UE is generated, for all
words in a module. To help understanding, an example is
given. Column X represents the number of UEs, that is the
number of words that include more than one error among
the errors in T (i.e., the errors observed from experiments).
On the other hand, column Y represents an estimated num-
ber of UEs with the assumption that all the errors in column
T are randomly distributed across all the words in a DRAM.
The value of Y corresponds to the expected number of UEs
assuming the probability of uniform random distribution. A
large value of X/Y indicates that errors are concentrated on
certain words of a DRAM. Therefore, this also implies that
there exists a large opportunity to reduce the UEs by ran-
domly redistributing the errors.

TABLE 1
The Comparison of Real and Expectation Value of UEs
Number of Number of Expected Value Ratio
Errors (T) UE (X) of UE (Y) (X/Y)
A 10790 110 4.25 25.90
B 14977 123 5.57 22.09
C 89272 7385 294.29 25.09
D 136008 12450 532.82 23.37
E 6042 35 0.7 50.00
F 13758 28 2.78 10.09

As in the fourth column of Table 1, the ratio varies from
10.09 to 50.00, which means that the differences between the
real values and the expectation values are large. This result
indicates that rowhammer errors are concentrated on cer-
tain words and re-distribution of rowhammer errors to dif-
ferent rows or columns may significantly reduce UEs. In the
next section, an effective way to re-distribute rowhammer
errors is to be discussed.

4 DRAM ADDRESS REMAPPING

As described in Sections 2.2 and 3, there are two main
causes of the concentration of rowhammer errors in specific
rows and columns.

1) Direct adjacency: Most rowhammer errors occur in
the directly adjacent rows, i.e., the row prior to and
after the aggressor row.

2) Vulnerable row/column: There exist certain rows or
columns that are vulnerable to rowhammer errors.

These two causes seem somewhat obvious, but they are

emphasized here because they are to be used in the design
of the proposed remapping scheme discussed in the subse-
quent subsections.

To reduce UEs by rowhammer attack, the section presents

a proposal of DRAM address remapping. To this end, con-
ventional DRAM address mapping is modified to re-distrib-
ute concentrated rowhammer errors. The essence of the
proposed address mapping lies in the application of different
address mappings for different chips and arrays in a memory
module. In the next subsections, effective DRAM address
remapping is analyzed considering the above two causes.

DRAM address remapping hereafter refers to the operation

of converting a single input address to a set of remapped
addresses. The input address can be both a row and a col-
umn address. The remapped addresses are used as an
actual physical addresses for all chips and arrays.

4.1 Remapping Matrix

DRAM address remapping is mathematically expressed as a
remapping matrix, R, as shown in Fig 5. The column of the
matrix represents the remapped address in each chip or

Column Vectors
@ ¢ oG oo

c(0) e1(0) - [e(0)] - er(0)
() ea(t) - fei(D)] - er(1)
Input Address _ - . - Set of Remapped
k |60(k) c1(k) ci(k) er(k) Addresses

Fig. 5. The diagram of the remapping matrix.

1432

Cg €1 C2 €3 C4 C5 Cg C7

0 0 5 10 15 20 25 30 35
1 —[1 14 27 40 53 66 79 92)
2—>(2 23 44 65 86 107 0 21]

Input 3 332 61 90 119 20 49 78

Addresses 4 4 41 78 115 24 61 98 7
126 126 115 104 93 82 71 60 49
127 109

127 124 121 118 115 112 106

Fig. 6. An example of an appropriate remapping matrix.

subarray. For example, the values in the first column repre-
sent the addresses used in chip 0, those in the second column
are for chip 1, and so on. When address k is given as the input
to chip ¢, it is remapped as ¢;(k) by the remapping matrix.

The kth row of the matrix represents the set of the
remapped addresses for all chips when the input address is
k. This means that the row index of the matrix corresponds
to the input address. The input address can be either a row
or column address. To handle both cases in a single matrix
without a loss of generality over various modules, the num-
ber of rows of the matrix is limited to 2". Therefore, the
input address must be smaller than 2". To ensure this condi-
tion, only n least significant bits (LSBs) of the input address
are used by the remapping and the remaining most signifi-
cant bits (MSBs) are used as the original values. In the next,
an example in Fig. 6 is used to explain the remapping opera-
tion that is represented by the remapping matrix.

Example 1. The remapping matrix shown in Fig. 6 repre-
sents the address remapping operation. For simplicity,
only 128 input addresses are considered in this example,
which means n is 7.

When the input address is 129, the value of the 7-bit LSBs
is 1, and thereby making the input address k equal to 1.
Therefore, row 1 of the remapping matrix is selected. From
chip 0 to 7, (1, 14, 27, 40, 53, 2, 15, 28) addresses are used,
respectively.

There are two conditions that the remapping matrix R
must satisfy. The first condition is given to guarantee that
different addresses are generated for different chips or sub-
arrays. To this end, the remapping matrix must have dis-
tinct column vectors. In other words, R must be composed
of eight different column vectors ¢;, as shown below.

itj—ate (0<i,j<8). 1)

The second condition is to ensure that different input
addresses are remapped to the different locations in a DRAM
chip and subarray. Otherwise, two different addresses can be
remapped to the same location, causing a fatal memory access
error. In other words, if input addresses k and [are different,
then the remapped addresses must be different, which is
described as follows.

E#1—ci(k) #c(l) (0<FE1<2"). (2)

The remapping matrix shown in Fig. 6 satisfies the two
conditions.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

Ci Cj

(o) - e(y) ¢(1)

k—>| |co(k) o ci(k) =4 - ci(k) =T -

z—>|co(z) () =5 - () #6 -

Fig. 7. The directly adjacent cause in the remapping matrix.

Example 1. (Continued) The remapping matrix in Fig. 6
satisfies (1) and (2) because all column vectors ¢;s are differ-
ent from each other, and for every column vector, all entries
are distinct, too.

In the next subsections, two causes of error concentration
are mathematically analyzed and the remapping matrix is
derived to resolve the two causes. For the sake of mathematical
analysis, column vectors are restricted to the following form.

ci(k) = (a; - k4 b;) mod 2". 3)

It is obvious that the form of 3 limits the number of possible
column vectors. However, there exist a sufficient number of
remapping matrices that satisfy 3 and solve the two causes
of rowhammer concentration. Therefore, the limitation of
Equation 3 does not prevent the derivation of the column
vectors to constitute a remapping matrix.

With the restriction of 3, the derivation of the remapping
matrix corresponds to the derivations of a;s and b;s.

