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ABSTRACT As the acquisition of laser range measurements such as those from light detection and
ranging (LiDAR) sensors requires a considerable amount of time, to design an effective sampling algorithm
is a critical task in numerous laser range applications. The state-of-the-art adaptive methods such as
two-step sampling are highly effective at handling less complex scenes such as indoor environments
with a moderately low sampling rate. However, their performance is relatively low in complex on-road
environments, particularly when the sampling rate of the measuring equipment is low. To address this
problem, this paper proposes a region-of-interest (ROI)-based sampling algorithm in on-road environments
for autonomous driving. With the aid of fast and accurate road and object detection algorithms, particularly
those based on convolutional neural networks, the proposed sampling algorithm utilizes the semantic
information and effectively distributes samples in the road, object, and background areas. The experimental
results demonstrate that the proposed algorithm significantly reduces the mean-absolute-error in the object
area by at most 52.8% compared to two-step sampling; moreover, it achieves robust reconstruction quality
even at a very low sampling rate of 1%.

INDEX TERMS Autonomous driving, LiDAR sampling, on-road environment, ROI-based sampling, two-
stage sampling.

I. INTRODUCTION
In recent years, autonomous driving has become an emerg-
ing trend. From the sensing aspect, 3-D cameras such as
RGB-D cameras and light detection and ranging (LiDAR)
sensors are becoming more affordable, enabling both aca-
demic studies and industrial (commercial) applications, such
as self-driving cars employing video analytics on LiDAR
captured data for path planning as well as obstacle detec-
tion [1]. To mimic the complex natural sensing system of
humans, a vehicle is installed with different types of sensors
such as grayscale/color cameras, inertial and GPS navigation
sensors, radio detection and ranging (RADAR), and LiDAR
sensors [2], [3]. One of the most critical and challenging
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tasks in autonomous driving is the generation of a local map
of objects (i.e., road, vehicles, and pedestrians) surrounding
a car. This task directly relies on the depth sensing tech-
nologies. As depth information is crucial for understanding
the visual world, many studies have been explored ways to
acquire accurate depth information efficiently in both hard-
ware and software systems. In software-based solutions, dis-
parity estimation algorithms using single or stereo cameras
have been studied to estimate accurate depth cues in shorter
processing time [4]–[6]. In hardware-based solutions, depth
sensors such as Microsoft Kinect and LiDAR sensors have
been developed to capture better quality depth information
with portability and low cost [7]–[9].Whereas classical stereo
vision techniques are only capable of estimating distances
of close objects, a LiDAR sensor can produce rich informa-
tion of a wide and broad field of view (FOV) with a range
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reaching to 120 meters or more [10]–[12]. However, there are
two mainly challenging problems for designing LiDAR sen-
sors and utilizing them to a commercial application. Firstly,
despite the progress in active depth sensing, the quality of
acquired depth maps is still low when compared against
their color image counterparts. Therefore it is highly required
to develop efficient and effective depth recovery techniques
(especially for improving the spatial resolution of depth
cameras), i.e. compressive sensing, image super-resolution
or depth completion methods [13]–[17]. Secondly, although
a LiDAR is capable of constructing a high-definition map
of objects, this requires considerable resources to process
and store a large-scale point cloud, requiring resampling or
encoding methods [18]–[20]. From the sensor aspect, to solve
these two problems, fast and accurate sampling is required to
reduce the spatial resolution of a LiDAR sensor, especially
for autonomous driving in an on-road environment, where the
spatial and temporal resolution of a LiDAR sensor is signifi-
cantly sparser than that of an image sensor (see Fig. 5(c) and
Section IV-A for further details).

