
VOL. E101-B NO. 9
SEPTEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.



1982
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

PAPER
Efficient Approach for Mitigating Mobile Phishing Attacks

Hyungkyu LEE†a), Nonmember, Younho LEE††b), Member, Changho SEO†††c),
and Hyunsoo YOON†d), Nonmembers

SUMMARY We propose a method for efficiently detecting phishing
attacks in mobile environments. When a user visits a website of a certain
URL, the proposed method first compares the URL to a generated whitelist.
If the URL is not in the whitelist, it detects if the site is a phishing site based
on the results of Google search with a carefully refined URL. In addition,
the phishing detection is performed only when the user provides input to the
website, thereby reducing the frequency of invoking phishing detection to
decrease the amount of power used. We implemented the proposed method
and used 8315 phishing sites and the same number of legitimate websites for
evaluating the performance of the proposedmethod. We achieved a phishing
detection rate of 99.22% with 81.22% reduction in energy consumption as
compared to existing approaches that also use search engine for phishing
detection. Moreover, because the proposed method does not employ any
other algorithm, software, or comparison group, the proposed method can
be easily deployed.
key words: mobile phishing, mobile phishing detection, phishing detection,
mobile security, security

1. Introduction

Mobile phishing is a phishing attack that occurs when a
victim is using a mobile device. A phishing attack is a
social engineering attack, where attackers can obtain any
important private information of victims, such as credit card
numbers and their PIN numbers, IDs and their passwords
for important services, and their social security numbers,
through fake websites of the attackers. APCERT Annual
Report 2016 [1] says that 42.3% of the victims of cyber-
attacks were plagued by phishing attacks in China.

Mobile phishing attacks are not currently in the spot-
light because of other security vulnerabilities in the smart-
phone environment that enable attackers to implant their
malicious codes into the smartphones of the victims in a
considerably easier manner than through mobile phishing

Manuscript received January 22, 2018.
Manuscript revised March 5, 2018.
Manuscript publicized March 23, 2018.
†The authors are with Division of Computer Science, School of

Computing, Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
††The author is with ITMDivision, Department of Industrial and

Information Systems Engineering, SeoulTech, Nowon-gu, Seoul,
South Korea.
†††The author is with Department of Applied Mathematics,

Kongju National University, Gongju-si, Chungnam, South Korea.
a) E-mail: hklee@nslab.kaist.ac.kr
b) E-mail: younholee@seoultech.ac.kr (Corresponding author)
c) E-mail: chseo@kongju.ac.kr
d) E-mail: hyoon@kaist.ac.kr
DOI: 10.1587/transcom.2018EBP3020

attacks. However, if the attacks become widespread, mobile
security will be adversely affected. According to Lookout
[2] and RSA Conference [3], the probability of success for a
phishing attack on a mobile user is three times higher than
that on a PC user.

The frequent use of smartphones is one of the main
reasons users are vulnerable to mobile phishing. Unlike
PCs, smartphones tend to be close to users at all times.
According to Fluent [4], smartphones dominate other devices
for email, with 2 in 3 Americans saying it’s how they most
often check their messages. Also, people who primarily
check their emails as they arrive on their smartphones are
twice more than people who check on their other devices.
As emails are one of the most frequent methods used by
phishing attackers, we can say users are more vulnerable to
mobile phishing than to conventional phishing using PCs.
Additionally, other methods for mobile phishing, including
SMS (“smishing”) and Social Network Service, increase the
danger from mobile phishing attacks.

Secondly, small smartphone screens contribute to the
vulnerability against phishing attacks. The most popular
screen is 4.7-5.0 inch (as of 2017) [5], which is 1/5 the size
of the average PC monitor. As a result, web pages for mo-
bile devices are simplified, thereby containing only essential
information. Mobile app developers also try their best to
simplify app displays to fit the constraints of a small screen.
Since the amount of information displayed on-screen is min-
imal, mimicking the display is easier, thereby simplifying a
phishing attack. Moreover, this constraint leads to the preva-
lence of shortened URLs such as t.co and goo.gl, which hin-
ders the ability of the users to use URLs for distinguishing
phishing sites from legitimate sites.

Since the advent of phishing attacks, several studies
have been conducted. The blacklist approach is one of the
most common techniques in practice, and is used by almost
all web browsers such as Microsoft Internet Explorer [6],
Mozilla Firefox [7], and Google Chrome [8]. In this ap-
proach, users are warned if they access a site in the blacklist
via a pop-upwindow or notification. One fundamental weak-
ness in this approach is that, unless the blacklist is up-to-date,
it will fail to identify some malicious websites while users
are accessing them. As these malicious websites are con-
siderably short-lived [9], they may disappear before they are
reported. Another method is the heuristic approach, which
analyzes the similarity of features (e.g., the content, position
of images, and URL) between the website being checked

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1983

and each of the websites popular for phishing targets. The
ability to cope with zero-day attacks is a major advantage of
this approach. In addition, it can achieve a high detection
rate if the implementation employs good feature-extraction
methods and classification algorithms. However, the meth-
ods of this type require a large amount of computation and
communication resources; additionally, they suffer from rel-
atively high false positive ratio as compared to the blacklist
approach [10].

Unfortunately, all the approaches mentioned above are
for PCs, and it is difficult to apply them to the mobile envi-
ronment. The blacklist approach requires frequent updates
of the list, thereby requiring heavy resource consumption.
As phishing sites emerge endlessly [11], a local blacklist
would occupy a large amount of storage space. It is also a
weak defense against a zero-day attack. The heuristic ap-
proach requires various features of the target websites to be
detected; however, mobile web pages are relatively simple.
Moreover, heavy consumption is required for the extra soft-
wares or algorithms such as optical character recognition
(OCR) [12].

Thus, considerably few approaches have been proposed
for anti-phishing in the mobile environment, thereby result-
ing in a situation where majority of the current apps that are
capable of browsing the internet are not able to detect mobile
phishing attacks. In our experiment, mobile web browsers
could not detect even a single phishing site among the 8315
phishing sites tested, and this result is also verified by Tsalis
et al’s paper [13].

In this paper, we propose an anti-phishing approach
for smartphones. Our techniques are threefold: First, we
utilize the domains associated with the trustworthy apps in
order to generate a mobile whitelist. We selected the top
ranked apps by App Annie [14] as trustworthy apps because
App Annie may be able to sustain its reputation unless it
ensures the sanctity of the content hosted on its domain, as
mentioned in [15]. Therefore, we can infer that the domains
associated with them are not dangerous. This reduces the
number of execution steps required for detecting phishing in
the proposed scheme, thereby leading to lower consumption
of battery power.

Second, we suggest a smart approach for deciding the
mobile checkpoint (i.e., when the mobile phishing detection
module is activated). Instead of checking every web page
the user visits, only the web pages that take user input are
checked. The nature of phishing attack sites requires the vic-
tim to first input valuable information. Thus, it is natural to
treat web pages that do not require user inputs as no-phishing
sites. We determined that an estimated 71.5% of web pages
visited do not require text-based inputs from users†. Com-
bining the first and second approaches decreases the amount
of energy required. Our experiment confirmed that the above

†This only deals with mobile search websites, which are the
most-visited websites on smartphones [16]; additionally, ‘Search’
operation is expected to require more text-based inputs than other
operations [17].

approaches decreased the power consumption by 81.22% on
average, as compared to using an approach that does not
consider this.

The third technique is a novel phishing detection
method. Only a single query to the Google search engine is
performed using a carefully crafted URL of the web page the
user is visiting. The proposed method checks the domains
of the URLs in the search results of Google and attempts
to check if they are included in the list of the URLs in the
websites that report phishing.

This approach is considerably simple, and it does not re-
quire complicated feature-extraction of the target website or
complicated algorithms. Rather, it requires only one feature:
checking the URL of a web page. Two network interactions
are required. Based on the number of URLs in the search
results of Google, and the resultant URLs from the phishing
reporting website, we establish the following rules: in the
case of zero search results, we conclude the target website is
a zero-day phishing site. If one or more search results are ob-
served, but the domains of all the resultantURLs are included
in the phishing reporting website, the target is regarded as a
phishing site. Except the above two cases, the target website
is deemed a legitimate site. With such a simple approach,
we can achieve considerably high phishing detection rates
and a reasonably low false-positive rate. Additionally, be-
cause only a few network interactions are used, and no heavy
computation or storage is required, the proposed approach
requires considerably low power consumption, which is an
essential feature for a mobile phishing approach.

In order to prove the feasibility of the proposed scheme,
we installed the proposedmethod in a Google Nexus S phone
by modifying the original source code for the phone and
uploading the modified image into the phone. We used a
phishing reporting website, PhishTank [18], which includes
8315 phishing sites collected within a month. The reported
websites were found within 12 hours since their appearance.
A total of 8315 target (legitimate) web pages were tested,
using various character sets and languages.