4.2 Analysis of Direct Adjacency Cause

The first cause of the rowhammer error concentration is that
most rowhammer errors occur in the previous and next
rows of an aggressor row. In Fig. 7, the input address is
given as k and the corresponding remapped addresses are
from cy(k) to c7(k). In chip i, rowhammer errors occur at
adjacent rows ¢;(k) & 1. Similarly, errors occur at the adja-
cent rows, ¢;(k) £ 1 in chip j. To distribute the errors in this
case, ¢;(k) = 1 and ¢;(k) £ 1 must belong to different rows in
the matrix. For example, assuming that ¢;(k) is 4 as in Fig. 7,
rowhammer errors may occur in row [because ¢;({) is 5. On
the other hand, since ¢;(k) is 7, ¢;(I) should not be 6 or 8
because those rows may contain errors. These conditions
are formulated as below.

lci(k) = ci(D] =1 — |¢j(k) = ¢;(D] # 1. 4)

Now, the remapping matrix which satisfies (4) is derived.
Consider 8 different ¢;s of the Equation (3), where a;s satisfy
the following condition:

(5)

If the remapping matrix is constructed with 8 ¢;s which sat-
isfy (5), condition (4) is also satisfied. This is summarized as
the following lemma:

Lemma 1. If ¢;, c¢j in R satisfy (5) , then (4) is also satisfied.
Proof. By (3),

((a; +aj) mod 2") #0 and 0 < a;,a; < 2".

a - k+b=ci(k)+q-2"

6
a,;-l+b,;:c,¢(l)+q’-2" ()

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS

are derived. By subtracting both sides from each other
and using |¢;(k) — ¢;(I)] = 1asin (4),

(k=1)-a;=s-2"+1

—>k—l:(s-2”’i1)/ai, @

are obtained. Similar processes are also applied to c;, as
below.

(k=1)-a; = - 2"+ (e;(k) — ¢,(0). ®)
By substituting (k — [) using (7),
(ais' —ajs) - 2" = a; - (¢;(k) — ¢;(1)) F a;, ©)

is obtained. Assume that |c;(k) — ¢;({)| is 1. The left-hand
side of (9) is in the form of S - 2" whereas the right-hand
side is either a; + a; or a; — a;. First, a; + a; cannot be the
same as the left-hand side because a; +a; # s-2" as
explained in (5). Second in the case of a; — a;, inequality
—-2" < a; —a; < 2" stands because 0 < a;,a; < 2"
Thus, the constraint of a; — a; = 0 gives the only possibility
that a; — a; can be the same as the left-hand side. However,
a; and a; are different, and consequently, a; — a; cannot be
0. In both cases, Equation (9) cannot be established. Since
this is a contradiction, |¢;(k) — ¢;(1)| # 1. 0

In summary, the first cause (the directly adjacent cause)
is avoided when a;s of (3) satisfy condition (5).

4.3 Analysis of Vulnerable Rows/Columns Cause
The second cause of rowhammer error concentration comes
from the DRAM characteristic that certain rows or columns
are more vulnerable to rowhammer errors. The remapping
scheme to avoid this cause is explained with Fig. 7. When £ is
an input address, the remapped addresses are selected from
co(k) to cz(k). Suppose that ¢;(k) is a vulnerable address. To
avoid rowhammer attack to ¢;(k) in the other chips, the
remapping for address k in the other chips must be different
from ¢; (k). This condition is formulated as follows.

ci(k) £ (k) (0<i,j < 8).

Note that this condition is directly derived from (1).
Now, consider 8 different ¢;s of the Equation (3), where
a;s and b;s satisfy the following equation.

(10)

(al—aj)k+(bl—b])7és2”(0§z7j<8) (11)

Then, condition (11) is the sufficient condition to satisfy con-
dition (10). In other words, condition (10) is satisfied if R is
constructed with 8 ¢;s which satisfy (11). This is summa-
rized as the following lemma:

Lemma 2. If ¢;, c¢j in R satisfy (11), then (10) is also satisfied.
Proof. By (3),

ai-k+by=ci(k)+q-2" (12)
a]"k"‘b]' :cj(k)—l-q’-Q".
are derived. By subtracting both side from each other,

(ai — Clj) -k+ (bz — bj) =s5-2"+ (Cl(k) - Cj(k))7 (13)

1433

are obtained. Therefore, (11) must be satisfied to make
ci(k) —c;(k) # 0. 0

In summary, the second cause by vulnerable rows/col-
umns is resolved when the a;s and b;s of (3) satisfy condi-
tion (11).

4.4 Derivation of a Remapping Matrix

Considering the above discussions, the remapping matrix
which resolves two causes must satisfy:

e conditions (1) and (2), the basic conditions that the

matrix must satisfy, and

e conditions (4) and (10), which are the conditions

which resolve two causes.

Conditions (1) and (10) are identical, thus (2), (4), and (10)
are the necessary conditions that the matrix must satisfy. By
restricting column vectors in the form of (3), conditions (4)
and (10) are reduced to (5) and (11), respectively. Therefore,
the final conditions are (2), (5), and (11).

The final claim is formulated as the following Equa-
tion (14). If a;s and b;s of a column vector satisfy (14), then
conditions (2), (5), and (11) are also satisfied.

(14)

a; =a-i+ay (a=4m, ag is odd),
b;="0-i (bisodd).

Lemma 3. If a;, b; in R satisfy (14), conditions (2), (5), and (11)
are also satisfied.

Proof. Condition (2) is checked first. For different k£ and [,
lei(k) — ¢ ()] is a; - (k— 1) mod 2™. Because a; is an odd
number as in (14), a; and 2" are relatively prime, resulting
in a; - (k — 1) mod 2" cannot be 0. Therefore, condition (2)
is satisfied.

Second, condition (5) is checked. From (14), a; + a; =
a-(i+j)+2-ap is derived. Thus, condition (5) is
reduced to a-(i+j)+2-ay # s-2". By dividing both
sides by 2, a/2 - (i + j) +ag # s - 2"V is derived. Since n
is greater than 1, the left-hand side is odd while the
right-hand side is even. Therefore, condition (5) is
satisfied.

Finally, condition (11) is checked. By substituting «;
and b; using (14), (11) turns into (a-k+0b)- (i —j) #
s- 2" Because a = 4m and b is an odd number, (a - k + b)
is an odd number. Therefore, the left-hand side and the
right-hand side cannot be equal, which means condition
(11) is satisfied. O

In conclusion, the effective remapping matrix which
resolves both causes of the rowhammer error concentration
can be obtained by selecting «a, a), and b that satisfy (14).

Example 1. (Continued) Fig. 6 shows an example remap-
ping matrix whenn =7, a = 8, ap = 1, and b = 5. Every row
of the matrix satisfies both conditions. For example, con-
sider the relationship between input addresses 1 and 2.
Since ¢y(1) is 1 and ¢((2) is 2, the values should not differ by
1 in other columns according to condition (4). The values in
other columns are (14, 23) in column 1, (27, 44) in column 2,
and so on. Therefore, the value difference is obviously
larger than 1. Condition (10) is also satisfied. In every row,
there is no overlap among the eight values in the row.