This study addresses the problem of finding sampling
locations for LiDAR scanners to minimize the reconstruction
error in an entire scene or a specific region-of-interest (ROI)
for a given sampling budget. This problem is directly related
to the compressive sensing theory, which has intensively
studied in many decades, and several approaches to find a
sampling matrix have been presented [21]–[26]. Motivated
by the property of the wavelet transform that the relevant
coefficients coincide with discontinuities, Hawe et al. [21]
recommend that a data acquisition system should pick sam-
ples at the discontinuities or along gradients. However, this
approach is not practical for two reasons. First, the gradient
of the disparity map is not available prior to sampling. There-
fore, all the gradient information needs to be inferred from the
color image. Second, the gradient of a color image could be
significantly different from that of the disparity map. Thus,
inferring the disparity gradient from the color image is chal-
lenging. Liu et al. [22] suggest to use outlier elimination prior
to edge disparity estimation. Meanwhile, Schwartz et al. [23],
[24] propose a saliency-guided sampling approach to perform
sampling in a two-stage manner. First, approximately 10%
of the samples are sampled randomly, and an approximate
depth map is derived from those sampled data. Subsequently,
object information or saliency is extracted from the estimated
depth to select better locations with the remaining sample
budget. Following this approach, L. K. Liu et al. propose a
similar two-step sampling in [25]. Particularly, at the pilot
stage, half of the sample budget is sampled randomly or along
the gradients of a color image. In the second stage, called the
refinement stage, sampled points are used to estimate a round
disparity map and then to compute locations for the remain-
ing sample budgets. However, these approaches [22]–[25]
involve time-consuming rough disparity estimation. In [26],
L. K. Liu proposed a sampling framework for acquiring a
depth video. Considering themerit of spatial information, this
method estimates the motions between two color frames and

FIGURE 1. Example of a sampling mask in on-road scenario. a) RGB
image and LiDAR sampling points. b) Sampling mask for a sampling rate
of 25%, sampled points are marked in white, and unsampled ones are
marked in black.

uses them to compute a depth map from a previous estimated
depth frame. A rough estimated map is used as a guide for
a gradient-based sampling; so that the sampling procedure
is completed in one stage rather than two. However, this
method still involves time-consuming disparity estimation.
In addition, the method is verified only with relatively sim-
ple synthetic datasets, so it becomes relatively convenient
to achieve highly accurate motion estimation and sampling.
However, in out-door environments; it is challenging to esti-
mate motion accurately, owing to illumination, noise, and
other camera factors. Furthermore, the previous sampling
schemes [21]–[26] are inappropriate for autonomous driv-
ing in on-road environments for the following two reasons.
Firstly, as shown in Fig. 1, a scene in an outdoor environment
generally consists of a complex background; this caused pre-
vious methods to allocate excessively high number of sam-
ples into non-interested areas (i.e., trees in Fig. 1). Secondly,
it is challenging to obtain a reliable gradient image of a scene
in an outdoor scenario because generally, its RGB image is
complicated and its raw depth image is too sparse to estimate
a reliable gradient map (i.e., 1 ∼ 2% sparser than an RGB
image).

To address these two problems, this study proposes a sam-
pling method to distribute samples in road and object regions
based on the ratio between their areas. Given a fixed number
of samples in road and ROI areas, the method efficiently
distributes samples from road to object regions and thus
significantly enhances the reconstruction quality of objects.
As a single type of sensor is likely to be inadequate for mim-
icking the sensing system of humans during driving, the main
objective of this study is to present a framework exploiting
the semantical information from camera sensors to enhance
the data acquisition of a LiDAR. The proposed framework
addresses a general LiDAR sampling case, where the budget
of an entire frame is fixed. In addition, the proposed sampling
method utilizes the state-of-the-art Oracle random sampling
method in [25]; hence, it is highly efficient and applicable
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for various scenarios, i.e., on-road environments. To this end,
the contributions of this work are as follows:

1. A systematical framework of depth acquisition in an
on-road environment is presented. Unlike previous
approaches, the proposed scheme detects the objects
in a road and segments a scene into background,
ROI, and object areas. From the segmentation results,
the approach distributes samples across the segmented
areas.

2. An ROI-based sampling problem is proposed to opti-
mize a depth sensing system in a LiDAR for an on-
road environment. The optimization problem has an
optimal solution, which effectively addresses the two
problems of the LiDAR discussed above. Experimen-
tal results demonstrate that the proposed approach
significantly reduces the mean-absolute-error (MAE)
in the object area by at most 52.8%. Moreover,
it achieves robust reconstruction quality at a very low
sampling rate of 1%. In addition, the proposed sam-
pling is remarkably fast (i.e., within a few millisec-
onds), rendering it applicable to a real-time acquisition
system.

The rest of this paper is organized as follows. Section II
describes the sampling model and then briefly reviews the
related results and their limitations for on-road environments.
Section III introduces the proposed sampling approach. The
experimental results are presented in Section IV and conclu-
sions and future work are presented in Section V.