In terms of the phishing detection rate, the proposed
scheme (99.22%) was superior to the blacklist approach
(54.91%), with the proposed scheme only incurring a 0.61%
false positive rate. In terms of energy consumption, the pro-
posed scheme required only an additional 15.22% power on
average compared to the usage of no phishing detection. Be-
cause the proposed scheme does not use additional feature
comparison, algorithms, and auxiliary software, we believe
that the proposed scheme is superior to the heuristic approach
in terms of power consumption.

As seen from above, our proposal is heavily dependent
on Google search because we try to achieve the best perfor-
mance with just one feature of the web page, URL. Thus, we
assume that Google is a trustworthy and non-compromised
third party. This premise leads to the additional advantages
of the proposed scheme including effectiveness against zero-
day and advanced phishing attacks such as cloaking, because
it is aided by the Google search engine. It also functions
without considering the character set used, since it does not



1984
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

require any text information other than the URL.
The main contribution of this paper is the following:

• This research proposes an anti-phishing approach suit-
able for mobile environments, which utilizes the char-
acteristics of mobile devices unlike PCs.

• It is shown the outstanding effectiveness of the proposed
approach with the minimum feature use in web pages,
just URLs in detecting phishing.

• It is shown the efficiency of our approach by figuring
out the real power usage on a real smartphone when the
proposed work is running.

• It is shown the analysis result of the experiments to
show the effectiveness of the proposed work against
zero-day phishing attacks which aremost likely to occur
in mobile environments.

The rest of this paper is organized as follows. In Sect. 2,
we review the related work. In Sect. 3, we address the prob-
lem of existing anti-phishing approaches in concrete terms.
In Sect. 4, we explain the operating steps of our proposed
system, and the proposed scheme to detect mobile phishing
using a search engine. Section 5 shows the experiments con-
ducted for testing the accuracy and efficiency of our proposed
method. We discuss and conclude our paper in Sects. 6 and
7.

2. Related Works

Numerous studies have been found in the anti-phishing
area, including CANTINA [19], hybrid phish detection [20],
GoldPhish [21], Huh et al’s approach [22], Barraclough et
al’s approach [23], Thakur et al’s approach [15], Abdelhamid
et al’s approach [24], Moghimi et al’s approach [25], Abbasi
et al’s approach [26], Jain et al’s approach [27], Srinivasa
Rao et al’s approach [28], and Raffetseder et al’s approach
[29].

CANTINA [19] focuses on the contents of web pages.
It extracts keywords from the content in the target website
using the TF-IDF algorithm [30]; then, it searches for legit-
imate websites containing the extracted keywords. Finally,
it determines if the target website is phishing based on the
domains contained in the search results. It additionally uti-
lizes the age of the domain the target website belongs to,
known images, and the degree of suspiciousness of the URL
in order to reduce the false positive rate of the approach.
This is the first approach in employing public search en-
gines for determining phishing sites. Hybrid phish detec-
tion [20] enhanced CANTINA by the addition of a novel
method called “identity-based detection component”. It rec-
ognizes the structure of the target website’s HTML docu-
ments with a DOM tree. Then, the method determines if
it is a phishing site by extracting important features such
as the title, copyright information, or keywords by TF-IDF.
Even with a smaller number of features, this method was
shown to perform better than CANTINA. This method also
supports login form detection, which is used for identifying
a phishing site by the knowledge that phishing sites normally

require sensitive, private information such user ID and pass-
word. However, both it is not effective using CANTINA
and hybrid phish detection for mobile devices, because TF-
IDF does not function well in mobile environments, as we
will show further in this paper. Moreover, CANTINA may
miss many phishing sites, considering the current trend of
phishing sites of using ordinary domain names similar to
conventional websites.

GoldPhish [21] detects phishing sites based on images
on the web pages without requiring the investigation of the
HTML code. Text is extracted from the images using optical
character recognition (OCR), and used for building features.
The main advantage of this approach is that it can detect
phishing sites when only images exist. However, extracting
text from images requires heavy cost in resources [12]; ad-
ditionally, if the images have non-English letters, they are
considerably difficult to extract.

Huh et al’s approach [22] uses a well-known search
engine such as Yahoo, Bing and Google, and full URLs as
a query. By applying a classification algorithm to the re-
sult, it generates a URL ranking. Based on that ranking, the
method determines if the target website is a phishing site.
This approach detects phishing more effectively with vari-
ous search engines. Unfortunately, it used a considerably
small sample set in the experiment, making it difficult to ver-
ify its efficacy. Barraclough et al’s approach [23], Thakur
et al’s approach [15], Abdelhamid et al’s approach [24], and
Moghimi et al’s approach [25] use machine learning or data
mining algorithms such as neural network (NN), C4.5 deci-
sion tree, associative classification (AC), and Support Vector
Machine (SVM), respectively. Abbasi et al’s approach [26]
uses a kernel-based method, the genre tree kernel. They in-
crease the predictability of phishing with various algorithms
or methods. They, however, require huge amount of training
data in order to guarantee a sufficient level of accuracy.

Jain et al. [27] proposed whitelist-based approach aim-
ing for fast access time and high detection rate. In Srinivasa
Rao et al’s approach [28], it is decided whether the visited
web page is phishing or not, based on the result of sub-
mitting fake credentials to the web page. Both approaches
use a hyperlink-checking method which checks if the do-
main of the current web page is one of the domains of its
hyperlinks or not, which is one of the representative charac-
teristics of phishing. However, if some attackers create the
hyperlinks which have the same domain with phishing sites,
both approaches have some troubles to detect phishing. Raf-
fetseder et al’s approach [29] uses a hooking technique for
anti-phishing similar to the proposed method. However, the
type of phishing it can detect is limited to JavaScript attacks,
and also, the method was not designed to consider mobile
environments.

There are few methods that are specific to anti-phishing
in mobile environments. In Han et al’s approach [31], gen-
uine Login User Interfaces (LUIs) and IP addresses of web-
sites are stored externally via Bluetooth. The method detects
phishing by comparing the LUI of the target website with the
stored LUIs. The cons of this approach is that all LUIs of



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1985

the target websites should be stored in advance, so the URL
of any website not stored in advance cannot be checked.

Niu et al. [32] have proven that phishing attacks can oc-
curmore easily in themobile environment than in the desktop
environment based on a vulnerability analysis of both envi-
ronments. They suggested methods to reduce the possibility
of success of phishing attacks, including anti-phishing proxy.
However, this approach has weakness in that that the proxy
must be checked to confirm if it is trustworthy or not. Felt et
al [33] classified the methods for mobile phishing into four
types based on a statistical analysis regarding the types of
transferred controls. This classification reflects real-world
phishing attacks well. Unfortunately, their work provided no
detailed descriptions of the anti-phishing techniques. Vidas
et al [34] analyzed the possibility of QR codes being used to
access phishing sites. It is interesting that they focus on the
QR code which is one of the new types of inputs for mobile
devices. However, the research is limited in that people use
various methods other than QR codes for accessing websites,
and no anti-phishing method was provided.

Xu et al. [35] have found that some phishing attacks
use notifications on various mobile platforms. They also
proposed a mitigation method. ScreenPass [36] blocks pass-
word theft and software keyboard spoofing based on OCR.
Marforio et al. [37] showed personalized security indicators
which can help users to detect phishing in mobile platforms.
Because the target attacks in these approaches are phishing
attacks using malicious mobile apps that has the ability to
provide spoofed personal information of the mobile phone
holder to those methods, it is questionable that these ap-
proaches would function well against phishing attacks within
normal apps that support conventional web browsing. Un-
like these approaches, the proposed approach can cope with
that situation.

Recently, Wu et al. [38] proposed an approach to com-
bat both mobile web phishing and mobile app phishing, each
of which has unique characteristics. In terms of efficiency, it
only utilizes the search engine and the OCR algorithm. Un-
fortunately, because of the heavy energy consumption of the
OCR algorithm [12], it is not suitable for mobile environ-
ments. MP-Shield [39] combines both blacklist technique
and heuristic-based approach, implemented as a proxy ser-
vice on top of the TCP/IP stack in mobile devices, with the
aim of inspecting IP packets for phishing content. They sug-
gested hybrid approach taking the advantages of the blacklist
technique and the approach using machine learning. How-
ever, it requires data training for classifying web pages and
relies on a set of machine learning algorithms that are im-
plemented in the WEKA (Waikato Environment for Knowl-
edge Analysis) framework, such as J48, BayesNet or SMO.
NativeWrap [40] suggested a method of thwarting phishing
attacks that occurs in mobile websites:making the apps with
which the target mobile websites can access. Because users
can access those mobile websites through the created apps,
many attacks such as phishing can be prevented. Unfortu-
nately, phishing attack detection is dependent on the users’
attention.