1434

Input Address Remapped Address

[™MSBs(m) [LSBs(k) F—> c;(ci(k))

[co (m)- : :

c1(m) ' :

ci{mf-nnneend :

| cr(m) E
(oot = MEmE2] [eolci(k))
Remapping _ clgk) > Matr . Cl(cz(k))

k _> . B i €
Matrix 2 Cz(k) Cj (Cl(k)))
C7(k) Mat;”ix 2 07(0;(76))

Chip-level remapping Array-level remapping

Fig. 8. The diagram of the overall two-level remapping structure.

5 Two-LEVEL DRAM ADDRESS REMAPPING

5.1 Organization of Two-Level Address Remapping
The previous section addresses the question of which
remapping matrix should be used to effectively distribute
the rowhammer error. Extending the address remapping
presented in the previous section, this section presents a
two-level address remapping scheme which takes advan-
tage of the DRAM organization.

As explained in Section 2.1, an array in a chip corresponds
to a certain bit location. In the proposed organization, DRAM
address remapping is performed at two levels to deliver dif-
ferent addresses among all chips, and arrays inside the chips.
The first level is at the chip level, which delivers different
addresses for different chips. The second level is at the array
level, which delivers different addresses for different arrays
in the chip. Chip level remapping can only distribute row-
hammer errors by byte because each chip delivers a certain
byte. On the other hand, array level remapping can distribute
rowhammer errors by each bit inside the byte because each
array corresponds to a single bit. By adopting two-level
remapping, rowhammer errors are distributed not only by a
byte, but also by a bit inside a byte.

The experimental results in Figs. 3 and 4 show the necessity
of two-level address remapping because rowhammer errors
occur in adjacent rows and columns. If only single-level
address remapping is used, 8 bits (1 byte) from each chip are
derived from a single row/column. If this row/column is vul-
nerable to a rowhammer error, it is probable to have multiple
errors to occur within these 8 bits. On the other hand, two-level
address remapping randomly distributes the error because the
row/column varies depending on the array accessed within
the chip. Experimental results also show the improvement by

64

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

the two-level remapping. Fig. 15a shows that two-level
address remapping reduces the UE by 39.42 percent on aver-
age compared to single-level remapping with SECDED ECC.

The proposed two-level address remapping is illustrated
in Fig. 8 where the remapping matrix satisfying (14) is used
twice. When a row or column address is given as an input
address, it is decomposed into LSBs and MSBs parts. The
LSB-part k is used for address remapping. First, k is rema-
pped to the row k, which is (¢y(k), ¢1(k), . .., ¢7(k)). These val-
ues are passed on to each chip and the array-level remapping
is performed. For example, in chip 4, ¢;(k) is passed on and it
is remapped to (¢o(k), ¢1(k), ..., c7(k)) by another remapping
matrix. As a result, the remapped result for array j of chip i is
)(ci(k)).

The MSB-part m is also remapped. As shown in Fig. 9, a
typical row decoder consists of two-level hierarchical
decoders [21], [22]. The remapping in LSB-part illustrated in
the above paragraph is done by applying the remapping
matrix to local decoders. On the other hand, the remapping of
the MSB-part is applied to the global row decoder, making
errors to randomly distribute over subarrays. The remapping
result of the MSB-part for chip i is ¢;(m). The final remapped
address is obtained by concatenating ¢;(m) to ¢;(c;(k)). These
processes are illustrated in the following example.

Example 1. (Continued) The two-level address remapping
process is explained using the remapping matrix of Fig. 6, as
an example. Suppose the input address is 514. Then m is 1
and k is 2. As the first step, the chip-level remapping of k is
performed. Since k is 2, row 2 is selected, which is (2, 23, 44,
65, 86,107, 0, 21). Each value is passed on to the correspond-
ing chip and the array-level remapping is performed. In chip
6, the remapped value is 0, so row 0 is selected, which is (0, 5,
10, 15, 20, 25, 30, 35). Remapping of m gives (1, 14, 27, 40, 53,
66,79,92), which means the remapped MSB-part is 79 in chip
6. The final remapped address is obtained by concatenating
the two remapped values.

5.2 Implementation Details

The two-level remapping can be effectively implemented
without a significant change of the conventional DRAM
architecture. A naive implementation of the structure in Fig. 8
is to design an additional hardware unit for the remapping
operation. This hardware unit receives an input address, gen-
erates a different remapped address for each chip/array and
then delivers the remapped address to each subarray. This
implementation leads to significant overhead in the chip area
and latency because a new hardware unit is added in the
access path.

‘ Decoder . Modified Decoder __________
o O ST
s ! ' D) WL 1 i O] WL |
= i ! D! WL2 ! DI WL2
1 . o w

| | | : |
I~ ' |] ! i
8 —— T T i | i | » [} Dile;(c (k)
& I i ‘ DIWL 511 ‘ i
i m o 12 U] [out1f15:0] our2[31:0] ! ! !

"

= S0 3 R E E el }[Predecoder 1] [Predecoder 2] | }[Predecoder 1] [Predecoder 2] 1
-_—-_———T 1 | — ——)
¥ L 4 bits 5 bits 4 bits 5 bits
Byte [bit 0 bit | bit 7] (Address[8:5]) (Address[4:0]) (Address[8:5]) (Address[4:0]) k
(a) (b) ()

Fig. 9. The diagram of the (a) hierarchical row decoder, (b) a single decoder, (c) a modified decoder.

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS

Chip Chip
Row Row
Decoder Decoder
1TA+1 T A+ 57
Activation Refresh Refresh
Counters Counter Counter
i | Tra Tr4
mode Refresh Refresh
L MAC | Controller Controller

(a) (b)

Fig. 10. The diagram of (a) the TRR/PARA refresh controller and counter,
and (b) modified refresh controller and counter.

To minimize such overhead, an efficient implementation is
presented next. Unlike the naive implementation, where the
subarray receives input addresses directly, the proposed
implementation directly selects the remapped address by
altering the row decoder and the column mux. The conven-
tional implementation of the row decoder is explained first
and then the proposed implementation is described next. As
depicted in Fig. 9a, the row decoder of a bank consists of two-
level hierarchical decoders [21], [22]. The first level is the
global decoder which selects a subarray, and the second level
is local row decoder which selects a row inside the subarray.
Typically, each subarray consists of 512 rows which requires
a 9-to-512 decoder. This 9-to-512 local decoder is imple-
mented as shown in Fig. 9b [22]. The input address is decom-
posed into two parts and passed to two predecoders.
Predecoder 1 receives 4 MSBs of the address and generates
the corresponding 16 outputs, and Predecoder 2 receives the
remaining 5 bits of the address to generates 32 outputs. The
final output of the local decoder is obtained by boolean AND
operation between the one output from Predecoder 1 and the
other from Predecoder 2. For example, row 0 is selected at the
condition of (outl[0] & out2[0]), row 1 at (out1[0] & out2[1]),
and row 511 at (out1[15] & out2[31]).