II. BACKGROUND
This section briefly describes the definition of a sampling
problem and introduces previous studies on gradient-based
sampling and two-step sampling algorithms [25], which are
the most relevant sampling approaches to this study.

A. SAMPLING MODEL
Let x ∈ RN be anN×1 vector representing a depth map of an
entire scene in an FOVof a capturing device such as a LiDAR.
For straightforwardness, x is normalized such that 0 ≤ xi ≤ 1
for i = 1, . . . ,N . In general, a LiDAR sensor cannot acquire
data for all the locations in the FOV so that it reconstructs
the depth map of the entire FOV from the sampled data. Let
M denote the number of samples from which a capturing
device is capable of acquiring data. The sampling problem
is an optimization problem of selecting samples in the FOV
to minimize the reconstruction error with the constraint that
the number of the samples satisfies the target budget M . For
mathematical formulation, let {1, . . . ,N} represent the set
of the indexes that correspond to the locations of the entire
FOV and {i1, . . . , iM} represent the set of the indexes that
correspond to the sampling locations among {1, . . . ,N}.
Problem P1 (Sampling Problem): The sampling problem is

to derive {i1, . . . , iM} that minimizes the following objective
function

min
i1,...iM

1
N

N∑
j=1

∥∥xj − x̃j∥∥ (1)

where x1, . . . , xN are real values and x̃1, . . . , x̃N are values
estimated from theM measurements xi1 , . . . , xiM .

Generally, it is not feasible to determine a solution in
a brute-force search manner. Hence, a heuristic method is
likely to be used. The next subsection presents a heuristic
algorithm that is called Oracle random sampling or gradient-
based sampling derived in [25].

B. GRADIENT-BASED SAMPLING
In [25], a probabilisticmodel is used to represent the sampling
problem. For N locations in an FOV, a diagonal matrix S ∈
RN×N is used to represent the sampling operation with the
(i, i)th entry of S being as follows:

Sii =

{
1, with probability pi,
0, with probability 1− pi,

(2)

where 0 ≤ pi ≤ 1 is a pre-defined probability of sampling
the i-th location, for i = 1, . . . ,N . Given S, the sampled data
b ∈ RN×1 is defined as follows:

b = Sx. (3)

where the ith entry bi is zero if Sii = 0. The target budget
is defined by the target sampling ratio ξ with 0 < ξ <

1, which represents the average sampling frequency. Then,
the following constraint is obtained:

1
N

N∑
i=1

pi = ξ. (4)

For a large N , the standard concentration inequality guaran-
tees that the average number of ones in S is approximately
ξN (i.e., ξN = M ) [25].
Let a = [a1, . . . , aN ]T be a vector representing the magni-

tude of the gradient of the depth map. It can be calculated as
follows:

a = ∇x =
√
(Dxx)2 +

(
Dyx

)2
. (5)

The intuition underlying the gradient-based sampling method
is that the average gradient computed by all the N samples
is similar to the average gradient computed from a subset
of ξN samples [25]. Let

{
pj
}N
j=1 be the optimal sampling

probability to define the sampling map S. For a specified
sampling ratio ξ and the gradient map, the derivation of the
optimal sampling probability

{
pj
}M
j=1 is formulated as the

following optimization problem:

min
p1,...,pN

1
N

N∑
j=1

a2j
pj

(6)

subject to 1
N

∑N
j pj = ξ and 0 ≤pj ≤ 1.

The solution is formulated as follows:

pj = min
(
τaj, 1

)
. (7)
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FIGURE 2. Average mean absolute error (m) over sampling rates.

where τ is the solution of g (τ ) = 0. Here,

g (τ ) =
N∑
j

min (τaj, 1)− ξN . (8)

Note that g(τ ) is a piecewise linear and monotonically
increasing function, with g (+∞) = N (1− ξ ) and g (0) ≤ 0.
Therefore, τ can be uniquely determined as the root of g(τ ).
Moreover, an efficient solution for deriving τ is available.
In practice, the gradients of a depth image are not available

prior to sampling. Consequently, a practical sampling method
is performed in two steps or utilizes a gradient inferred from
an RGB image as described in Section I. However, a vector
a = [a1, . . . , aN ]T becomes excessively noisy in a practical
outdoor scenario.

III. PROPOSED SAMPLING ALGORITHM
This section presents the main concept and mathematical
derivation of the proposed sampling.