3. Problem Definition

As we investigated in the previous section, there have been
considerably few approaches dealing with mobile phishing
attacks. Additionally, approaches for phishing in the desktop
environment are often impossible to use in the mobile envi-
ronment. On desktop PCs, users access web pages through
web browsers, making it possible to use the blacklist or
heuristic approach for anti-phishing by attaching an add-on
that performs phishing detection when a novel web page
is loaded into the web browser. However, in the mobile
environment, any application can provide web browsing ca-
pabilities with the use ofWebView [41] in Android or UIWe-
bView [42] in iOS. Thus, the anti-phishing approach should
function for every application in the mobile environment,
requiring the help of all app developers, which is difficult
to achieve. Another approach is to obtain support from the
platforms. Unfortunately, Google is still not taking any ac-
tion against mobile phishing attacks (as of Mar. 2017), and
Apple only applies the blacklist approach to its Safari web
browser; therefore, apps using UIWebView are not protected
by Apple’s phishing detection.

The second problem relates to the use of battery as a
main source of power. In the desktop environment, anti-
phishing approaches do not consider power consumption
because an unlimited amount of power is assumed. How-
ever, any mobile anti-phishing approach should use small
amount of power as possible since the supported power is
considerably limited. This limitation causes a difficulty in
the application of approaches, which check phishing when-
ever the user visits a web page. Furthermore, this shortage
of power makes us difficult to utilize heuristic-based ap-
proaches, which requires checking as many features as possi-
ble, leading to heavy computation. Moreover, some effective
heuristic-based approaches use extra softwares such as OCR,
or search engines such as Google or Bing. To use them, a
significant power consumption is mandatory, affecting the
battery life of a mobile device to a great extent [12], [43]. In
Huh et al’s approach [22], at least 1857mJ additional power
for three HTTP communications with Google, Bing and Ya-
hoo search engine are used for checking a target website in
our experiment.

Third, the user interface of mobile devices contains
less information than that of desktop devices. On average,
a smartphone screen is considerably smaller than a desktop
monitor. Thus, fewer features can be included on the smart-
phone screen. Moreover, some features cannot be extracted
or have different characteristics from those in the desktop
environment. For example, the term frequency of “face-
book” on the Facebook login page is five when accessing
the web page in the desktop environment. In the mobile
environment, it is two. In another instance, the logo image
is one of the representative internal features of the Taobao
web page. However, this cannot be checked in the mobile
environment, where the logo is invisible on the login page.
Therefore, we can conclude that a mobile page tends to have



1986
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

less meaningful information for anti-phishing than a web
page for desktop PCs, indicating that fewer phishing detec-
tion methods will function, causing the mobile environment
to be more vulnerable to phishing attacks.

Therefore, from the previous arguments, mitigatingmo-
bile phishing attacks is a nontrivial problem, and any solution
should require a small amount of power consumption. To
achieve this, we should maintain both network communica-
tions and the number of features to a minimum with no extra
software, while preserving a high phishing detection rate.
The solution also should support zero-day attack mitigation,
as it is currently performed in the existing heuristic-based
approaches. Our research objective is to propose a method
that meets all the above requirements.

4. Proposed Approach

In order to enhance the performance in terms of both power
consumption and phishing detection rate, we combine three
proposed techniques. Figure 1 shows an overview of the
proposed approach. We should check the URL of the target
web page as input, which will hereafter be called the tar-
get URL. The first step is to check whether the web page
of the target URL takes the text-based input from the user.
The proposed scheme does not run the main phishing de-
tection method if the web page does not take the user input,
since phishing requires acquiring user inputs. The next step
is to check if the target URL is whitelisted. If the target
URL is included in the whitelist, no other procedures are
executed, and the target URL is regarded as a non-phishing

Fig. 1 Overview of the proposed approach.

site. The main phishing detection starts functioning only
when the target URL is not filtered in the above two steps.
Thus, considerable power can be saved. In the main phish-
ing detection routine, round-trip communication and some
considerably simple string-related operations are required.
Therefore, it does not consume considerable power. In ad-
dition, the proposed method can detect zero-day attacks and
advanced phishing attacks using Google Search, one of the
most powerful search engines in the world. As we men-
tioned in Sect. 1, we assume that Google is a trustworthy and
non-compromised third party, and cloud-based approaches
are out of our scope in the paper. Below, we explain each
step in detail.

4.1 Whitelist Based Filtering

Algorithm 1 (A) Mobile whitelist construction
Require: Top ranked application by App Annie app
1: procedure ConstructWhitelist(app)
2: if app has not sexual contents then
3: d is the domain associated with app
4: if d is not free hosting or free blogging domain then
5: if d is not duplicated with any domain of whitelist then
6: add d to the whitelist
7: end if
8: end if
9: end if
10: end procedure

This step compares the input targetURLwith the trusted
domain names stored in the whitelist. If there is a match be-
tween the URL and a trusted domain, we conclude that the
target URL is not a phishing. To construct a trusted mobile
whitelist, we investigated a list of top 16,000 applications:
top 500 free apps and top 500 paid apps in the most popular
16 countries, on Google Play ranked by App Annie [14] on
January, 2017. Of these, we filtered the apps that are dupli-
cated and contained sexual contents. Finally, the remaining
apps were only 9087. Based on these apps, we collected
domains associated with these apps by investigating the do-
main used when they are handled on the web, the domain of
the developer’s company, or the domain of the first loaded
URL if they have WebView format. Of these, we excluded
free hosting or free blogging domains that might support
phishing sites. Through these steps, we obtained a final list
of 7278 domains, of which the mobile whitelist comprises.

4.2 Mobile Phishing Checkpoint: Checking If the Target
URL Takes User Input

Unlike the web vulnerability checkers functioning in the PC
environment, where most phishing detection is performed
at every novel web page visit, the proposed approach delays
checking as much as possible, until the user provides inputs
to the web page. Owing to the nature of the attacks, phishing



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1987

Algorithm 2 (B) Whitelist based filtering
Require: URL url of web page p
Ensure: true − uncertain, f alse − not phish
1: procedure WhitelistFiltering(url)
2: d← domain of url
3: if d is in the whitelist then
4: return f alse
5: end if
6: return true
7: end procedure

sites normally induce people to provide personal informa-
tion. Therefore, in the proposed approach, the phishing de-
tection starts only when the user touches the text input field
of a web page. This is similar to SPS [44] because both of
SPS and the proposedmethod believe that the text input is the
source of phishing. However, the proposed method checks
the possibility of phishing websites based on whether they
get user inputs or not. On the other hand, SPS determines
whether a site is phishing or not based on other information
such the URL of it. Also, although SPS detect the text field
by using HTTP headers or several HTML tags, the proposed
method uses a special class of type “webtextview” that An-
droid defines for the web object to take user inputs without
burden to analyze HTTP headers or find HTML tags by pars-
ing HTML codes. By checking that the web object of the
associates is of type “webtextview” before the user opens the
software keyboard, the proposed scheme can decide if the
phishing detection mechanism should start execution.

Algorithm 3 (C) Mobile phishing checkpoint
Require: Touch text-input field
1: procedure MobilePhishingCheckpoint
2: invoke IMM (Input Method Manager)
3: v ← current instance of View class
4: type← type of v
5: if type is ‘webtextview’ then
6: url ← loaded URL of v
7: if WhitelistFiltering(url) then
8: Detectphish(url)
9: end if
10: end if
11: open soft keyboard
12: end procedure

This approach has three advantages in the mobile en-
vironment. First, it saves battery power. Checking every
web page leads to a large amount of energy consumption;
therefore, we skip checking many pages. Furthermore, since
mobile developers tend to limit the number of times the
text-based input of the user is required (because of the small
screen) [45], it can reduce power consumption requirements.
Second, this approach can function in every browser-enabled
application. As we mentioned in Sect. 3, anti-phishing soft-
ware is usually attached as an add-on to a web browser.
However, mobile devices like smartphones can browse web

pages in any enabled application. Our approach is not de-
pendent on a particular browser since it does not require any
add-on or plug-in. Finally, this approach prevents phishing
attacks by URL redirection. As we mentioned in Sect. 1, in
the mobile environment, shortened URLs such as t.co and
goo.gl are used prevalently because of the limited screen
size. Even if the users cannot recognize the shortened phish-
ing URLs, our approach can defend users from the phishing
attacks by checking the URL of the redirected phishing pages
that have text input fields.

4.3 Phishing Detection with Target URL, Google Search,
and URL Scanning/Phishing Reporting Sites

If the target URL is not filtered in the two previous steps,
the proposed method runs the phishing detection algorithm
(Algorithm 4)with the target URL. The following algorithms
show the details of the proposed phishing detection method.

4.3.1 Refine Algorithm

In Algorithm 5, the input target URL is refined in a manner
that is similar to Huh et al’s approach [22]. This algorithm
extracts the essential part of the input URL, allowing us
to differentiate between legitimate and phishing pages. If
the URL is entered into the Google search engine without
manipulation, the false positive rate would increase, since le-
gitimate web pages may not appear in search results because
of relatively unimportant but unique parts of the target URL.
The syntax of HTTP URLs follows the standard RFC 1738
[46] and RFC 3986 [47]. First, the algorithm deletes the
strings that refer to the common protocol (“http” or “https”)
in the scheme part and that refer to the lowest level domain
(“www”) in the host part if exists. Finally, it deletes the
optional parts such as query or fragment part attached to the
input URL. Because our focus is the URLs for web pages,
which begin with http or https, and all URLs’ structures fol-
low the standard, we can say that Algorithm 5 works well
with every possible URL.