The remapping matrix is applied to both the global and
local row decoders. Fig. 9c shows the structure of the modi-
fied decoders. The important change noteworty in the figure
is that the location of the contacts is rearranged according to
the remapped address. These contacts are indicated by
small boxes in the figure. For example, if address 2 is
remapped to 0, then row 0 is obtained by (out1[0] & out2[2])
as shown in Fig. 9c. In this manner, every predecoder line is
connected to boolean AND gate that corresponds to the
remapped address, and thereby resulting in input address k
to be remapped to row c¢;(c;(k).

Since the remapping matrix for each chip is fixed, the
proposed remapping structure can be implemented by sim-
ply adapting the above method to each chip. Implementing
the remapping matrix in such way does not change the
design at the logic level. The predecoder blocks are never
changed, and the 512 AND gates remain the same. There-
fore, impacts on chip area and latency are negligible.

The detailed synthesis and place and route results are to
be presented in Section 7.2.

5.3 Compatibility to Previous Solutions Against
Rowhammer Attack

The proposed two-level remapping structure does not

completely eliminate the rowhammer attacks. Therefore, it

is practical to use the propose structure with previous

1435
TABLE 2
The Number of UEs and Reduction Rates

Module Baseline Proposed TRR Proposed
(Ratio) (Ratio) +TRR

C 7385 228 (0.031) 57 (0.007) 0

D 12450 566 (0.045) 121 (0.010) 0

I 328 0(0) 3(0.009) 0

J 540 1 (0.002) 6 (0.011) 0

solutions, such as targeted row refresh (TRR) [13] or
PARA [1]. In this section, the compatibility of the proposed
and TRR/PARA structure is explained.

TRR is a scheme that counts the number of accesses per
row and refreshes adjacent rows when a specific row is
accessed intensively. As shown in Fig. 10a, TRR mode is
triggered when the value of the activation counter exceeds
the maximum activation count. When the TRR mode signal
is delivered to the chip, the refresh controller triggers the
refresh command and delivers the target address (7'4) to
the refresh counter. Finally, the refresh counter increments
or decrements TA to deliver (TA + 1) to the row decoder.
PARA is a scheme that probabilistically refreshes adjacent
rows for each activation. The refresh controller probabilisti-
cally triggers the refresh command, and the rest procedures
are identical to those of TRR.

Under the conventional address mapping structure where
the row decoder is not changed, the row decoder can select
the adjacent rows without any problem. However, TRR/
PARA do not work properly if our proposed remapping
structure is applied. The row decoder is modified to select
remapped address, resulting in a selection of completely dif-
ferent rows than the adjacent ones when TA —1, TA+1
addresses are requested.

To solve this problem, the refresh counter is modified in a
way of applying inverse mapping of the remapping. Since the
remapping applied to the row decoder is a linear mapping in
LSBs, the inverse mapping is also linear in LSBs. For example,
if the remapping of the row decoder is ¢ = (9 - k + 5) mod 27,
its inverse mapping is computed as k = (57 - ¢ + 99) mod 27.
In this case, the refresh counter is modified to increment/dec-
rement 57 to T4, not 1. As shown in Fig. 10 adjacent rows are
refreshed when T'A, TA & 57 are sent to the row decoder. This
modification in the refresh counter is very minor, and thus it
does not degrade the performance.

Since each chip has a fixed remapping matrix, the inverse
mapping can also be specified. If the refresh counter is
changed according to the calculated inverse mapping, our
proposed structure and TRR/PARA are compatible.

Experiments are conducted to evaluate the effectiveness
of our proposed remapping when used with TRR. For the
experiment, we implemented and simulated the operation
of TRR in the DDR3 modules. When a row is accessed more
than a certain threshold value, all operations are halted by
64ms (i.e., refresh interval length). By doing this operation,
a victim row is refreshed automatically by DRAM control-
ler. In this experimental environment where TRR operation
is implemented, all eleven modules (module A to K of
Table 1) are tested for fair comparison. Experimental results
show that rowhammer errors still occurred under TRR envi-
ronment on four modules (module C, D, I, and J) and Table 2

1436
TABLE 3
Parameters Used for Three Remapping Matrices
Matrix Type Ry Ry
n 7 7 7 7 7 7 7 7 7 7
a 2 4 8 8 8 2 4 8 8 8
ao 1 1 1 3 5 1 1 1 1 1
b o 0o o o O 5 5 3 5 7

shows the number of UEs and reduction rate of these mod-
ules. As presented in the third and fourth columns, the pro-
posed remapping shows the reduction ratios of 0 to 0.045
whereas TRR shows the reduction ratios of 0.007 to 0.011.
These results mean that the average effectiveness of the pro-
posed remapping scheme is better than that of the prior
TRR scheme. In addition, the fifth column of Table 2 shows
that the UEs are completely removed when the two struc-
tures are used together. In conclusion, the proposed struc-
ture and TRR can be used together to effectively prevent
rowhammer errors (i.e., the proposed remapping scheme
has high compatibility and scalability).

6 ROBUSTNESS AGAINST ROWHAMMER ATTACK
OF THE TWO-LEVEL REMAPPING

This section discusses the robustness of the proposed two-
level remapping against rowhammer attack.

Suppose that an attacker selects row 1 as the victim row.
Because of address remapping, the aggressor rows for each
chip are different. For example, the aggressor rows of chip 0
are 0 and 2, and those of chip 1 are 13 or 15. Because the
remapping matrix satisfies condition (4), 0/2 of chip 0 and
13/15 of chip 1 belong to different rows in the remapping
matrix. Thanks to the two-level remapping which also remaps
in the array-level, every array in a rank is attacked at different
aggressor rows. Therefore, a single attack affects only a single
array, and consequently, can create an error in only a single
bit in a word.

Because a single bit, not a whole word, is attacked by a sin-
gle attack, the probability of UE occurrence within a refresh
interval (RI) is significantly reduced. A typical RI is 64ms
whereas the minimum attack time is 8.2ms as reported in [1].
This means that the rowhammer attack cannot be performed
more than 8 times within an RI. If a BER is set to 10~ (typical
value obtained by experiments), the probability of UE occur-
rence under conventional structure is derived as 2-107°(=
1—(1—BER)™ —64- BER- (1 — BER)™). On the other
hand, when 8 attacks are performed and thereby 8 bits in a
word are attacked, the probability is 2.8-107"(=1— (1—
BER)® —8- BER- (1 — BER)"). This value is reduced by 71
times compared to the previous one.

In summary, the proposed remapping is more robust
than the conventional mapping against rowhammer attack
because the number of attacked bits in a word is reduced.
As a result, the probability of UE occurrence within an RI is
reduced by 71 times.