A. MOTIVATING EXAMPLES
Before addressing the sampling problem, particularly for an
on-road scenario, it is necessary to determine what kind of
a sampling pattern should be used in this case. This sub-
section demonstrates the characteristics of road, object, and
overall regions and the utilization of these characteristics to
generate a sampling pattern. Fig. 2 shows an average mean-
absolute-error (MAE) of test images for specified sampling
rates ranging from 1% to 30%. These errors are measured
in three regions: an overall scene, road, and object areas. The
figure demonstrates that those three errors gradually decrease
when the sampling rate increases. In particular, the errors
of the overall scene decreases from 1.97 m to 0.55 m when
the sampling rate increases from 1% to 30%. In addition,
the errors of the road areas is approximately two times that
on the overall scene. For example, at the sampling rate of 1%,
the MAE error on the object area is approximately 3.88 m,
which is approximately two times of that on the overall area
(1.97 m). Meanwhile, the MAE error of the road area is
relatively small. When the sampling rate increases from 1%
to 30%, the error decreases from 0.65 m to 0.06 m. The
profiling results in Fig. 2 suggest a strong message: For a
given sampling budget, 1) it is likely to give more samples

FIGURE 3. Motivational example for ROI-based sampling. Sampled
locations are marked with ‘‘white’’, and unsampled ones are marked with
‘‘black’’. (a) RGB image, (b) Road mask, (c) Object mask, (d), (e),
(f) Random sampling masks at sampling rates of 1%, 5%, and 20%,
respectively, and (g) Expected output sampling pattern.

on an object area, especially because this area plays a critical
role for self-driving tasks such as obstacle detection and path
planning; 2) a sampling budget on a road area is likely to be
decreased without a significant degradation on MAE error.

Fig. 3 demonstrates a sampling pattern constructed under
the above characteristics. First, thanks to fast and accu-
rate road and object detection algorithms [27]–[33], it is
assumed that a single scene is segmented into road, object,
and background regions as shown in Figs. 3(a), (b), and (c),
respectively. Meanwhile, three randomly sampling patterns
at the sampling rates of 1%, 5%, and 20% are given in
Figs. 3(d), (e), and (f), respectively. The expected output
sampling pattern shown in Fig. 3(g) is derived as follows.
The sampling locations on the road region are obtained by
applying locations on the road mask in Fig. 3(b) and those in
the random sampling pattern in Fig. 3(d). Next, the locations
on the object region are derived from the pattern at the rate
of 20% (Fig. 3(f)) with the object mask in Fig. 3(c). Finally,
the remaining locations in a background region are selected
from the pattern at a sampling rate of 5% (i.e., Fig. 3(e)). The
final sampling map is shown in Fig. 3(g); it has a sampling
rate of 5.1%, which is close to that in Fig. 3(e). Especially,
the MAE error on the object area with the sampling pattern
in Fig. 3(g) is approximately 1.39 m, which is significantly
smaller than that of the error with the uniformly random sam-
pling pattern in Fig. 3(e) (i.e., 2.49 m). In this particular case,
the overall MAE by the desired sampling pattern in Fig. 3(g)
is approximately 0.82 m, which is smaller than that given by
a uniformly random sampling pattern (0.89 m).

B. AN ROI-BASED SAMPLING ALGORITHM
To address the sampling problem in an on-road environ-
ment, a scene is assumed to be segmented into three regions:
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FIGURE 4. (a) Block diagram of a typical LiDAR and (b) System
configuration for LiDAR sampling in an on-road environment. It is
assumed that object and road masks are specified prior to sampling. The
output sampling is used by a LiDAR sensor.

road, object, and background ones. Aided by convolutional
neural networks (CNNs), various road and object detection
algorithms have been intensively studied in recent years;
and consequently, their accuracy and speed have improved
significantly [27]–[33]. Numerous road detection approaches
submitted to the KITTI road detection benchmark have pre-
cisions of over 96%, whereas their runtime is approximately
0.06 s [30]. Considering the effectiveness of available state-
of-the-art road and object detection algorithms, it is reason-
able to assume that both the road and object masks yielded by
an RGB image of a scene are specified prior to the sampling
operation in a LiDAR.