For instance, in the case of the following target input
URL, the Google search engine tends not to return the corre-
spondingweb page because the query part is typically unique
to each search and may not appear frequently.

https://www.paypal.com/signin?
country.x=DE&locale.x=de_DE

⇓

Eliminate ‘https://’
⇓

www.paypal.com/signin?
country.x=DE&locale.x=de_DE

⇓

Eliminate ‘www.’
⇓



1988
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

Algorithm 4 (D) Proposed mobile phishing detection
method
Require: URL url of web page p
Ensure: true - phish; f alse - not phish
1: procedure Detectphish(url)
2: url ′← Refine(url) . 4.3.1
3: rp← SearchbyGoogle(url ′) . 4.3.2
4: (rp is a search result page with query url ′)

5: if rp is zero search result then . Criterion 1 in 4.3.3
6: return true
7: end if

8: for i← each URL of matching documents in rp do
9: d ← domain of i
10: if d is URL Scanning / Phishing Reporting Domain

then
11: . Criterion 2 in 4.3.3
12: continue
13: else
14: return f alse
15: end if
16: end for
17: return true
18: end procedure

Algorithm 5 Refine
Require: URL url of web page p
1: procedure Refine(url)
2: if the protocol of url is ‘http’ or ‘https’ then
3: url ← eliminate the ‘http://’ or ‘https://’ of url
4: end if
5: if the lowest level domain of url has a ‘www’ then
6: url ← eliminate the ‘www.’ of url
7: end if
8: if url has a query or a fragment part then
9: url ← eliminate the query or the fragment part of url
10: end if
11: return url
12: end procedure

paypal.com/signin?
country.x=DE&locale.x=de_DE

⇓

Eliminate the query part
⇓

paypal.com/signin

However, if theRefine algorithm cuts ‘https://’, ‘www.’
and the query part, and the refined URL (paypal.com/signin)
is used for Google searching, then we can obtain the search
result from the Google search engine.

4.3.2 SearchbyGoogle Algorithm

The routine queries the Google search engine with a refined
URL url ′ that is a result of Algorithm 5 in Sect. 4.3.1. We

use three parameters for Google search. First, we search for
the URLs that contain url ′ by using the “as_epq” parameter.
Using the parameter “q” as in a conventional search will
make even legitimate web pages be included in the search
result, as they insert the URLs of the legitimate web pages
in their own URLs in order to pretend a legitimate web
page. Second, we use ‘hl=en’ to obtain the contents of the
web pages in the search result in English. Finally, we add
‘nota=1’ option in order to bring the source codes of the web
pages in the search result: we can parse the resultant source
codes for further analysis. Thus, we generate the following
URL in order to make a query to the Google search engine.

http://www.google.com/search?as_epq=url ′

&hl=en&nota=1

Algorithm 6 Search by Google
Require: the refined URL url′ by procedure Ref ine
1: procedure SearchbyGoogle(url′)
2: googleurl ← “http://www.google.com/search?hl=en&
nota=1&as_epq=”

3: query ← url′

4: searchurl ← googleurl + query
5: result ← HTML code by HTTP connection to searchurl
6: return result
7: end procedure

4.3.3 Phishing Detection with the Search Result and URL
Scanning/Phishing Reporting Sites

Figure 2 shows an example where a refined URL,
“za.fdtgthh.odca.net/bin/123/”, is used as an input for the
proposed SearchbyGoogle algorithm. We extract the num-
ber of results and the URLs of all matching documents to
determine whether the target URL is a phishing site.

The following two criteria are used for the algorithm’s
decision:

• (Criterion 1) Zero-day phishing sites are not found in
the search result.

• (Criterion 2)Anti-phishingwebsites can have the phish-
ing URLs listed on their blacklists.

Criterion 1 is based on the fact that the phishing sites
are difficult for search engines to crawl, because phishing
sites are not contained in other web pages; no other web
pages link to phishing sites. Phishing site developers nor-
mally ignore creating those sites because the URL of the
phishing site is propagated using emails or SMSs. It is
particularly useful to cope with zero-day phishing attacks,
because it is highly unlikely the search engine has crawled
the zero-day phishing sites which are new phishing sites
that have not yet been discovered. Therefore, Criterion 1
can be used for distinguishing phishing sites. In CANTINA
[19], the zero-means-phishing algorithm (ZMP) utilizes this
criterion similarly as the proposed approach, but there are
some differences between them. First, for ZMP, CANTINA

http://www.google.com/search?hl=en&nota=1&as_epq=
http://www.google.com/search?hl=en&nota=1&as_epq=


LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1989

Fig. 2 An example of executing SearchbyGoogle with the refined URL “za.fdtgthh.odca.net/bin/123/”

Table 1 Examples of URL scanning/phishing reporting web sites.

phishtank.com
blog.gmane.org/gmane.comp.security.phishings
clean-mx.com or clean-mx.de
virustotal.com
.
.
.

needs to do compute-intensive operations such as TF-IDF
operation to extract keywords used for search. On the other
hand, the proposed scheme needs to do simple modification
on the URL, which is much less costly than CANTINA’s.
Next, CANTINA does not say exactly why ZMP is working
well except its experiment results, which means ZMP is a
simply assumptive heuristic method without any logical rea-
son. However, we show why Criterion 1 is reasonable as the
above description and verify this by experiments that show
the tendency in increasing phishing detection rate.

After a certain amount of time has passed, phishing re-
porting sites can be crawled because they maintain a list of
links (URLs) to phishing sites. Table 1 shows a list of popu-
lar phishing-reporting web sites. We can filter the phishing
URLs by using the list of phishing reporting web sites. In
the case where the Google search result outputs a number
of URLs, if all of them are contained in the phishing re-
porting web sites, we can determine that the target URL is
a phishing site. Because the phishing reporting sites have
links to the phishing sites, the Google search engine could
crawl the phishing sites. However, the Google search en-
gine quickly identifies and eliminates those phishing sites so
that they cannot be searched even if they use an advanced
technique such as cloaking, thereby helping our proposed
scheme works better. Therefore, Criterion 2 can be used for
distinguishing phishing sites.

Table 2 Implementation environments.
Smartphone Nexus S (crespo)
OS Version Android 4.0.3

(Ice Cream Sandwich)
API Level 15
Emulator DDMS

Battery Checking App PowerTutor

5. Experiments and Analysis

We conducted experiments on a Google Nexus S running
Android 4.0.3, using 8315 phishing sites and 8315 legitimate
web pages. Then, we analyzed the results by comparing
the accuracy, efficiency, and functionality of our proposed
method with several existing anti-phishing approaches.

5.1 Implementation Environments

We implemented the proposed method and performed exper-
iments after installing our implementation onto a flagship
smartphone, a Google Nexus S. We modified the original
Android 4.0.3 (Ice Cream Sandwich) source code for apply-
ing the proposed scheme. The performance of the scheme
was checked with a DDMS emulator, which was connected
to the device where the proposed scheme was installed. We
modified the original source of the PowerTutor [48] appli-
cation, which is intended predominantly for measuring the
power consumption of the major components in a device.
Instead, we used it for measuring the power consumption
of the proposed scheme. Table 2 shows the implementation
environment.

5.2 Phishing and Target Sites for Experiments

We have selected PhishTank [18], which is one of the best-



1990
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

Table 3 Result of the experiment for evaluating detection accuracy.

Experiment with phishing sites Experiment with legitimate pages

unit:(%) True Positive FalseNegative True Negative False Positive

Algorithm B N/A 0 36.81 N/A

Algorithm C N/A N/A 0 N/A

Algorithm D
Criterion 1 49.63

0.78 62.58
0.61

Criterion 2 49.59 0.00

Total 99.22 0.78 99.39 0.61

knownwebsites used for the quick registration of novel phish-
ing sites, in order to extract the phishing sites. Among the
phishing sites, we selected those that are suspected as phish-
ing but not clearly designated as phishing sites because they
are included in the blacklist of web browsers quickly once
they are designated as phishing sites. We only used the
sites that were reported within the previous 12 hours and
are manually verified as phishing sites among the suspected
sites.

We conducted our experiment for 31 days with 8315
phishing sites that met the above requirements. Because the
proposed scheme uses only URLs and does not use the con-
tents, the sites that use various languages could be included
in the 8315 sites. We also selected 8315 legitimate web
pages whose domains are highly ranked in Alexa [49] where
the ranking reflects the popularity of domain. The selected
pages are 5116 main pages and 3199 login pages where all
of both types of pages require text-based user inputs.

5.3 Accuracy Evaluation

We evaluated howwell the proposedmethod detects phishing
siteswith the 8315 phishing sites and the 8315 legitimateweb
pages that were introduced in the above subsection.