7 EXPERIMENTAL RESULTS

7.1 Experimental Environment

This section presents the experimental results for the evalua-
tion of the effectiveness of the proposed two-level address

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

remapping. Rowhammer errors are measured with eleven
commercial DDR3 DIMMs, each of which includes eight
chips with x8 bit width and 2 or 4 GB capacity. These DIMMs
are from various vendors and have manufacturing dates
ranging from 11-07 to 16-25 (in form of yy-ww). These
DIMMs are installed in a host PC with x86 CPUs and the row-
hammer attack programs based on [8] are executed to inject
errors for all units in a given memory space. The program
in [8] only attacks addresses in the same bank without infor-
mation about DRAM address mapping. In this case, the dou-
ble-sided rowhammer attack cannot be performed because it
is not possible to know which addresses are consecutive in
the DRAM. Therefore, techniques such as [18], [23] are first
used to find out the DRAM address mapping. Then, by using
the mapping information, the double-sided, unit-based row-
hammer attacks detailed in [7] are executed to increase the
error rate. For each victim row, the upper and lower rows are
activated one million times within the RI (64 ms).

The location of the rowhammer errors caused by the attack
codes are recorded for each module. Since the rowhammer
attacks are performed on commercial packaged DRAM mod-
ules, it is impossible to actually implement the proposed
remapping structure. Instead, the remapping processes are
implemented by moving the locations of recorded rowham-
mer errors according to the remapping matrix. To show the
effect of the proposed remapping structure, two types of
remapping matrices are experimentally tested, as listed in
Table 3. The first type, denoted as R, is a matrix satisfying
only condition (4), and the second type, denoted as R, is a
matrix satisfying both (4) and (10). The specific parameters of
the remapping matrices used for each type are shown in
Table 3. For remapping matrix of the global row decoder, a
fixed R, type matrix is used (n of 5, a of 4, ap of 1, and b of 5).

All remapping matrices in Table 3 can be applied to vari-
ous DRAM organizations. The effects of the number of rows,
subarrays, and data bus width to the remapping matrix are
explained. The typical number of rows ranges from 16,384 to
65,536. Considering the number of rows per subarray is gen-
erally fixed to 512, the number of subarrays ranges from 32 to
128. The value of n for all remapping matrices in Table 3 is 7.
Because 2" value (128) is less than the number of rows per
subarray (512), all matrices can be used regardless of the
number of rows and subarrays. The data bus width is typi-
cally ranges from 4 to 16. This means that the columns per col-
umn mux ranges from 4096 (bus width of 4) to 1024 (bus
width of 16). This value is a multiple of 2" (128), and therefore
the remapping matrices can also be used.

It should be noted that every row and column address is
accessed in the experimental setup carried out to obtain the
results in this paper. This means that the entire memory
space is attacked, and errors caused by attacks are accumu-
lated. The results given in Section 7.2 are evaluated under
this experimental setup.

7.2 Results

The relative frequencies of the errors are given first.
Figs. 11, 12 and 13 list the relative frequencies with respect
to subarray, column and row addresses, respectively. First,
Fig. 11 shows that the relative frequencies of the remapped
structure are closer to 1 than the original graph. For Figs. 12
and 13, the original, the remapping with an R; type matrix,

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS 1437
2 4 4 4 4
3 rigihal
SR N VYN Y PSR ~*¥ I PO R S n
L O LV A 0 O 1 o A
o b L 0 0 | G A L 0 N Y 0 \/
1 1 1 1 1 1
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 11. The relative frequency (y-axis) of rowhammer errors per word, with respect to subarray index (z-axis). The black and grey lines represent the

original mapping and R, remapping, respectively.

3 Origihal 3 3 3 3 3
2 Rl 2 2 2 2 2
1 ,M‘..‘u‘h’“‘“‘m‘ s M un,“.\"W\ ' b A .':hﬁ\iﬁ, y o fh\‘ 4\‘\«/‘““) n M;’x A 1 l, T
Wl TN TRy ol W i W e e Y e g R
0 0 0 0 0 0
1 127 1 127 1 127 1 127 1 127 1 127
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 12. The relative frequency (y-axis) of rowhammer errors per word, with respect to column address (z-axis). The black, grey, and light grey lines
represent the original mapping, R, remapping, and R, remapping, respectively.

8 Origihal 8 8 8 8 8
R1
P - W R2 4 4 IW'1 4 A “"'u.“ 4 Mh hl 4
| L il 1WA .| D e
0 1 o Llilv [y o Lubide " P 0 W4 L1 o L I\
1 127 1 127 1 127 1 127 1 127 1 127
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 13. The relative frequency (y-axis) of rovhammer errors per word, with respect to row address (z-axis). The black, grey, and light grey lines rep-
resent the original mapping, R, remapping, and R, remapping, respectively.

0.2 03 02 03 03 0.5
02 - [0.2 0.2 ol
o1 |- ' 0.1 ' ' ’_"H~ g‘;
0.1 |- 0.1 - 0.1 F-7 I :
LT | (LT, (LA] (L e et i
RI R2 RI R2 RI R2 RI R2 RI R2 RI R2
(a) Module A (b) Module B (c) Module C (d) Module D (e) Module E (f) Module F

Fig. 14. The reduction ratio of UEs under SECDED, for R, and R, matrices.

and the remapping with an R, type matrix are given. The
graphs show that the relative frequencies are close to 1
when the remapping is applied in all tested modules. More-
over, the remapping with Ry shows more uniform results
than that with R;. Therefore, this result shows that rowham-
mer errors are efficiently distributed when the remapping is
applied with the matrix satisfying both conditions (4) and
(10), as analyzed in Section 4.

The next experiments aim to show the reduction of UEs by
the proposed two-level address remapping under the error
correction by an ECC. To this end, rowhammer errors are
assumed to be recovered by two ECCs: SECDED and
SSCDSD. SECDED ECC allows a single error in a word to be
correctable, which implies that multiple errors in a word
become UEs. On the other hand, SSCDSD allows an occur-
rence of error(s) in a single symbol of 8-bit size to be correct-
able so that errors in multiple symbols are regarded as UEs.
More specifically, a 64-bit word size is assumed for SECDED,
and a 64-bit word size with a 8-bit symbol size is assumed for
SSCDSD. The ECC schemes assumed above are the basic
schemes used in real server-class processors. Low-end serv-
ers use SECDED because of its simple implementation while

high-end servers use SSCDSD because of its strong error pro-
tection capability [24]. The effectiveness of the proposed
address remapping is evaluated with the number of UEs.

Fig. 14 shows the UE reduction rates for each matrix in
Table 3. Five matrices per remapping type are plotted in
order. The graphs show that the reduction rate of the R; type
remapping is lower than that of R; type. When comparing
the average value of the five matrices of type, R, achieves
3.50-7.33 times better reduction rates compared to R;. In par-
ticular, in modules C and D which show the highest BER, the
reduction rate of Ry is more than 4 times better than that of
R1. From these results, the effectiveness of a remapping
matrix satisfying both conditions (4) and (10) is verified again.