A LiDAR usually operates by performing multiple point-
wise measurements in a FOV. A block diagram of a LiDAR
is illustrated in Fig. 4(a). A typical measuring procedure of
the LiDAR system is described as follows. A controller in
the LiDAR system starts by computing a target location in
the FOV. In the next step, the target position is transmitted
to a mechanical scanner that controls motors and mirrors
to direct the emitted light. This step requires the communi-
cation and motor control time. After the mirror is aimed
at the target, the laser diode in the LiDAR system emits a
laser beam. Next, the LiDAR waits until the laser reaches
an object and its reflected signal arrives at a photodetector.
The time interval between the emitted and detected signals is
generally referred to as time of flight (TOF) and is denoted
as tTOF . Finally, the measurement of tTOF is converted to an
electric signal and transmitted to the optical device controller
that calculates the TOF from the signal. In the last step,
the result is transmitted to the main controller. The sampling
problem in LiDAR aims to determine sampling locations

for its controller. Fig. 4(b) illustrates a system configuration
to generate a sampling pattern for LiDAR in an on-road
environment. To compute a sampling map, three input images
are an RGB image, an object mask, and a road mask. The
sampling procedure operates as follows: First, an RGB image
is captured, requiring approximately 16.7 ms for a high-speed
60-fps camera sensor. Next, both the object and road masks
are derived from the specified RGB image, requiring less
than 20 ms because the object and road detections can be
performed at the frame rate of 50 fps [28], [29], [32]. Finally,
a sampling pattern is derived in 1 ms. Based on the computed
pattern, sampling locations are given to the LIDAR controller
which moves scanners to the desired positions, and measures
distances.

With this configuration, the sampling problem in a LiDAR
is derived as follows. Let SB, SR, and SO denote the index sets
of the points in background, road, and object areas, respec-
tively. Thus, the union of three sets is equal to {1, . . . ,N },
and an intersection of any two sets is an empty set.

SB ∪ SR ∪ RO = {1, . . . ,N } . (9a)

SB ∩ SR = SB ∩ SO = SO ∩ SR = ∅. (9b)

The points in the background, road, and object areas have
different characteristics so that they are likely to be sampled
with different priorities. Let λB, λR, and λO be weighted-
parameters representing sampling priorities for the back-
ground, road and object areas, respectively. Recall that a road
area is generally flat so that theMAE does not change signifi-
cantly as the sampling rate changes. Therefore, the parameter
λR for a road area is likely to be smaller than the one for
a background area. Meanwhile, points in an object area are
more likely to be sampled rather than those in a background
area. Considering these, λB, λO and λR must satisfy the
following equations:

λR = α × λB (10)

λO = β × λB (11)

where α and β are constant and α ≤ 1, β ≥ 1. Therefore,
the sampling problem (6) is modified as follows:
Problem P2 (Sampling Problem for a LiDAR): Given α

and β, the sampling problem is to derive {i1, . . . , iM} that
minimizes the following objective function:

min
i1,...iM

1
N

∑
i∈SB

||xi − x̃i||+α
∑
j∈SR

||xj−x̃j||+β
∑
k∈So

||xk−x̃k ||


(12)

where x1, . . . , xN are real values and x̃1, . . . , x̃N are the values
estimated from theM measurements xi1 , . . . , xiM .

Compared to Problem P1 in Section II.A, Problem P2 has
additional weight parametersα andβ Apparently, whenα and
β are equal to one, the objective function in (10) becomes
that in (1). That is, the background, road, and object areas
have identical sampling priority. As mentioned above, it is
not feasible to determine a solution in a brute-force search
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manner; therefore, a heuristic method is necessary. Similar to
the derivation in Section II.A, Problem 2 is transformed into
a gradient-based sampling in the following section.

C. MODIFIED GRADIENT-BASED SAMPLING
For consistency, let a = [a1, . . . , aN ]T be a vector indicating
the prior information of the depth map. It should be noted
that the vector a may be defined as the gradient of the depth
map as shown in (5) in Section II.B. However, it represents
any prior information. Using the probabilistic model in [15],
the gradient-based sampling is modified as follows. For a
given sampling ratio ξ , the prior map, and parameters α and
β, the derivation of the optimal sampling probability

