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Abstract: Generally, the fabrication of curved structures such as microlens arrays has been 
regarded as an expensive and complicated process. Here, we propose a facile method to form 
a microlens array with controlled lens curvature by combining residue-free nanoimprint 
lithography (NIL) with V-shaped molds and the successive thermal reflow procedure of the 
printed polymeric structures. The V-shaped molds used in this study enable the bottom 
substrate to be exposed after the NIL process when the initial thickness is controlled. Then, 
we use the thermal reflow to realize hemi-cylindrical curved lenses by applying heat. The 
polymers are self-pinned on the exposed substrate, which is strong enough to fix the boundary 
to not dewet or be flattened in the broad temperature range of the reflow process, which is 
essential for a large-area fabrication. Furthermore, we demonstrate the modulation of the 
focal lengths of the lenses by controlling the initial polymer thickness coated on a substrate. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Three-dimensional curved structures such as microlens arrays are widely used as important 
elements in the fields of optical communication and optoelectronics [1–4]. For example, 
lenticular lenses have been utilized to create 3D displays without the need for special glasses. 
While micromachining methods [5–9] are widely used for the fabrication of curved lens 
structures, the reflow process after the nanoimprinting technique has also been highlighted 
because it has advantage to obtain smooth round surfaces [10–16]. Nanoimprint lithography 
(NIL) is a microfabrication technology using templates to press polymeric resins and is 
widely used to form micropatterns for various applications, such as photonic crystals [17,18], 
cell-culturing substrates [19,20], thin film electronics [21,22], and optical devices [23,24]. 
Even though NIL is a simple and cost- effective process, it generally needs an additional 
process such as reactive etching (RIE) with oxygen gas [12–14,25–29] to remove residual 
layers of resist, which remains difficult due to the need for direct contact between the brittle 
molds and substrates [30,31]. It is also not suitable for a large-area fabrication because the 
plasma etching needs equipment operating in high vacuum, which is difficult to obtain 
commercially. In addition, post process such as additional hydrophobic treatment is necessary 
to pin the round pattern during thermal reflow because oxygen plasma for removing residual 
layers activates the substrate surface to spread the viscous polymer [12]. Here, we propose a 
facile method to fabricate curved structures such as lenticular lenses by using residue-free 
nanoimprint lithography with V-shaped molds followed by thermal reflow. When a substrate 
is exposed during NIL, the viscous polymers above the glass transition temperature (Tg) are 
self-pinned on the three-phase contact line between the polymer, air and the substrate without 
post hydrophobic treatments. The self-pinning effect on a substrate can enlarge the 
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temperature range for thermal reflow, which is essential for the large-area fabrication of 
curved lens arrays because the variation of the temperature within an equipment is inevitable. 
A V-shape mold has advantages for accomplishing a residue free NIL due to the localization 
of pressure to contact to a substrate directly, and minimizing the spacing between lenses. By 
varying the polymer thickness coated on the substrate, we could control the lens focal length, 
which can be estimated by using a simple model we established based on the mass balance of 
the polymer patterns. 

2. Experimental 

 

Fig. 1. A schematic illustration of the experimental procedure for fabricating a curved tunable 
microlens array. 

Figure 1 shows a schematic illustration of the experimental process to fabricate curved 
structures such as a microlens array by thermal nanoimprint lithography and a successive 
thermal reflow process. First, we prepared a metallic V-shaped master by a micromachining 
method. After the preparation of a stainless steel block electroplated by nickel metal, the 
surface was mechanically machined by a diamond-cutting tool with desired angles and 
pitches. A V-shaped polydimethylsiloxane (PDMS) mold is obtained by filling a mixture of 
prepolymer and curing agent (with a ratio of 10:1) onto the nickel metal master and curing at 
60°C for 3 hours followed by peeling off from the master. We used polystyrene (PS) to form 
the microlens pattern because it exhibits relatively strong adhesion to the substrate but strong 
antisticking properties to the PDMS [29,32]. A solution of PS (Mw: 2400, Yakuri Pure 
Chemicals Co., Ltd.) dissolved in toluene (Sigma-Aldrich) was spin-coated onto a silicon 
wafer substrate (1.5 cm × 1.5 cm) at 1000 rpm for 10 s. The solution concentration was varied 
between 10 and 20 wt% to control the thickness of the polymer films coated on the substrate. 
We placed the V-shaped PDMS mold onto the PS coated substrate and applied pressure (~4 
bar), followed by increasing the substrate temperature to 150°C, which is above the Tg 
(55~70°C) of PS (Mw: 2100~2850) [33]. The detail experimental setup can be found 
elsewhere [31]. We note that viscosity shows the Arrhenius behavior on temperature 
explained Williams–Landel–Ferry (WLF) equation [34]. After heating for 15 minutes, we 
cooled the sample down to room temperature and detached the mold from the V-shaped PS 
patterns. After NIL, the thermal reflow process is used to fabricate rounded hemi-cylindrical 
patterns due to the surface energy minimization by heating it significantly above the Tg of PS 
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equilibrium angle in the high polymer thickness regime, which means that the polymer melts 
could spread to be flattened when the annealing time is long enough. On the other hand, when 
the lens angle is 22°, smaller than the equilibrium value from Fig. 3(c), there can be an 
additional dewetting of polymer melts to form the equilibrium contact angle. 