Figs. 15a and 15b show the reduction rate of UEs under
SECDED and SSCDSD ECC, respectively. For each module,
the reduction rate is expressed in five steps. The first result
denoted by ’original” represents the number of UEs with the
original address mapping. This number is normalized to
become 1 and used as the reference for comparison with the
results of other mappings. The results denoted 'R1 single-
level’ indicate the chip-level remapping by R; matrix,
whereas 'R1 two-level” represents the results with the R1

1438

10!

duct

1
» 0.8
2
% 0.6
3504
Z02 bR sl e R e
0
A B C D

BR1 Single-level
OR2 Two-level

(a) SECDED

E F
W Original OR1 Two-level

OR2 Single-level

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

1
0 08
z
2 0.6
B
504
=
el
202
0 { e |
A B C D E

F

B Original BRI Single-level ORI Two-level
OR?2 Single-level OR2 Two-level
(b) SSCDSD

Fig. 15. The reduction ratio of UE under (a) SECDED ECC, (b) SSCDSD ECC.

matrix when both chip-level and array-level mapping are
applied. The same experiments are conducted with the R
remapping matrix, and the results are also presented in
Figs. 15a and 15b. The third row and ninth row of Table 3 are
used as representative of R; and R, matrices, respectively.

The reduction rates between the single-level and the two-
level remapping are compared. In Fig. 15a which shows the
reduction rates under SECDED ECC, the two-level remap-
ping shows better results in most cases. Conversely, in
Fig. 15b which shows the reduction rates under SSCDSD
ECC, the single-level remapping shows better results. This is
because multiple errors occurring in one symbol are distrib-
uted over several symbols through array-level remapping,
which results in increasing the number of symbols where
errors have occurred. Therefore, in case of SSCDSD ECC, it is
better to use the result of single-level remapping as the final
remapping result.

Additional experiments with DDR4 modules are also car-
ried out but the results are not reported in the paper because
of the following reason. Most DDR4 modules have built-in
rowhammer protection schemes such as TRR [25]. Because of
the protection scheme, the occurrence of UEs is not suffi-
ciently large when compared to that with DDR3 modules.
BER of DDR4 modules is of 10”7 to 1079, which is hundreds
times smaller than that of DDR3. The results obtained with an
insufficient number of UEs may not be statistically reliable,
and also they are not sufficient to verify the effectiveness of
the proposed remapping structure. Therefore, only the
results with the DDR3 modules are presented in this paper.
Nonetheless, the proposed remapping can be used together
with existing solutions such as TRR/PARA for the next gen-
eration DRAMs because the advance in DRAM technology
further increases the probability of rowhammer errors so that
TRR/PARA may not efficiently cover all rowhammer attacks.

7.3 Hardware Cost Analysis

This subsection discusses the hardware cost for the imple-
mentation of two-level remapping which requires the 8 global
decoders and 64 local decoders different from the original
without remapping. The areas and latencies of these modified
decoders may be different from each other and the modifica-
tion may result in an increase of the chip area and latency
compared to the original decoder without address remap-
ping. For the evaluation of area and latency, all possible
decoders are designed, and the area and latency are estimated
after synthesis, place and route (PNR) with a 65nm standard
cell library using Synopsys Design Compiler and IC Com-
piler. PNR results of 8 global decoders show that the area

ranges from 101.52 to 102.60um?, and the critical path delay
ranges from 0.4233 to 0.4308ns. For 64 local decoders, PNR
results show that the area ranges from 1891.08 to 1910.88um?,
and the critical path delay ranges from 0.6058 to 0.6885ns.

Consider the worst case scenario such that the original
decoder without remapping is the smallest (101.52 and
1891.08um?) and the fastest (0.4233 and 0.6058ns) whereas the
address remapping requires a decoder with the largest area
(102.60 and 1910.88um?) and latency (0.4308 and 0.6885ns).
Then the increase of the global decoder area is at most
1.08um? which is the difference between the largest
(102.60um?) and the smallest (101.52um?). Because each chip
has 16 global decoders, the area overhead is at most 17.28um?
(1.08um?x 16). For local decoders, the increase in area is at
most 19.8um? which is the difference between the largest
decoder (1910.88um?) and the smallest decoder (1891.08um?).
Because each chip has 1024 local decoders and 256 local muxes
(64 row decoders and 16 column muxes per bank, and 16
banks per rank), the increase of the area by all 1280 decoders
and muxes is at most 0.025mm? (19.8um? x 1280) is increased.

For comparison, the overall rank chip area is obtained
from CACTI simulation [26] under 65nm environment to
model DDR3 module and the total area is obtained as
11.107mm?. This means that the overall increased area
(17.28um? + 0.025mm?) corresponds to only a small fraction
(0.23 percent) of the original chip area.

The critical path delay is increased by 0.0075ns (0.4308-
0.4233ns) due to global decoder, and 0.0827ns (0.6885-
0.6058ns) due to local decoder. CACTI simulation shows
that the overall DRAM delay is 9.78ns. Therefore, the critical
path delay is increased by 0.93 percent, which is negligible.

7.4 Summary

Experimental results show that an R, type matrix is most
effective in the reduction of UEs by address remapping. In
addition, two-level remapping in SECDED and single-level
remapping in SSCDSD ECC must be used, respectively. The
results under these configurations are summarized in
Table 4. The reduction rate ranges from 0 to 0.071. In partic-
ular, in modules C and D which suffer relatively large UEs,
the reduction rate is between 0.023 and 0.045. This means
that the proposed remapping effectively reduces UEs even
in the vulnerable modules.

When the proposed remapping is applied to a commer-
cial DRAM module, the reduction rate is expected to be
even better than the values given in Table 4. This is due to
the limitation of the experimental method. As mentioned
earlier in this section, the rowhammer errors are distributed

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS 1439
TABLE 4
The Number of UEs and Reduction Rates with Respect to Modules
SECDED SSCDSD

Memory Before Chip-level Array-level ~ Reduction Before Chip-level Array-level = Reduction
Module Remapping Remapping Remapping Rate Remapping Remapping Remapping Rate

A 110 16 3 0.027 98 4 2 0.036

B 123 13 5 0.040 113 3 2 0.024

C 7385 1244 228 0.031 6494 199 175 0.027

D 12450 2416 566 0.045 10655 287 432 0.023

E 35 3 0 0 32 0 1 0

F 28 11 0 0 21 2 5 0.071

G 12 4 0 0 8 0 0 0

H 13 1 0 0 12 0 0 0

I 328 45 0 0 290 0 0 0

J 540 111 1 0.002 438 0 0 0

K 25 8 0 0 21 1 2 0.048

only after the rowhammer attacks have taken place. However,
when the address remapping is applied to a commercial
DRAM module, the remapping weakens the double-sided
rowhammer attack because adjacent rows of the aggressor
row differ by chips and subarrays. Therefore, the number of
UEs is expected to be lower than the those listed in Table 4,
resulting in even better reduction rates.

