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ABSTRACT: This work investigated the formation of microbial
granules to boost the productivity of lactic acid (LA). The
flocculated form of LA-producing microbial consortium, dominated
by Lactobacillus sp. (91.5% of total sequence), was initially obtained
in a continuous stirred-tank reactor (CSTR), which was fed with 2%
glucose and operated at a hydraulic retention time (HRT) of 12 h
and pH 5.0� 0.1 under a thermophilic condition (50�C). The
mixed liquor in the CSTR was then transferred to an up-flow
anaerobic sludge blanket reactor (UASB). The fermentation
performance and granulation process were monitored with a
gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an
increase in the substrate loading from 60 to 2,880 g glucose L�1d�1.
As the operation continued, the accumulation of biomass in the
UASB was clearly observed, which changed from flocculent to
granular form with decrease in HRT. Up to the HRT decrease to
0.5 h, the LA concentration was maintained at 19–20 g L�1 with
over 90% of substrate removal efficiency. However, further decrease
of HRT resulted in a decrease of LA concentration with increase in
residual glucose. Nevertheless, the volumetric LA productivity

continuously increased, reaching 67 g L-fermenter�1h�1 at HRT
0.17 h. The size of LA-producing granules and hydrophobicity
gradually increased with decrease in HRT, reaching 6.0mm and
60%, respectively. These biogranules were also found to have high
settling velocities and low porosities, ranging 2.69–4.73 cm s�1 and
0.39–0.92, respectively.
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Introduction

For the development of sustainable industrial society and effective
management of greenhouse gas emissions, an alternative supply of
materials and chemicals is considered as critical as that of energy
and fuels (Ragauskas et al., 2006). In fact, most industrial chemicals
are derived from fossil fuels, and therefore different sustainable
production patterns are urgently needed. The US Department of
Energy (DOE) identified several chemicals that can be produced by
microbial processes, and among them, organic acids including
lactic acid (LA) constitute a key group (FitzPatrick et al., 2010;
Sauer et al., 2008).
Lactic acid (LA, 2-hydroxypropanoic acid, CH3-CH(OH)-COOH)

is a natural organic acid with a long history of application in food
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and non-food industries, including the cosmetic and pharmaceut-
ical industries, and for the production of oxygenated chemicals,
plant growth regulators, and special chemical intermediates (Abdel-
Rahman et al., 2011). Currently, there is an increased demand for
LA as a feedstock for the production of biopolymers and chemicals
such as polylactide, acetaldehyde, acrylic acid, and 2,3-pentadione
(Dusselier et al., 2013). The annual production of LA in 2012 was
260,000 tons and its production is expected to grow to 600,000
metric tons by the year 2020.

Over 90% of the current commercial production of LA is carried out
by microbial fermentation, specifically using pure cultures in a batch
manner. This type of fermentation has advantages, in that it reduces
the risk of contamination, and obtains high LAyield and concentration
(Hofvendahl and Hahn-H€agerdal, 2000). However, it suffers from the
high cost of sterilization, and low volumetric productivity due to the
long fermentation time required and end-product inhibition. From a
practical point of view, a continuous process using mixed cultures is
therefore vital, since (i) it is free from sterilization; (ii) it can tolerate the
complexity and variability of substrates; and (iii) it can achieve high
productivity under high cell concentration (Kleerebezem and van
Loosdrecht, 2007). Although LA produced by mixed cultures may be
unfit for food and cosmetic purposes, it can be used as a platform
chemical making pyruvic acid, acrylic acid, propanediol, ester, and
other substances (Gao et al., 2011).

Various techniques have been employed in continuous LAproduction
to separate cell retention from hydraulic retention. Examples include the
use of immobilizing matrix, a centrifugal system, membrane filtration
units, or other external sources of materials (Chang et al., 1994). Instead
of using extra equipment, microbial granulation can be an alternative
method to attain high LA productivity. The granules are discrete well-
defined cell aggregates formed by cell-to-cell attraction, which usually
occurs in up-flow type reactors (Hulshoff et al., 2004). Compared to
conventional microbial flocs, granules have a regular, dense, and strong
structure with excellent settleability, enabling high cell retention and
withstand high organic loading (Liu et al., 2009). Until the twentieth
century, the main research on microbial granules was focused on
producing methane along with wastewater treatment, but, today it has
expanded to various microbial processes, such as aerobic wastewater
treatment, anaerobic ammonium oxidation, sulfate reduction, and
hydrogen production (Cui and Kim, 2013; Gonzalez-Gil et al., 2012; Li
and Yu, 2011; Tang et al., 2014).