In this experiment, the self-pinning effect is strong enough to fix the boundary not to 
dewet or spread in the temperature range of 180 ~220 °C, which is a reasonable range in a 
large area fabrication. Additionally, we can tune the hemispherical shape by controlling the 
coated polymer thickness, as shown in Fig. 3(b) and 3(c). We note the self-pinning process is 
also from the residue free process because the oxygen plasma etching to remove the residual 
layer activates the substrate surface to spread the polymer melt to be flattened during thermal 
reflow. In addition, the lens formation process can be used in different geometries or 
dimensions as shown in Fig. 4. Figure 4(a) shows a lenticular lens array with a pitch of 10 
μm. As shown in Fig. 4(b), we obtain two dimensional lens array after reflow followed by 
nanoimprint lithography by a pyramidal stamp. 

 

Fig. 4. SEM images of (a) a lenticular lens array (pitch: 10 μm) and (b) a two-dimensional lens 
array. 

Figure 5 shows the lens shape modulation by the control of the coating thickness. The 
images in the left panel are SEM images after nanoimprint lithography. When the coating 
thickness is 1.9 μm, the imprinted pattern has a V-shape with a large void in the apex area of 
the prism. In the case of a 1.9-μm, no residual layer is formed between the polymeric 
structures. After a reflow process at 200 °C for 10 min, the V-shaped structure takes on a 
rounded lens shape to minimize the surface area. The contact angle of the lens is 
approximately 23°, which is measured from the SEM image. When the coating thickness is 
increased from 1.9 μm to 4.2 μm, which is still smaller than the critical thickness (5.2 μm 
with the prism mold), the contact angle of the lens is increased from 22° to 53°. 

To estimate the relation between the focal length and coating thicknesses, we establish the 
relevant equations below by using a mass balance before the nanoimprint lithography and 
after the reflow process followed by nanoimprint. 

 21
Lt = R (θ - sin 2θ), 2R sin θ = L

2
 (3) 

where L  is the diameter of the lens or the period of the lens array, t  is the coating thickness, 
R  is the radius of curvature of the lens and θ  is the contact angle, as defined in Fig. 6(a). The 
mass is assumed to be conserved after the nanoimprinting without the residue removal 
process. As shown in Fig. 6(b), the contact angle calculated from Eq. (3) is in agreement with 
the experimental data. Based on such a simple model using a mass balance, one can estimate 
the curvature and the shape of the lens depending on the initial thickness of the coated 
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polymer film. Figure 6(c) shows the optical simulation results on the focal lengths from PS 
lenses (refractive index: 1.59) in different curvatures (COMSOL Multiphysics). When the 
coating thickness is decreased, the focal length is increased. Also, the focal length (f) of the 
lens can be calculated as below [41]. 

 
R

f =
n -1

 (4) 

Where n is the refractive index of materials used in making microlens arrays. Figure 6(d) 
shows the graph showing the relation between focal length and coating thickness. From the 
Eq. (4) and the simulation data, the focal length can be modulated by the initial coating 
thickness and the refractive index which can be changed by replica molding methods. 

 

Fig. 5. SEM images of lens shapes with different curvatures with the control of the initial 
thickness at (a) 1.9 μm, (b) 2.4 μm, (c) 3.7 μm, (d) 4.1 μm, and (e) 4.2 μm. The left and right 
panels represent the SEM images before and after the thermal reflow (for 10 min at 200 °C), 
respectively. (Scale bar: 5 μm) 
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Fig. 6. (a) Schematic images showing the mass balance before and after the process. Graphs 
showing the relation of (b) coating thickness versus contact angle, (c) optical simulation results 
on focal lengths of lenses, (d) coating thickness versus focal length from Eq. (4) and optical 
simulation. 

4. Conclusion 
We proposed the fabrication of a lens array in a wide range by using the self-pinning effect on 
the three-phase contact lines between the polymer-air-substrate. By using the pinning effect, 
we can obtain a large window for the thermal reflow to form a lens array. We exploit a V-
shaped mold to expose the surface to remove the residual layer after the nanoimprint 
lithograph, which is essential to reduce the post process such as oxygen plasma etching and 
hydrophobic treatment to enhance the pinning effect. In addition, we control the thickness to 
manipulate the focal length of the lens. The new method to fabricate the lens array by using 
residue-free nanoimprint lithography with a V-shaped mold can be used for large-area 
fabrication because the temperature range is wide and there is no need to use equipment under 
a high-vacuum condition. 
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