Figure 3 shows the true positive rate of the proposed
method in comparison with the blacklist method installed
in Google Chrome web browsers. The detection rate of the
proposed scheme is close to twice that of Google Chrome’s
method. All phishing sites are not in the whitelist and have
text-based inputs so they are detected by two criteria. Among
them, 49.63% are detected by Criterion 1, and 49.59% are
detected based on the lists maintained by phishing reporting
sites, Criterion 2. Also, as we define that ‘zero day attack’
is the phishing sites that Google chrome cannot detect in our
experiment, all zero-day attacks, 45.09% of 8135 phishing
sites, are detected by our proposal. 57.22% of the zero-day
attacks are detected by Criterion 1, and others are detected by
Criterion 2. Table 3 summarizes the result of the experiments
related to accuracy evaluation. In the experiment with the
legitimate pages, 36.81% of legitimate pages are filtered by
our mobile whitelist, Algorithm B, and 62.58% are detected
as legitimate by Algorithm D. None are detected by Algo-

Fig. 3 Accuracy evaluation: true positive rate comparison with the pro-
posed method and the blacklist approach installed in Chrome browser.

Table 4 Accuracy comparison with existing anti-phishing approaches.

True Positive (%) False Positive (%)

CANTINA [19] 90-97 1

Xiang’s proposal [20] 90.06-93.31 1.95-2.26

GoldPhish [21] 98 0

Moghimi’s proposal [25] 99.14 0.86

Our Approach 99.22 0.61

rithm C because all the legitimate pages of our dataset have
text-based inputs. The false positive rate of the proposed
scheme is 0.61%. Table 4 shows the accuracy comparison
between the proposed method and other anti-phishing ap-
proaches. The proposed method is shown to have better true
positive and false positive rates than most of the other ap-
proaches. GoldPhish shows the better false positive rate than
the proposed method, but we question its accuracy because
its dataset is too small (100 legitimate sites).

Figure 4 lists the eight main phishing reporting sites
crawled by the proposed scheme and their contributions for
detecting phishing sites in our experiment. PhishTank [18],



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1991

Fig. 4 The rate of each crawled phishing reporting sites containment of
phishing sites on the total phishing sites used in the experiment.

Fig. 5 The phishing detection rates on various combinations of phishing
reporting sites.

phishwatch (gmane.org) [50], CLEAN MX [51], and Virus-
Total [52] are the main contributors, as shown in Fig. 4.
Fig. 5 shows how the detection rates change when multiple
phishing reporting sites are used compared to the case of the
experiment for accuracy evaluation, where total 21 phishing
reporting web sites are used. The y-axis value in Fig. 5 refers
to the relative ratio of phishing detection compared to the
phishing detection rate 49.59% by Criterion 2 in Algorithm
D in the experiment with the phishing sites for accuracy eval-
uation. The relative detection rate of a combination of four
main contributors is 94.07%; when more phishing reporting
sites are included, the detection rate shown by the proposed
method increases slightly.

5.4 Energy Consumption

We analyze how much energy is consumed if the proposed
scheme is employed. To generalize the analysis result, we
assume the following two values:

• α: the required energy to perform whitelist-based fil-
tering

• β: the required energy to perform the main phishing-
detection routine

To obtain α and β, we performed an experiment for
measuring the energy consumption. In the experiment, the
smartphone was connected to one of the 8315 phishing sites
through a web browser. While the connection was being es-
tablished, we measured the amount of the energy consumed.
Particularly, we measured the energy consumed in the first
8 seconds since the connection establishment began. We re-
peated this for 20 times. For comparison, we also measured
the energy consumedwhen the proposed implementation did
not function. Figure 6 shows the experiment result. In this
experimental result, the required power to run the proposed
method is 635.8mJ in average, where α = 16.8mJ and β =
619mJ. By our analysis, the energy consumption for network
interactions (HTTP) occupies the majority of β; the rest is
considerably small to measure.

We can derive the following formula for calculating the
average consumption overhead used by the proposed scheme:

0∗Pr[A]+α∗Pr[B∧¬A]+ (α+ β)∗ (Pr[¬A∧¬B]) (1)

where A is the event that the web page does not take inputs by
users, and B is the event that the URL corresponding to the
currently tested page is in thewhitelist; those are independent
from each other. As we mentioned in Sect. 4.2, we do not
check web pages where users do not attempt to input any
text. Thus, we assume the required energy for this is zero.
In order to derive Pr[B], we should calculate the number of
URLs of the legitimate web pages included in the whitelist.
We already show the ratio in Table 3 so we can derive Pr[B]
= 0.3681.

Now we derive Pr[A]. Because it is considerably dif-
ficult to calculate Pr[A] in all cases, we focus on the worst
case where Pr[A] is minimized. According to [17], people
provide text-based inputs most frequently when they access
mobile search services. Furthermore, because the websites
for mobile search services are the most frequently visited
websites by smartphone users [16], we calculate Pr[A] in
the case when users access mobile search services.

To derive the realistic Pr[A], we refer to M. Kamvar
et al’s paper [53], which presents the results of a study that
investigates the behavioral search characteristics of ordinary
web search engine users. It provides how many pages of
different types a user access in a single session when the
user uses a mobile search service. Table 5 is the result from
[53]. The number of queries can be mapped to the number of
pages that require user inputs because users should provide
text-based inputs to make a search query. The number of
click-through per query and the number of “more search
result” requests per query can be mapped to the number
of web pages that users do not provide text-based inputs
because only mouse-clicks are performed by users when
they are visiting those web pages. With Table 5, we count
the number of pages n(P) the users visited during search
session as follows:

n(P) = 1 + n(SRP) + n(CT ) + n(MSR)

where 1 is the first search page; n(SRP) is the number of



1992
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

Fig. 6 Comparing the energy consumption between Nexus S and Nexus S with the proposed scheme.

Table 5 Minimum, average, maximum value for queries, click-through, and “more search result”
requests.

Minimum Average Maximum
The number of queries per session 1 1.6 43

The number of click-through per query 0 1.7 37
The number of “more search result” requests per query 0 0.187 82

Source : M. Kamvar et al., “A large scale study of wireless search behavior: Google mobile search”

Fig. 7 Comparison of the total energy consumption in the proposed
scheme in performing a search task.

search result pages, which is equal to the number of queries
n(Q); n(CT ) is the number of click-throughs; and n(MSR)
is the number of “more search result” requests.

Since the number of queries is equal to the number of
pages where users provide input, we can derive Pr[A] as
follows:

Pr[A] = 1 - n(Q) / n(P)

Therefore, we can obtain Pr[A], which equals 0.992
for maximum, 0.715 for average, and 0.023 for minimum.
Thus, the minimal additional energy consumption is 3.26mJ
(minimal), 116.26mJ (average), or 398.56mJ (maximum).
Figure 7 shows all the energy consumption outlined above

Fig. 8 Comparison of the estimated energy consumption with existing
anti-phishing approaches using search engines.

in our proposal. We prove that our proposed method is
more efficient by showing the average additional consump-
tion has decreased by 81.22% as compared to approaches
that have a similar detection routine to our proposal using
search engine, which consumes 619mJ in the above analy-
sis. Figure 8 shows the comparison of the estimated power
consumption between the proposed method and the existing
anti-phishing approaches using search engines. In case of
CANTAINA, we estimated the power consumption which
consists of Google search, which takes 619mJ as our exper-
iment, and WHOIS search, which takes 50.85mJ according
to our experiment. Thus, we can conclude that it requires at
least additional 669.85mJ that is much greater than our aver-



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1993

Table 6 Functionality comparison with existing anti-phishing approaches.

Blacklist
Technique
[6]–[8]

CANTINA
[19]

Xiang’s
proposal
[20]

GoldPhish
[21]

Moghimi’s
proposal
[25]

Our
Proposal

Zero-day
Detection Not detected Detected Detected Detected Detected Detected

C
os
ts

Comparison
Group Not required Required Not required Not required Not required Not required

Algorithm Not used TF-IDF TF-IDF Not used SVM Not used
Training
Data Not required Not required Not required Not required Required Not required
Extra

Software Not used Not used NER OCR Not used Not used

age consumption. In the case of Huh’s proposal, it requires at
least additional 1857mJ because it uses three search engines
such as Google, Bing, and Yahoo. In the case of GoldPhish,
it requires at least additional 619mJ for Google search and
the extra power consumption for OCR. According to [12],
the energy consumption of OCR application is more than
80,000mJ.