Hardware cost analysis shows that the proposed two-level
remapping structure only incurs additional 0.23 percent area
and 0.85 percent latency compared to conventional DRAM
module, which is a negligible increase.

8 RELATED WORK

This section presents an overview of existing techniques for
rowhammer attack and defense. Furthermore, the previous
work about DRAM address mapping is introduced.

Rowhammer Attack. Since the discovery of rowhammer
errors in DRAM devices in [1], research efforts have been
made to increase the probability of rowhammer errors.
Double-sided rowhammer attack [8] increases the error rate
by alternately activating rows above and below the victim
(i.e., target) row. Unit-based rowhammer attack [7] is another
technique to increase the error rate by attacking rows in a
cache line size rather than page-wise fashion. Another tech-
nique in [27], one-location hammering, attacks only a single
row and therefore, it can bypass many rowhammer protection
mechanisms. Repeatedly using these techniques to specific
regions of a DRAM device may result in intensive occurrence
of rowhammer errors in the regions. In [5], [6], [7], [9], row-
hammer attacks make it possible to generate errors in a page
table, which holds critical information to gain access privi-
leges to a system. Moreover, techniques in [27], [28] can even
penetrate Intel SGX [29], which is a software-based security
enhancement solution developed by Intel.

Rowhammer Defense. Instead of relying on a conventional
ECC, PARA, [1], a probabilistic row refresh technique, is pro-
posed. A pseudo-random number generator is used to proba-
bilistically refresh a row whenever it is activated. This
technique is simple to implement but it requires a large num-
ber of refresh operations, most of which may not be neces-
sary. In [12], a probabilistic technique to keep track of
possible victim rows is proposed. This technique, called

PRoHIT, is efficient in the utilization of previous access his-
tory. Another technique aims to avoid rowhammer errors by
refreshing the rows that are accessed frequently. To this end,
the numbers of activations per row is counted using a per-
row counter and the adjacent rows are refreshed whenever
the counter reaches a threshold [13]. This kind of approach is
supported by chipset manufacturers [30], and thus it is most
general defense method in practical use. The advantage of
this technique lies in the reduction of unnecessary refresh
operations although the per-row counters may increase the
hardware cost. To reduce the hardware cost, a tree-structured
counter implementation is proposed in [14]. It dynamically
assigns counters to the rows which are accessed frequently,
thereby reducing the number of counters. Software-based
rowhammer protections are also studied. ANVIL [31] pro-
tects rowhammer attacks by detecting locality of DRAM
access using existing hardware performance counters. While
this technique focuses on reducing the errors themselves, [32]
prevents errors from occurring in security sensitive areas. It
changes the physical memory allocator to a physically iso-
lated kernel and user space.

DRAM Address Remapping. Address remapping, or scram-
bling, is a widely used technique which remaps row and col-
umn addresses within a DRAM subarray [15], [16], [17]. It is
previously used for two reasons. First, it improves the hard-
ware efficiency of the row decoder and column mux [15] in a
DRAM. Second, it hides DRAM address space from users,
thereby strengthening its tolerance against security attacks
including rowhammer attacks. Recent work uses different
remapped address for each chip to further enhance the spatial
locality of DRAM access [33]. The proposed work is similar
to [33] in that both uses different remapping structure per
chip. However, the goal of the remapping is different, thereby
the method of generating remapped address is also different.

Relationship with the Proposed Work. Since the proposed
work is about protecting a system against rowhammer errors,
it is compared to previous solutions for rowhammer defense.
The previous solutions about rowhammer defense mostly
aim to reduce the error rate itself. On the other hand, the pro-
posed work does not affect (reduce) the error rate itself.
Instead, it attempts to distribute errors under the given error
rate to make them correctable with an ECC. This means that
the proposed work can be used together with the previous

1440

solutions. For example, a previous rowhammer solution is
first applied to reduce the error rate, and then the proposed
remapping is applied under the reduced error rate to further
reduce UEs. Considering the experimental results that the
proposed remapping completely eliminates the UEs when a
BER is low, the combination of two solutions can effectively
defend the system against rowhammer attack.

9 CONCLUSION

This paper presents a new DRAM address remapping scheme
that distributes rowhammer errors over multiple rows and
columns. By exploiting the distribution of the rowhammer
errors, the effective remapping matrix is derived mathemati-
cally. Using the derived matrix, the overall DRAM address is
remapped via a two-step process. Experimental results show
that the derived matrix effectively distributes the rowhammer
errors, thereby reducing the occurrence of UEs by up to 99
percent. The proposed remapping significantly reduces the
probability of UE occurrence by 71 times.

Another advantage of the proposed structure lies in its
broad applicability. For example, it can be used together
with previous rowhammer solutions that reduce the row-
hammer error rate. Moreover, the proposed structure does
not require a large hardware cost. This means that the pro-
posed structure can be used as a complement, rather than a
substitute solution.

It might be interesting to adopt dynamic address remap-
ping for the future work. The dynamic remapping can
address the limitation of this work, that it cannot eliminate
the UEs already occurred. Together with ECC protection,
the UEs can be eliminated by dynamically changing the
remapped address.

ACKNOWLEDGMENTS

This research was supported by the MOTIE (Ministry of
Trade, Industry & Energy (10080613, DRAM/PRAM hetero-
geneous memory architecture and controller IC design tech-
nology research and development) and the Research fund
for a new professor by the SeoulTech (Seoul National Uni-
versity of Science and Technology).

REFERENCES

[1] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” in
Proc. ACM/IEEE 41st Int. Symp. Comput. Archit., 2014, pp. 361-372.

[2] V.Sridharan, N. Debardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad and the ugly,” in Proc. 20th Int. Conf. Archit. Support
Program. Languages Operating Syst., 2015, pp. 297-310.

[3] O. Mutlu, “The rowhammer problem and other issues we may
face as memory becomes denser,” in Proc. Des., Autom. Test Eur.
Conf. Exhib., 2017, pp. 1116-1121.

[4] O.Mutlu, “Memory scaling: A systems architecture perspective,”
in Proc. 5th IEEE Int. Memory Workshop, 2013, pp. 21-25.

[5] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in
Proc. USENIX Security Symp., 2016, pp. 1-18.

[6] D.Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote
software-induced fault attack in javascript,” in Detection of Intru-
sions and Malware, and Vulnerability Assessment. Berlin, Germany:
Springer, 2016, pp. 300-321.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.10, OCTOBER 2019

Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One bit flips,
one cloud flops: Cross-VM row hammer attacks and privilege
escalation,” in Proc. USENIX Security Symp., 2016, pp. 19-35.

R. Qiao and M. Seaborn, “A new approach for rowhammer
attacks,” in Proc. IEEE Int. Symp. Hardware Oriented Security Trust,
2016, pp. 161-166.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Determin-
istic rowhammer attacks on mobile platforms,” in Proc. ACM SIG-
SAC Conf. Comput. Commun. Security, 2016, pp. 1675-1689.