{
pj
}M
j=1

is formulated as the following optimization problem:

min
p1,...pN

1
N

∑
i∈SB

a2i
pi
+ α

∑
j∈SR

a2j
pj
+ β

∑
k∈SO

a2k
pk

 (13)

subject to 1
N

∑N
j pj = ξ and 0 ≤ pj ≤ 1; here, SB, SR, and SO

are defined as (9a) and (9b).
In practice, a gradient generally becomes excessively noisy

in an on-road environment so that it is challenging to generate
a ‘‘desired’’ sampling pattern from the problem in (6). There-
fore, this study considers an extreme and widely used case
where the gradient information is unspecified or is under the
following condition:

a1 = a2 = · · · = aN = 1 (14)

D. α, β–DISTORTION OPTIMIZATION PROBLEM
Obviously, given weight parameters α and β, solving (13) is
similar to solving (6) with an exaction solution described in
(7) and (8). This subsection presents an optimization problem
to derive these parameters.
Problem P3 (α, β – Distortion Problem): Parameters α, β

are derived by solving the following optimization problem:

min
α,β

MAEobj + λMAEall (15)

where MAEobj and MAEall are reconstruction errors on road
and overall regions, respectively; and λ is a weight factor.

Problem P3 clearly demonstrates that for α, β selection,
it is necessary to consider both a quality enhancement on an
ROI and a degradation on the other. However, similar to the
sampling problem, it is a chicken-and-egg problem so that it
is not feasible to determine a solution by using brute-force
search. In practice, a numerical solution is obtained as shown
in the following subsection IV.B.

IV. EXPERIMENTAL RESULTS
This section describes the experimental environments and
then demonstrates the results of the proposed sampling algo-
rithm. Firstly, Sections V.A and B describe the datasets and
experimental results of the proposed ROI-based sampling
method with the parameters α and β. Subsequently, a detailed
comparison with the previous results is presented. Sampling

FIGURE 5. Eighteen images acquired from KITTI datasets [2], [3]. (a) Color
images, (b) Sampling rates of depth images, and (c) Background, object,
and road area ratio.

rate ξ is set to either 5%, 10%, 15% or 20%, and 18 datasets
in the KITTI dataset are used in the experiments.

A. DATASETS
A set of 18 test images is acquired from the well-known
KITTI dataset [2], [3] to cover typical on-road scenarios. The
set profiles are included in Fig. 5. Firstly, Fig. 5(a) shows
the captured color images of these datasets; these images
display various typical on-road scenarios such as a clear scene
without any object and a scenewith close and distant vehicles.
Fig. 5(b) shows the sampling rates of the groundtruth depth
images. A depth image is obtained by projecting a point cloud
data provided by a LiDAR sensor into a color image domain
[2], [3]. However, the number of measurements of the LiDAR
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FIGURE 6. MAEs at the sampling rate of 5%, 10%, 15%, and 20% on different regions: (a) Object, (b) Road,
and (c) Overall.

(i.e., a 64-channel Velodyne LiDAR) is significantly sparser
than that of an RGB image. For these datasets, the sampling
rate is approximately 4.26% on an average and ranges from
3.70% to 4.62%, as shown in Fig. 5(b). It is noteworthy that
the sampling method in [25] is based on a wavelet, and the
contour-based reconstruction method performs ineffectively
when the sample budget is small (i.e., 1% or 2%) [14]. That
is, it is challenging to obtain a reliable gradient image of
a scene in an outdoor scenario because generally, its RGB
image is complicated and its raw depth image excessively
sparse to estimate a reliable gradient map (i.e., 1% ∼ 2%
sparse compared to an RGB image).

In addition, Fig. 5(c) demonstrates the profiling area ratios
of the background, road, and object regions in the datasets.
In particular, the ratio of the object areas is approximately
8.24% on average and ranges from 0% to 55.7%. Mean-
while, the ratio of the road areas is approximately 17.24% on
average and ranges from 10.94% to 37.5%. The remaining
background occupies an average area ratio of 74.33% and
ranges from 33.35% to 86.81%.