5.5 Functionality Comparison

We now compare the proposed scheme with existing ap-
proaches in terms of functionality. A summary of this com-
parison is presented in Table 6. The blacklist technique
[6]–[8] requires a small amount of energy consumption but
cannot detect zero-day phishing attacks. CANTINA [19] re-
quires the comparison group for phishing detection and uses
TF-IDF, which does not function well in the mobile environ-
ment because less information is available as compared to the
PC environment. Xiang’s proposal [20] also uses TF-IDF
algorithm, and requires extra software, Named Entity Rec-
ognizer (NER) such as Stanford NER [54]. Goldphish [21]
requires extra software, OCR, which exhibits heavy energy
consumption. Moghimi’s proposal [25] requires data train-
ingwith huge amount of training data for better accuracy, and
machine learning algorithm, SVM. Unlike the other meth-
ods, the proposed scheme does not require any training data,
additional algorithms and software, such as TF-IDF, SVM,
NER, or OCR. In addition, it can detect zero-day attacks
with minimal communication cost.

6. Discussion

We now discuss some issues related to the security and per-
formance of the proposed approach.

6.1 Possible Response against the Proposed Approach by
Attacker

First, an attacker can bypass our approach in the following
method:

1. The attacker creates a normal page

2. The attacker waits until the page obtains some reputa-
tion

3. The page is crawled by Google search engine
4. The attacker changes the page into a phishing site

However, such an approach will not occur easily be-
cause time is a considerably valuable resource to phishers.
If attackers use this method, they would have to spend time
to create web pages with content that is interesting to many
normal users, promote these pages so that other normal pages
can link to it, and wait until the page gains popularity and is
crawled by the Google search engine. Nevertheless, all the
time and efforts involved in this strategy do not guarantee a
high success rate of phishing, despite being able to bypass
our approach. Meanwhile, smarter phishers may try to in-
crease the success rate by creating more phishing sites in
order to reach a higher volume of victims, repeatedly.

Second, an attacker can also try to bypass our approach
in the following method:

1. The attacker finds a vulnerability at a legitimate page
2. The attacker compromises the legitimate page
3. The attacker changes the page into a phishing site with

the same URL

This scenario may not work well if the legitimate site
has much popularity. In this case, the website is normally ad-
ministrated well in terms of security thus it is highly unlikely
that the attacker is unable to find security vulnerabilities. In
the other case, if the legitimate site is unpopular, it is possible
that the attacker can injectmaliciousweb pages to thewebsite
for phishing. However, by the result of our experiment with
8315 phishing sites, the attacker tends to put the company’s
name in the URL to improve the success rate of deceiving
users a little. Then, the attacker creates new directory or file
in the compromised site and puts the malicious web pages
into them, and hence the URL is changed. In this case, our
phishing mitigation method works well because the phishing
URL is brand new: no result or only phishing reporting sites
are given as a result of Google search if our method works
with the URL, as described in Sect. 4.3.3. However, it is still
possible that these attack scenarios succeed against the pro-
posed method if the attacker creates the phishing site with



1994
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

the same URL of the legitimate page. We are fully aware
that these attack scenarios are very important and we will
overcome this problem in future work.

6.2 Attacks Using Google Docs

Some attacks show users the main site with advertisements
or urgent contents, and then lead them to the site created
by Google Docs, which is designed to be easy to obtain the
inputs of users to retrieve their information. Our proposed
method cannot detect these attacks since the top-level do-
main (TLD) of Google docs, “docs.google.com”, is in the
mobile whiteilst. We consider these attacks to be out of
our scope because our definition of phishing mentioned in
Sect. 1 does not include these attacks in that this attack does
notmasquerade as a trustworthy entity. They, however, could
be included in phishing because they steal the private infor-
mation of victims, and we intend to solve this problem in the
future.

6.3 Attacks Using Multiple Redirection Pages

Redirection pages play a role to automatically send visitors
to another page and hence they usually do not receive users’
text-based inputs. Because the proposed method does not
inspect the pages that have no text input fields, it has the
limitation that when multiple redirection pages exist, the
proposed method takes little more time to detect phishing
than the blacklist technique like web browsers which can
detect the redirection phishing pages immediately. However,
multiple redirection phishing pages arrive at the redirected
phishing page that has text input fields in the end and users
try to input their information in that page, which is when
the proposed method starts to inspect. Ultimately, from
a security standpoint, the proposed method detects phishing
attacks using multiple redirection pages, as does the blacklist
technique, by checking the URL of the redirected phishing
pages that have text input fields even though it is a little late.
Even if users input their information in the redirection page
that has text input fields, the proposed method also works
because it runs only when users touches the text input field
regardless of redirection. Therefore, the proposed method
detects phishing attacks using multiple redirection pages.

6.4 Time Delay

The proposed scheme takes less than a second, and most of
the checking time is spent on the Google search, according
to our analysis. Google has also confirmed that the average
response time on a search result is a fraction of a second [55].
Furthermore, the proposed scheme functions only when the
mobile phishing checkpoint is invoked. To receive a text-
based input, a mobile device should show users the software
keyboard, which requires time to load. Thus, mobile users
would hardly feel the time delay of the proposed scheme
because they are already aware of the loading time of the
software keyboard.

6.5 Compatibility

API Level 15 in our implementation environments may be a
little concerning about compatibility. However, because we
confirmed that all classes and functions used in our imple-
mentation still use inAPI Level 27, which is the latest version
of Android API, we expect that the proposed method has no
compatibility problem about any upper API Level. Also,
as for the efficiency, we discovered the power consumption
of HTTP network interactions in our implementation envi-
ronments is almost the same as that in version 4.1.2 (Jelly
Bean), which is the latest version of Nexus S: our observa-
tion found the difference of power consumption in those two
environments was at most 5mJ.

6.6 Automatic IP Block

Our approach might not work well if Google automatically
blocks the access of the search engine from the device where
our approach is working using the IP address of the device,
due to large number of queries. We think this is not a
big concern due to the following reasons: first, there is a
little chance of the IP address block because we activate
the Google search method less frequently by using mobile
whitelist and mobile checkpoint. As mentioned in Table 5,
the number of queries per session are only 1.6 on average.
Also, due to the nature of mobile devices, the associated
IP address to the device can change frequently. Second,
there is a way to increase the available number of queries
legitimately. We can perform queries through the Google
Custom Search API, which supports 100 queries per a day
for free. The number of possible queries can be increased
with additional cost.

7. Conclusion and Future Work

In this paper, we proposed a high-performance and energy-
efficient mobile phishing detection scheme for mobile de-
vices, particularly smartphones, where reducing battery con-
sumption is a crucial goal. To prevent mobile phishing, our
method combines three techniques: an app-based whitelist,
a mobile phishing checkpoint, and mobile phishing detec-
tion using a combination of Google search and websites that
report phishing. The app-based whitelist reduces unneces-
sary URL checking by taking domains from the trusted apps.
This technique offers a whitelist suitable for the mobile en-
vironment, not for the PC environment. The checkpoint on
smartphones designates a point to check for phishing by con-
sidering the contrasting characteristics of smartphones and
phishing, which are not considered in PC environment. This
checkpoint can significantly minimize battery consumption
compared to checking every visited page. Mobile phishing
detection using only Google search results and the URL of
the visited page is simple and efficient. This simple scheme
requires only a few network interactions and demonstrates a



LEE et al.: EFFICIENT APPROACH FOR MITIGATING MOBILE PHISHING ATTACKS
1995

high phishing detection rate, particularly with regard to zero-
day attacks, the core of phishing attacks. In addition, our pro-
posed method significantly enhances the energy efficiency
compared to the existing PC-based anti-phishing schemes,
considering the ratio of whitelist filtering and text-based in-
put. Further, we prove that ourmethod consumes less battery
power than any other anti-phishing scheme. Therefore, our
proposed method has the advantages of high phishing detec-
tion rates and considerably higher energy efficiency. While
our proposal offers the best performance in terms of accuracy,
its power consumption for HTTP connections is somewhat
high. We will get over this limitation including delayed de-
tection for multiple redirection phishing pages mentioned in
Sect. 6.3. Also, we will get over attacks that change created
normal pages crawled by Google search engine or compro-
mised legitimate pages into phishing sites with the same
URL mentioned in Sect. 6.1 and attacks that retrieve users’
information using Google Docs Sect. 6.2 in future work.

Acknowledgements

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2016R1C1B2011022, NRF-
2016R1A4A1011761).

References

[1] “APCERT annual report 2016,” http://www.apcert.org/documents/
pdf/APCERT_Annual_Report_2016.pdf, 2017.

[2] “What is phishing?,” https://www.lookout.com/know-your-mobile/
what-is-phishing

[3] “Mobile security vulnerabilities are creating big problems,” https://
www.rsaconference.com/blogs/mobile-security-vulnerabilities-are-c
reating-big-problems, 2016.

[4] “The Inbox Report 2016: Consumer perceptions of email,” http://
www.fluentco.com/wp-content/uploads/2017/01/Fluent_InboxRepor
t_2016.pdf, 2017.

[5] “Mobileweb intelligence report january 2018,” http://go.afiliastechno
logies.com/mobile-web-intelligence-report-jan-2018/, 2018.