S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and
O. Mutlu, “The efficacy of error mitigation techniques for DRAM
retention failures: A comparative experimental study,” in Proc. ACM
SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, 2014, pp. 519-532.

L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting cor-
recting codes: On the effectiveness of ECC memory against row-
hammer attacks,” presented at 40th IEEE Symposium on Security
and Privacy, San Francisco, U.S., 2019.

M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM stronger
against row hammering,” in Proc. 54th Annu. Des. Autom. Conf.,
2017, Art. no. 55.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support
for mitigating row hammering in DRAM memories,” IEEE Com-
put. Archit. Lett., vol. 14, no. 1, pp. 9-12, Jan.-Jun. 2015.

S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-based
tree structure for row hammering mitigation in DRAM,” IEEE
Comput. Archit. Lett., vol. 16, no. 1, pp. 18-21, Jan.-Jun. 2017.

A.]J. Van De Goor and 1. Schanstra, “Address and data scram-
bling: Causes and impact on memory tests,” in Proc. 1st IEEE Int.
Workshop Electron. Des. Test Appl., 2002, pp. 128-136.

S. Khan, D. Lee, and O. Mutlu, “Parbor: An efficient system-level
technique to detect data-dependent failures in DRAM,” in Proc. 46th
Annu. IEEE/IFIP Int. Conf. Depend. Syst. Netw., 2016, pp. 239-250.

B. Akin, F. Franchetti, and J. C. Hoe, “Data reorganization in
memory using 3d-stacked DRAM,” in Proc. ACM/IEEE 42nd
Annu. Int. Symp. Comput. Archit., 2015, pp. 131-143.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“Drama: Exploiting DRAM addressing for cross-cpu attacks,” in
Proc. USENIX Security Symp., 2016, pp. 565-581.

M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“Avatar: A variable-retention-time (VRT) aware refresh for
DRAM systems,” in Proc. 45th Annu. IEEE/IFIP Int. Conf. Depend.
Syst. Netw., 2015, pp. 427-437.

M. Patel, J. S. Kim, and O. Mutlu, “The reach profiler (REAPER):
Enabling the mitigation of DRAM retention failures via profiling
at aggressive conditions,” in Proc. ACM/IEEE 44th Annu. Int.
Symp. Comput. Archit., 2017, pp. 255-268.

Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for
exploiting subarray-level parallelism (SALP) in DRAM,” in Proc.
39th Annu. Int. Symp. Comput. Archit., 2012, pp. 368-379.

B.Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
Burlington, MA, USA: Morgan Kaufmann, 2010.

A. Barenghi, L. Breveglieri, N. Izzo, and G. Pelosi, “Software-only
reverse engineering of physical DRAM mappings for rowhammer
attacks,” in Proc. IEEE 3rd Int. Verif. Security Workshop, 2018,
pp- 19-24.

S. Mittal and M. S. Inukonda, “A survey of techniques for improving
error-resilience of DRAM,” . Syst. Archit., vol. 91, pp. 1140, 2018.

K. Kasamsetty, “DRAM scaling challenges and solutions in
Ipddr4 context,” presented at MemCon, Santa Clara, U.S., 2014.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to model large caches,” HP Laboratories, Tech. Rep.
HPL-2009 -85, pp. 22-31, 2009.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin,]. Juffinger,
S. O’Connell, W. Schoechl, and Y. Yarom, “Another flip in the
wall of rowhammer defenses,” in Proc. IEEE Symp. Security Pri-
vacy, 2018, pp. 245-261.

Y.Jang, J. Lee, S. Lee, and T. Kim, “SGX-bomb: Locking down the
processor via rowhammer attack,” in Proc. 2nd Workshop Syst.
Softw. Trusted Execution, 2017, Art. no. 5.

V. CostanandS. Devadas,”Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1-118, 2016.

M. Kaczmarski, “Thoughts on Intel Xeon e5-2600 v2 product
family performance optimisation-component selection guide-
lines,” Aug., 2014. [Online]. Available: http://infobazy.gda.pl/
2014/ pliki/ prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

KIM ETAL.: AN EFFECTIVE DRAM ADDRESS REMAPPING FOR MITIGATING ROWHAMMER ERRORS

[31] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin, “Anvil: Software-based protection against next-
generation rowhammer attacks,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 743-755, 2016.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi,
“Can’t touch this: Practical and generic software-only defenses
against rowhammer attacks,” in Proc. 26th USENIX Security
Symp., 2017, pp. 117-130.

V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Gather-scatter DRAM: In-
DRAM address translation to improve the spatial locality of non-
unit strided accesses,” in Proc. 48th ACM Int. Symp. Microarchitec-
ture, 2015, pp. 267-280.

[32]

[33]

Moonsoo Kim received the BS degree in elec-
trical and computer engineering from Seoul
National University, Seoul, Korea, in 2014. He is
currently working toward the integrated MS and
PhD degrees in electrical and computer engineer-
ing at Seoul National University, Seoul, Korea.
His current research interests include SoC design
of video/images, and low-power, reliable design
of memory hierarchy.

Jungwoo Choi received BS degree in electrical
and computer engineering from Seoul National
University, Seoul, Korea, in 2016, and is currently
working toward the integrated MS and PhD
degrees in electrical and computer engineering at
Seoul National University. His research interests
include image processing, energy-efficient com-
puter architecture, and memory systems.

1441

Hyun Kim received the BS, MS and PhD degrees
in electrical engineering and computer science
from Seoul National University, Seoul, Korea, in
2009, 2011 and 2015, respectively. From 2015 to
2018, he was with the BK21 Creative Research
Engineer Development for IT, Seoul National Uni-
versity, Seoul, Korea, as a research professor. In
2018, he joined the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, Korea, where
he is currently working as an assistant
professor. His research interests include areas of algorithm, computer
architecture, and SoC design for low-complexity multimedia applications.

Hyuk-Jae Lee received BS and MS degrees in
electronics engineering from Seoul National Uni-
versity, Korea, in 1987 and 1989, respectively,
and the PhD degree in electrical and computer
engineering from Purdue University at West
Lafayette, Indiana, in 1996. From 1998 to 2001,
he worked at the Server and Workstation Chipset
Division of Intel Corporation in Hillsboro, Oregon
as a senior component design engineer. From
1996 to 1998, he was on the faculty of the
Department of Computer Science of Louisiana
Tech University at Ruston, Louisiana. In 2001, he joined the School of
Electrical Engineering and Computer Science at Seoul National Univer-
sity, Korea, where he is currently working as a Professor. He is a founder
of Mamurian Design, Inc., a fabless SoC design house for multimedia
applications. His research interests are in the areas of computer archi-
tecture and SoC design for multimedia applications.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