This paper presents the formationof LA-producing granules in anup-
flow anaerobic sludge blanket reactor (UASB), which enabled us to
achieve the highest volumetric LA productivity ever reported. To obtain
the microbial consortium effectively producing LA, anaerobic mixed
cultures were initially inoculated in a continuous stirred-tank reactor
(CSTR) operated at a hydraulic retention time (HRT) of 12 h under
thermophilic condition (50�C). The change in microbial community in
the CSTR with time was analyzed using a pyrosequencing tool. After
seeding the microbial consortium to the UASB, a substrate loading rate
(SLR, g glucose L�1d�1) was gradually increased by shortening theHRT
from8.0 to 0.17 h. The granulation processwasmonitored bymeasuring
the size of microbial aggregates and hydrophobicity. In addition, images
were takenwith a scanning electronmicroscope (SEM) to investigate the
surface characteristics of the granules. Finally, information about the
physicochemical characteristics of LA-producing granules was obtained
by carrying out settling experiments.

Materials and Methods

Inoculum and Substrate

The inoculum for a CSTR was taken from an anaerobic digester in a
local wastewater treatment plant. The pH, alkalinity, and volatile
suspended solids (VSS) concentration of the sludge were 7.7, 2.5 g
CaCO3 L

�1, and 5.3 g L�1, respectively.
Glucose of 20 g L�1 was used as a substrate. Concentrations of

NH4Cl, KH2PO4, and FeCl2•4H2O were added to yield a C:N:P:Fe
ratio of 100:5:1:0.33. The feed also contained the following nutrients
(inmg L�1): yeast extract, 3,000; NaHCO3, 1,000; MgCl2•6H2O, 100;
CaCl2•2H2O, 75; Na2MoO4•4H2O, 0.01; H3BO3, 0.05; MnCl2•4H2O,
0.5; ZnCl2, 0.05; CuCl2, 0.03; NiCl2•6H2O, 0.05; CoCl2•2H2O, 0.5;
Na2SeO3, 0.05 (Kim et al., 2012). Substrate and nutrients were not
sterilized.

Reactor Operation

In this study, a CSTR with a working volume of 2.0 L (120mm ID)
was used. After being seeded with anaerobic digester sludge
equivalent to 30% of the total effective volume, the reactor was
purged with N2 gas for 5min to provide anaerobic conditions. The
reactor was mixed by mechanical stirring at 100 rpm and pH was
maintained at 5.0� 0.1 using a pH sensor, pH controller, and 2 N
KOH solution. According to our previous work, temperature was
controlled using a water bath circulator and a built-in water jacket at
50�C (Kim et al., 2012). At first, the reactor was operated by batch
mode for one day, and then SLR was maintained at 40 g glucose
L�1d�1, corresponding to HRT 12 h.

After 5 days of operation, 1 L of mixed liquor in the CSTR was
transferred to the UASB (working volume 2.9 L, Fig. 1) as seed
biomass. As there was no mechanical mixing, the pH inside the
UASB was not uniform, and, accordingly, controlling pH was
difficult. Therefore, in order to provide buffer capacity, NaHCO3
(5.0 g L�1) was added to the medium. The SLR was gradually
increased from 60 to 2,880 g glucose L�1d�1 by shortening the HRT
from 8.0 to 0.17 h. The interval of SLR increase was set at 1.5 times
of the previous SLR. At each phase, the reactor was operated for at
least 5 days, more than 10 times of HRT, in order to establish
steady-state conditions, judging from the metabolic products.

Microbial Community Analysis

Sampling, DNA Extraction and PCR

To analyze the structure of bacterial communities in the CSTR, 0.5 g
ofmixed liquor was used for DNA extraction using the Fast DNA Spin
Kit for soil (QBIOgene, Carlsbad, CA) following the manufacturer’s
instructions. The DNAobtainedwas confirmed by electrophoresis on
0.8% agarose-gel (Mupid, Japan). Partial sequences of the 16 S rRNA
gene including the variable V1–V3 region (corresponding to the 9–
536 regions in E. coli) were amplified from the obtained DNA using
two primers: Bac9f (50- GAGTTTGATCMTGGCTCAG-30) (Weisburg
et al., 1991) and Bac536r (50- WTTACCGCGGCTGCTGG -30) (Muyzer
et al., 1993). On both primers, barcode sequences were attached as a
unique tag for sample identification when multiple samples were
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analyzed in parallel on one 454 picotiter plate. All PCR amplification
were performed in 40mL volumes containing 40 ng of template DNA,
1� f-Taq Buffer (Solgent Co., Ltd, South Korea), 200mM dNTP,
40 pmol of each primer, and 2 units of Taq polymerase (Solgent Co.,
Ltd, South Korea) using a MJ Mini personal thermalcycler (Bio-rad
laboratories, Inc. Hercules, CA, USA). The PCR conditions were as
follows: 94�C for 1min; 30 cycles of denaturation (94�C; 1min),
annealing (58�C; 45 s), and extension (72�C; 1min); followed by the
final elongation (72�C; 7min). The PCR products were examined by
electrophoresis in a 0.8% (w/v) agarose gel, stained with ethidium
bromide, in TAE buffer, and purified using a PCR purification kit
(Solgent Co., Ltd, Korea) according to the manufacturer’s
instructions.