[6] “Internet explorer smartscreen filter,” http://windows.microsoft.com/
en-us/internet-explorer/use-smartscreen-filter

[7] “Mozilla support,” https://support.mozilla.org/ko/kb/how-does-
phishing-and-malware-protection-work

[8] “Chrome safe browsing,” https://www.google.com/intl/ko/chrome/
browser/features.html#security

[9] F.D.I. Corporation and U.S. of America, “Putting an end to account-
hijacking identity theft,” 2004.

[10] L.F. Cranor, S. Egelman, J.I. Hong, and Y. Zhang, “Phinding phish:
An evaluation of anti-phishing toolbars.,” Proc. 14thAnnualNetwork
and Distributed System Security Symposium (NDSS), ISOC, 2007.

[11] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing
emails,” Proc. 16th international conference on World Wide Web
(WWW), pp.649–656, ACM, 2007.

[12] Y.W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant dis-
tributed mobile execution,” Proc. 32nd International Conference on
Distributed Computing Systems (ICDCS), pp.586–595, IEEE, 2012.

[13] N. Tsalis, N. Virvilis, A. Mylonas, T. Apostolopoulos, and D. Gritza-
lis, “Browser blacklists: The utopia of phishing protection,” Interna-
tional Conference on E-Business and Telecommunications, pp.278–
293, Springer, 2014.

[14] “App Annie,” https://www.appannie.com/

[15] T. Thakur and R. Verma, “Catching classical and hijack-based phish-
ing attacks,” International Conference on Information Systems Se-
curity, pp.318–337, Springer, 2014.

[16] “The mobile movement study,” https://ssl.gstatic.com/think/docs/
the-mobile-movement_research-studies.pdf, 2011.

[17] “2014 survey on the mobile internet usage executive summary,”
http://isis.kisa.or.kr/board/index.jsp?pageId=040300&itemId=329,
2014.

[18] “PhishTank,” http://www.phishtank.com/
[19] Y. Zhang, J.I. Hong, and L.F. Cranor, “Cantina: A content-based

approach to detecting phishing web sites,” Proc. 16th international
conference on World Wide Web (WWW), pp.639–648, ACM, 2007.

[20] G. Xiang and J.I. Hong, “A hybrid phish detection approach by
identity discovery and keywords retrieval,” Proc. 18th international
conference on World Wide Web (WWW), pp.571–580, ACM, 2009.

[21] M. Dunlop, S. Groat, and D. Shelly, “Goldphish: Using images for
content-based phishing analysis,” Proc. 5th International Conference
on Internet Monitoring and Protection (ICIMP), pp.123–128, IEEE,
2010.

[22] J.H. Huh and H. Kim, “Phishing detection with popular search en-
gines: Simple and effective,” International Symposium on Founda-
tions and Practice of Security, pp.194–207, Springer, 2011.

[23] P. Barraclough, M.A. Hossain, M. Tahir, G. Sexton, and N. Aslam,
“Intelligent phishing detection and protection scheme for online
transactions,” Expert Syst. Appl., vol.40, no.11, pp.4697–4706,
2013.

[24] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based
associative classification data mining,” Expert Syst. Appl., vol.41,
no.13, pp.5948–5959, 2014.

[25] M. Moghimi and A.Y. Varjani, “New rule-based phishing detection
method,” Expert Syst. Appl., vol.53, pp.231–242, 2016.

[26] A. Abbasi, F.â. Zahedi, D. Zeng, Y. Chen, H. Chen, and J.F.
Nunamaker, Jr., “Enhancing predictive analytics for anti-phishing
by exploiting website genre information,” J. Manage. Inform. Syst.,
vol.31, no.4, pp.109–157, 2015.

[27] A.K. Jain andB.Gupta, “A novel approach to protect against phishing
attacks at client side using auto-updated white-list,” EURASIP J.
Information Security, vol.2016, no.1, p.9, 2016.

[28] R. Srinivasa Rao and A.R. Pais, “Detecting phishing websites using
automation of human behavior,” Proc. 3rdACMWorkshop onCyber-
Physical System Security, pp.33–42, ACM, 2017.

[29] T. Raffetseder, E. Kirda, and C. Kruegel, “Building anti-phishing
browser plug-ins: An experience report,” Proc. 3rd International
Workshop on Software Engineering for Secure Systems (SESS), p.6,
IEEE Computer Society, 2007.

[30] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval, McGraw-Hill, 1986.

[31] W. Han, Y. Wang, Y. Cao, J. Zhou, and L. Wang, “Anti-phishing by
smart mobile device,” IFIP International Conference on Network and
Parallel Computing (NPC) Workshops, pp.295–302, IEEE, 2007.

[32] Y. Niu, F. Hsu, and H. Chen, “iPhish: Phishing vulnerabilities on
consumer electronics,” Proc. 1st Conference on Usability, Psychol-
ogy, and Security (UPSEC), pp.1–8, 2008.

[33] A.P. Felt and D. Wagner, “Phishing on mobile devices,” Web 2.0
Security and Privacy (W2SP) Workshop, 2011.

[34] T. Vidas, E. Owusu, S. Wang, C. Zeng, L.F. Cranor, and N. Christin,
“QRishing: The susceptibility of smartphone users toQRcode phish-
ing attacks,” International Conference on Financial Cryptography
and Data Security, pp.52–69, Springer, 2013.

[35] Z. Xu and S. Zhu, “Abusing notification services on smartphones for
phishing and spamming,” Proc. 6th USENIX Conference on Offen-
sive Technologies (WOOT), pp.1–11, 2012.

[36] D. Liu, E. Cuervo, V. Pistol, R. Scudellari, and L.P. Cox, “Screen-
pass: Secure password entry on touchscreen devices,” Proc. 11th
annual international conference on Mobile systems, applications,
and services (MobiSys), pp.291–304, ACM, 2013.

[37] C. Marforio, R.J. Masti, C. Soriente, K. Kostiainen, and S. Capkun,

http://www.apcert.org/documents/pdf/APCERT_Annual_Report_2016.pdf
http://www.apcert.org/documents/pdf/APCERT_Annual_Report_2016.pdf
https://www.lookout.com/know-your-mobile/what-is-phishing
https://www.lookout.com/know-your-mobile/what-is-phishing
https://www.rsaconference.com/blogs/mobile-security-vulnerabilities-are-creating-big-problems
https://www.rsaconference.com/blogs/mobile-security-vulnerabilities-are-creating-big-problems
https://www.rsaconference.com/blogs/mobile-security-vulnerabilities-are-creating-big-problems
http://www.fluentco.com/wp-content/uploads/2017/01/Fluent_InboxReport_2016.pdf
http://www.fluentco.com/wp-content/uploads/2017/01/Fluent_InboxReport_2016.pdf
http://www.fluentco.com/wp-content/uploads/2017/01/Fluent_InboxReport_2016.pdf
http://go.afiliastechnologies.com/mobile-web-intelligence-report-jan-2018/
http://go.afiliastechnologies.com/mobile-web-intelligence-report-jan-2018/
http://windows.microsoft.com/en-us/internet-explorer/use-smartscreen-filter
http://windows.microsoft.com/en-us/internet-explorer/use-smartscreen-filter
https://support.mozilla.org/ko/kb/how-does-phishing-and-malware-protection-work
https://support.mozilla.org/ko/kb/how-does-phishing-and-malware-protection-work
https://www.google.com/intl/ko/chrome/browser/features.html#security
https://www.google.com/intl/ko/chrome/browser/features.html#security
http://dx.doi.org/10.1145/1242572.1242660
http://dx.doi.org/10.1145/1242572.1242660
http://dx.doi.org/10.1145/1242572.1242660
http://dx.doi.org/10.1109/icdcs.2012.75
http://dx.doi.org/10.1109/icdcs.2012.75
http://dx.doi.org/10.1109/icdcs.2012.75
http://dx.doi.org/10.1007/978-3-319-25915-4_15
http://dx.doi.org/10.1007/978-3-319-25915-4_15
http://dx.doi.org/10.1007/978-3-319-25915-4_15
http://dx.doi.org/10.1007/978-3-319-25915-4_15
https://www.appannie.com/
http://dx.doi.org/10.1007/978-3-319-13841-1_18
http://dx.doi.org/10.1007/978-3-319-13841-1_18
http://dx.doi.org/10.1007/978-3-319-13841-1_18
https://ssl.gstatic.com/think/docs/the-mobile-movement_research-studies.pdf
https://ssl.gstatic.com/think/docs/the-mobile-movement_research-studies.pdf
http://isis.kisa.or.kr/board/index.jsp?pageId=040300&itemId=329
http://isis.kisa.or.kr/board/index.jsp?pageId=040300&itemId=329
http://isis.kisa.or.kr/board/index.jsp?pageId=040300&itemId=329
http://www.phishtank.com/
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1145/1526709.1526786
http://dx.doi.org/10.1145/1526709.1526786
http://dx.doi.org/10.1145/1526709.1526786
http://dx.doi.org/10.1109/icimp.2010.24
http://dx.doi.org/10.1109/icimp.2010.24
http://dx.doi.org/10.1109/icimp.2010.24
http://dx.doi.org/10.1109/icimp.2010.24
http://dx.doi.org/10.1007/978-3-642-27901-0_15
http://dx.doi.org/10.1007/978-3-642-27901-0_15
http://dx.doi.org/10.1007/978-3-642-27901-0_15
http://dx.doi.org/10.1016/j.eswa.2013.02.009
http://dx.doi.org/10.1016/j.eswa.2013.02.009
http://dx.doi.org/10.1016/j.eswa.2013.02.009
http://dx.doi.org/10.1016/j.eswa.2013.02.009
http://dx.doi.org/10.1016/j.eswa.2014.03.019
http://dx.doi.org/10.1016/j.eswa.2014.03.019
http://dx.doi.org/10.1016/j.eswa.2014.03.019
http://dx.doi.org/10.1016/j.eswa.2016.01.028
http://dx.doi.org/10.1016/j.eswa.2016.01.028
http://dx.doi.org/10.1080/07421222.2014.1001260
http://dx.doi.org/10.1080/07421222.2014.1001260
http://dx.doi.org/10.1080/07421222.2014.1001260
http://dx.doi.org/10.1080/07421222.2014.1001260
http://dx.doi.org/10.1186/s13635-016-0034-3
http://dx.doi.org/10.1186/s13635-016-0034-3
http://dx.doi.org/10.1186/s13635-016-0034-3
http://dx.doi.org/10.1145/3055186.3055188
http://dx.doi.org/10.1145/3055186.3055188
http://dx.doi.org/10.1145/3055186.3055188
http://dx.doi.org/10.1109/sess.2007.6
http://dx.doi.org/10.1109/sess.2007.6
http://dx.doi.org/10.1109/sess.2007.6
http://dx.doi.org/10.1109/sess.2007.6
http://dx.doi.org/10.1109/icnpcw.2007.4351500
http://dx.doi.org/10.1109/icnpcw.2007.4351500
http://dx.doi.org/10.1109/icnpcw.2007.4351500
http://dx.doi.org/10.1007/978-3-642-41320-9_4
http://dx.doi.org/10.1007/978-3-642-41320-9_4
http://dx.doi.org/10.1007/978-3-642-41320-9_4
http://dx.doi.org/10.1007/978-3-642-41320-9_4
http://dx.doi.org/10.1145/2462456.2465425
http://dx.doi.org/10.1145/2462456.2465425
http://dx.doi.org/10.1145/2462456.2465425
http://dx.doi.org/10.1145/2462456.2465425
https://arxiv.org/abs/1502.06824