B. FINDING PARAMATERS α AND β

This subsection presents the experimental results with various
values of the parameters α and β. As the sampling rate is set
to 5%, 10%, 15%, or 20%, the minimum value of α is set as
0.25 to maintain a considerable sampling rate in a road area
(approximately 1.25%, 2.5%, 3.75%, or 5%, respectively).
Meanwhile, the maximum value of β is set as four as the max-
imum sampling rate in the object regions is approximately
80% (= 20% × 4). In particular, α is set to 0.25, 0.5, 0.75,
or one, whereas β is set to one, two, three, or four. Fig. 6(a),
Fig. 6(b), and Fig. 6(c) show the average MAEs of the object,
road, and entire areas, respectively. The first, second, and

third rows display the MAEs of the object, road, and overall
areas, respectively. In each row, the first, second, third, and
fourth columns display the MAEs at the sampling rates of
5%, 10%, 15%, and 20%, respectively. It should be noted that
the MAEs on the object areas significantly decrease when the
value of the parameter β increases. For example, considering
the baseline sampling α = β = 1 and the sampling α =
0.25, β = 4. Note that with α = β = 1, the sampling
method becomes a uniform random sampling. The MAEs on
the object area with this setting are shown in Fig. 6(a); here,
the MAEs decrease by 0.83 m, 0.97 m, 0.87 m, and 0.48 m at
the sample rsates of 5%, 10%, 15%, and 20%, respectively.
Meanwhile, the overall MAEs shown in Fig. 6(c) do not
change significantly when the MAE differences between the
various parameters shown in the third row of Fig. 6 are likely
less than 0.1 m in all the cases. In addition, the average
MAEs on the road area shown in Fig. 6(b) increase to an
average of approximately 0.18 m and ranges from 0.1 m
to 0.26 m. To reflect the importance of the object regions,
β = 4 is used for comparison. Meanwhile, the lower and
upper values of α are experimentally selected as 0.25 and one,
respectively. These experimental results demonstrate that the
proposed sampling method with α = 0.25, β = 4 signifi-
cantly improves the reconstruction quality on the object area.
Similarly, the proposed sampling with α = 1, β = 4 also
achieves a large improvement on the road area compared to
the baseline. In this case, the average MAE on the road areas
decrease to an average of approximately 0.84 m and ranges
from 0.67 m to 0.98 m for various sample rates. It should be
noted that 0.84m is highly critical when compared to the sizes
of the cars on the road.

Fig. 7 demonstrates the subjective comparison between the
proposed sampling with α = 0.25, β = 4 and the uniformly
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FIGURE 7. Subjective comparison between the proposed sampling (α = 0.25, β = 4) with the baseline
(α = 1, β = 1) or uniformly random sampling. (a) RGB image, (b) Ground truth point cloud, (c) Samples
obtained by random sampling at the sampling rate 10%, and (d) Samples obtained by the proposed
sampling.

random sampling at the sampling rate of 10%. Fig. 7(a) shows
the color view of a scene, because a car is considered as an
object of interest. The 3D point cloud view of a scene is
displayed in Fig. 7(b). Meanwhile, the sampling points of
the random sampling and the proposed method are shown
in Fig. 7(c) and (d), respectively. It is apparent that the number
of samples in Fig. 7(c) and (d) are substantially less than that
in Fig. 7(b); this results in a substantial reduction in memory
storage and computational power in an actual case. However,
visually, the samples in Fig. 7(d) appear significantly better
than those in Fig. 7(b) because the samples surrounding
the car are effectively captured in this sampling. It should
be noted that only very few points of the car are captured
in Fig. 7(c); this is likely to cause ambiguity in obstacle avoid-
ance or path planning in practical autonomous driving. This
subjective comparison clearly demonstrates the advantage of
the proposed ROI-based sampling over the uniformly random
sampling.

C. OBJECTIVE AND QUATITATIVE EVALUATIONS
This subsection compares the proposed sampling method
with three previous sampling approaches: random sampling,
color-image-guided sampling [21], and two-stage sampling
[25]. To reflect the importance of the object regions, β = 4
is used for comparison. The lower and upper values of α are
selected as 0.25 and one, respectively. In particular, for the
proposed method, two settings are α = 1, β = 4 and α =
0.25, β = 4. It should be noted that the sampling methods
in [11] and [25] are used with synthetic disparity datasets
rather than on-road KITTI datasets [2], [3]. Therefore, for
a fair comparison, they are modified to be used for KITTI
datasets. In particular, the color-image-guided sampling [21]
uses a half of the sample budget used for random sampling.

TABLE 1. Comparisons of MAEs (M) among various sampling algorithms
on object area at sampling rates of 5%, 10%, 15%, and 20%.