Pyrosequencing and Data Analysis

The 7 PCR products were mixed together and transferred to the
Macrogen Co. Ltd. (Seoul, Korea) for pyrosequencing using the 454

GS-FLX sequencer (Roche diagnostics Korea Co., Ltd, Seoul, Korea)
utilizing the Titanium Sequencing Kit (Roche) to generate 400-bp
sequence reads. The pyrosequencing methodology has been
described in a previous review (Armougom and Raoult, 2009). All
of the raw sequence data were sorted based on sample-specific
barcode tags and primer and tag sequences were trimmed from
sorted sequences. Raw sequences were processed through the
Ribosomal Database Project II pyrosequencing pipeline (http://
wildpigeon.cme.msu.edu/pryo/index.j) (Cole et al., 2009). First,
ambiguous and short sequences with a length less than 300
nucleotides were removed. Second, qualified sequences were
clustered into OTUs defined by a 3% distance level using a
complete-linkage clustering. Third, these were assigned to phyla
using the RDP-II classifier at a 50% confidence threshold (Wang et al.,
2007). The sequenceswere clustered based on the similarities of 97%,
95%, and 90% using the CDHIT program (Li and Godzik, 2006).
OTU-based diversity analyses and diversity indexes calculation were
performed using mother package (Schloss et al., 2009).

Figure 1. A schematic of lactic acid producing up-flow anaerobic sludge blanket reactor.
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Physicochemical Characteristics Analysis

Settling Experiment

The settling experiment was performed to obtain the physico-
chemical characteristics of the LA-producing granule as described
in a previous study (Cho et al., 2013). The experimental apparatus
consisted of a transparent acrylic column and collection unit. The
collection unit consisted of a bottom well and filtration unit with a
Buchner funnel and vacuum pump.

Each granule was transferred into the top of the settling column,
and the settling velocity at a point of 15–25 cm from the top of the
column was measured. After a settling experiment, the size and dry
weight of granules were determined. The size (projection diameter)
was determined by calculating the diameter of a circle which had
the same projection area as the granule. A total of 40 granules
obtained at the end of the operation were used for the settling
experiment.

Calculated Granule Properties

Several physicochemical properties of the granules were calculated
based on the Stokes’ law for a porous but impermeable microbial
aggregate. The settling velocity of a microbial aggregate predicted
from Stokes’ law (Us) can be derived according to Equation (1).

Us ¼ 8gf

p
1
rl
� 1

rc

� �
Wd
Cdd

2

� �1=2
ð1Þ

where g is the gravitational constant (cm s�2), rc is the density of a
microbial aggregate (g cm�3), rl is the density of the liquid
(g cm�3), Cd is the empirical drag coefficient, Wd is the dry weight
of the granule, and f is a ratio factor between dry mass and wet
mass. The Cd is adjusted for higher Reynolds numbers (Re> 1) and
it can be obtained from Equation (2) and (3).

Cd ¼ 24

Re
þ 6

1þ ffiffiffiffiffi
Re

p þ0:4 ð2Þ

Re ¼ rlUd=m ð3Þ

where U is the actual settling velocity (cm s�1) and m is the fluid
viscosity (g cm�1s�1).

The two parameters for the general characteristics of cells, rc and f,
were determined separately. The rc was determined using a series of
sugar solution according to the method described by(Zheng et al.
2005). The rc and f were found to be 1.06 g cm

�3 and 3.48, respectively.
The permeable structure of a granule can be characterized by a

fractal dimension and permeability. The fractal dimension can be
found from the slope of a log-log plot of the dry mass and size of the
granule (Equation 4).