1996
IEICE TRANS. COMMUN., VOL.E101–B, NO.9 SEPTEMBER 2018

“Personalized security indicators to detect application phishing at-
tacks in mobile platforms,” arXiv preprint arXiv:1502.06824, 2015.

[38] L. Wu, X. Du, and J. Wu, “Effective defense schemes for phishing
attacks on mobile computing platforms,” IEEE Trans. Veh. Technol.,
vol.65, no.8, pp.6678–6691, 2016.

[39] G. Bottazzi, E. Casalicchio, D. Cingolani, F. Marturana, and M. Piu,
“MP-Shield: A framework for phishing detection in mobile devices,”
International Conference on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Auto-
nomic and Secure Computing; Pervasive Intelligence andComputing
(CIT/IUCC/DASC/PICOM), pp.1977–1983, IEEE, 2015.

[40] A. Nadkarni, V. Tendulkar, and W. Enck, “NativeWrap: Ad hoc
smartphone application creation for end users,” Proc. 2014 ACM
conference on Security and privacy in wireless & mobile networks,
pp.13–24, ACM, 2014.

[41] “WebView class,” http://developer.android.com/reference/android/
webkit/WebView.html

[42] “UIWebView class reference,” https://developer.apple.com/library/
ios/documentation/uikit/reference/UIWebView_Class/Reference/Re
ference.html

[43] A. Carroll, G. Heiser, et al., “An analysis of power consumption in
a smartphone,” Proc. USENIX annual technical conference, p.21,
Boston, MA, 2010.

[44] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “SPS: A simple
filtering algorithm to thwart phishing attacks,” Asian Internet Engi-
neering Conference, pp.195–209, Springer, 2005.

[45] “Forms on mobile devices: Modern solutions,” https://
www.smashingmagazine.com/2010/03/forms-on-mobile-devices-m
odern-solutions/, 2010.

[46] “RFC 1738,” https://tools.ietf.org/html/rfc1738
[47] “RFC 3986,” https://tools.ietf.org/html/rfc3986
[48] “Powertutor,” http://ziyang.eecs.umich.edu/projects/powertutor/dow

nload.html, 2010.
[49] “Alexa,” http://www.alexa.com/
[50] “phishwatch,” http://blog.gmane.org/gmane.comp.security.phishings
[51] “CLEAN MX,” http://www.clean-mx.com/
[52] “VirusTotal,” http://www.virustotal.com/
[53] M. Kamvar and S. Baluja, “A large scale study of wireless search be-

havior: Google mobile search,” Proc. SIGCHI conference on Human
Factors in computing systems, pp.701–709, ACM, 2006.

[54] “Stanford named entity recognizer (version 1.1),” http://nlp.stan
ford.edu/software/CRF-NER.shtml

[55] “Google’s Philosophy.” https://sites.google.com/site/jurgensencomp
ositionprojectweb/about/philosophy

HyungkyuLee is a Ph.D. candidate in Com-
puter Science at KoreaAdvanced Institute of Sci-
ence and Technology (KAIST), Daejeon, South
Korea. He received his B.S. degree in Computer
Science from Sogang University, Seoul, South
Korea, in 2004. He also received hisM.S. degree
in Computer Science from KAIST in 2009. His
research interests include information security,
phishing, mobile security, and botnet malware
defense.

Younho Lee received the B.E., M.S., and
Ph.D. degree in Computer Science from KAIST,
Korea, in 2000, 2002, and 2006, respectively.
He worked as a visiting postdoctoral researcher
and research staff at the GeorgiaTech Informa-
tion Security Center from 2007 to 2009. He is
currently an associate professor in the ITM Pro-
gramme, the department of Industrial and Infor-
mation Systems Engineering, SeoulTech, Korea.
His research interests include network security,
applied cryptography, and data security.

Changho Seo is a professor at the Depart-
ment of Applied Mathematics, Kongju National
University. He has published over 50 papers and
book chapters, and a number of books in the
areas of information security. He received his
undergraduate Mathematics at the Korea Uni-
versity, Korea. He earned his M.S. and Ph.D. in
Cryptography from the Korea University, Korea.
He has worked as a visiting researcher in ETRI.
His areas of research include Cryptography al-
gorithms, PKI and System security.

Hyunsoo Yoon received the B.S. degree in
EE from the Seoul National University, Korea,
in 1979, the M.S. degree in CS from KAIST,
in 1981, and the Ph.D. degree in Computer and
Information Science from the Ohio State Uni-
versity, Columbus, Ohio, in 1988. From 1988
to 1989, he was with the AT&T Bell Labs, as
a member of technical staff. Since 1989 he has
been a faculty member of the Dept. of EECS,
KAIST. His research interests include parallel
computer architecture, mobile communication,

ad hoc networks, and information security.

https://arxiv.org/abs/1502.06824
https://arxiv.org/abs/1502.06824
https://arxiv.org/abs/1502.06824
http://dx.doi.org/10.1109/tvt.2015.2472993
http://dx.doi.org/10.1109/tvt.2015.2472993
http://dx.doi.org/10.1109/tvt.2015.2472993
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1109/cit/iucc/dasc/picom.2015.293
http://dx.doi.org/10.1145/2627393.2627412
http://dx.doi.org/10.1145/2627393.2627412
http://dx.doi.org/10.1145/2627393.2627412
http://dx.doi.org/10.1145/2627393.2627412
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/uikit/reference/UIWebView_Class/Reference/Reference.html
http://dx.doi.org/10.1007/11599593_15
http://dx.doi.org/10.1007/11599593_15
http://dx.doi.org/10.1007/11599593_15
https://www.smashingmagazine.com/2010/03/forms-on-mobile-devices-modern-solutions/
https://www.smashingmagazine.com/2010/03/forms-on-mobile-devices-modern-solutions/
https://www.smashingmagazine.com/2010/03/forms-on-mobile-devices-modern-solutions/
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc3986
http://ziyang.eecs.umich.edu/projects/powertutor/download.html
http://ziyang.eecs.umich.edu/projects/powertutor/download.html
http://www.alexa.com/
http://blog.gmane.org/gmane.comp.security.phishings
http://www.clean-mx.com/
http://www.virustotal.com/
http://dx.doi.org/10.1145/1124772.1124877
http://dx.doi.org/10.1145/1124772.1124877
http://dx.doi.org/10.1145/1124772.1124877
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
https://sites.google.com/site/jurgensencompositionprojectweb/about/philosophy
https://sites.google.com/site/jurgensencompositionprojectweb/about/philosophy