For the remaining budget, it computes the gradient of a gray
image and computes the remaining locations based on the
gradient-based sampling in Section II.B. Moreover, the two-
stage sampling [25] is modified by using the interpolation
method in Matlab for estimating a depth map because the
reconstruction quality of the method in [25] is excessively
low when the sparsity of the depth map is approximately 1–
4%.

The comparison of the MAEs on the object, road, and
overall areas are reported in Tables 1, 2, and 3, respectively.
On each table, the first, second, and third rows display the
experimental results with uniformly random sampling, color-
image-guided sampling [21], and two-stage sampling [25],
respectively; the fourth and fifth rows display the results with
two variations in the proposed methods. In each row, the sec-
ond, third, fourth, and fifth columns report the results with
the sampling rates of 5%, 10%, 15%, and 20%, respectively.
Table 1 shows that the proposed sample achieves the highest
performance among all the methods on the object area, which
is critical in autonomous driving. Compared to [21], the varia-
tion in the proposed method in the fifth row reduces the MAE
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FIGURE 8. Example of reconstruction results at road and object areas by various sampling methods. (a) raw depth; (b) random sampling, (c) two-step
sampling [25]; (d) this work and (e), (f), (g), and (h) the zoom-out results of the object areas from of (a), (b), (c), and (d), respectively.

TABLE 2. Comparisons of MAEs (m) among various sampling algorithms
on road area at sampling rates of 5%, 10%, 15%, and 20%.

by 0.852 m on average, ranging from 0.79 m to 0.955 m.
A reconstruction error or anMAE is commonly used to verify
the effectiveness of a sampling pattern. Objects refer to cars,
trucks, or pedestrians, whose size is relatively small. Thus,
a reduction in the MAE by approximately 1 m is significant.

This paper also presents a visual example in Fig. 7. Appar-
ently, the absence of measurements in the object areas in
Fig. 7(c) causes significant degradation of an MAE. When
compared to the two-stage sampling [25], the variation of
the proposed method reduces the MAE by 0.382 m on an
average (ranging from 0.258 m to 0.631 m). That is, the

proposed method achieves 35.75% reduction on an average
(ranging from 26.84% to 52.8%) in the MAE on the object
area when compared to [25]. Tables 2 and 3 present theMAEs
on the road and overall areas of less importance. The results
indicate that the two-stage sampling [25] achieves the highest
performance with these criteria. However, compared to [25],
the proposed method decreases the MAE on the road and
entire areas by at most 0.265 m and 0.194 m, respectively.
It should be noted that the MAE degradation mainly occurs
on the background region; it consists of trees or buildings,
which are less important for obstacle detection and local-
ization. Hence, the proposed sampling method provides an
effective trade-off between errors on the object and those
on the remaining areas. In addition, the proposed sampling
algorithm has significantly low complexity so that it can be
performed in 1 ms.

The final reconstructed images are shown in Fig. 8.
Fig. 8(a) shows the reconstruction result from a raw depth
map. Note that a raw depth is also sparse. As demonstrated
in Fig. 8(b), (c), and (d), the road areas are effectively recon-
structed for all the three methods, i.e., random sampling,
modified two-stage sampling [25], and this work, respec-
tively. In addition, the proposed algorithm generates the
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TABLE 3. Comparisons of MAEs (m) among various sampling algorithms
on overall area at sampling rates of 5%, 10%, 15%, and 20%.

closest output compared to the upper-bound performance,
whereas the random sampling yields the lowest performance.
Figs. 8(e), (f), (g), and (h) demonstrate the reconstruction
results and zoomed-out object regions from a raw depth
image, random sampling, modified two-stage sampling [25],
and this work, respectively. Evidently, the proposed sampling
method yields the best performance on an object area. Mean-
while, the reconstruction errors on the road areas are visually
similar among all methods.

V. CONCLUSION
In this paper, a concept of using results from object and road
detection in an advanced-driver-assistance-systems (ADAS)
is introduced to more effectively guide the sampling process
in a LiDAR system, specifically increasing the sampling rate
on the ROI regions. The main concept is to distribute the
sampling budget of a LiDAR across the road and object areas
through ROI detection. As a result, the proposed algorithm
is highly optimized for typical ADAS, and consequently,
it offers better results in both objective and quantitative
evaluation. Therefore, the proposed system is expected to
contribute greatly to the generalization of the autonomous
driving systems.
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