Wc ¼ fWd � dD ð4Þ

where D is the fractal dimension and Wc is the wet mass of granule
Highly porous and fractal structure of the granule may permit a

significant intra-granule flow, resulting in a reduced drag coefficient

and thus increased settling velocity, as compared to what can be
predicted by Stokes’ law. The predicted settling velocity from
Equation (1), US, can be compared with the actual settling
velocity, U. The ratio of U/US will be then:

G ¼ U

Us
¼ j

j�tanhðjÞþ
3

2j2
ð5Þ

where the dimensionless permeability factor, j, is a function of the
size and the hydraulic permeability of the granule, k, is described as
Equation (6).

j ¼ d=2k1=2 ð6Þ

The internal permeation of the granule maybe more directly
indicated by its fluid collection efficiency, ef, which is defined as the
ratio of the interior flow passing through the granule to the flow
approaching it (Equation 7).

ef ¼ 9Us

2j2U
ð7Þ

Analytical Methods

Organic acids including volatile fatty acids (VFAs, C2–C6) and
lactate were analyzed by a high performance liquid chromato-
graph (HPLC) (Finnigan Spectra SYSTEM LC, Thermo Electron
Co.) with an ultraviolet (210 nm) detector (UV1000, Thermo
Electron) and an 100� 7.8 mm Fast Acid Analysis column (Bio-
Rad Lab.) using 0.005M H2SO4 as mobile phase. The liquid
samples were pretreated with a 0.45mm membrane filter before
injection to both HPLCs. VSS and alkalinity were measured
according to Standard Methods (APHA, 1998). The remained
glucose in the broth was measured using the Dubois’ method
(Dubois et al., 1956).

The size of flocs was analyzed with the free UTHSCSA Image
Tool program, a program developed at the University of Texas
Health Science Center at San Antonio, Texas. The sample of
sludge (0.2 mL) was spread over a petri dish and fixed within a
transparent 25 g-gelatin L�1 gelatin solution (5 mL). After the
gelatin solidified, the sample dishes were placed over the scanner
surface. Once eight-bit greyscale images had been obtained, they
were analyzed. The software provided the information of area,
particle number, diameter, and other characteristics of the
particles in the digital image. The microstructures of granules
were investigated by SEM (LEO 1455VP) equipped with a
secondary electron and quadrant back-scattering detector
(QBSD). Cell hydrophobicity was measured by conventional
microbial attached to hydrocarbons (MATH) method using n-
hexadecane as the hydrocarbon and phosphate urea magnesium
sulfate buffer as the water phase (Rosenberg et al., 1980). To
disperse the cells in granules, grinding and low sonication (50W
for 2min with 5 s pulse and 5 s interval) were applied (Guo et al.,
2011). The extraction of EPS from granules was followed the
procedure described by(Brown and Lester, 1980).
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Results and Discussion

Microbial Community Change in CSTR

As the CSTR operation started, an LA concentration gradually
increased, reaching 18 g L�1 (90% of input glucose) by the 5th day of
operation (Fig. S1), which indicated that there was a microbial shift
favorable for LA production under the operating condition. A
biomass concentration gradually decreased and reached to 1.2 g VSS
L�1, accounting for 8.5% of input glucose on chemical oxygen
demand (COD) basis. The COD of biomass was calculated by
assuming a composition of C5H7O2N, resulting in a COD of 1.42 g
COD VSS�1 (Kim et al., 2014). The total output COD (produced
LAþ biomassþ residual glucose) was 105–110% of input glucose,
probably due to the additional supply of 0.3% yeast extract. Assuming
that yeast extract contains 20% ash and corresponds to 1.42 g COD/g
(yeast extractvolatile), a COD balance reached to 90–95% (total input
COD¼ 23.4 g/L). The produced LAwasmostly (>95%) l�(þ) form,
as shown in other studies (Kwon et al., 2001; Lu et al., 2012).
To study the bacterial community structure of the LA-producing

CSTR, the collected mixed liquor samples were subjected to
pyrosequencing analysis. A total of 68,530 reads were obtained from
a single lane of an 8-lane picotiter plate on a Genome Sequencer
FLX titanium system. The type of samples and the number of reads,
good reads, average length, and operational taxonomic units
(OTUs) from this pyrosequencing work are listed in Table SI.
Figure 2 shows the distribution of sequence at the genus level in

each sample. After only one day of CSTR operation, the genus
Lactobacillus jumped from 0.1% to 49.4%, occupying the
predominant composition, which later increased up to 91.5% by
the 5th day of operation. Meanwhile, the genus Clostridium,

Anaerobacter, Sarcina, and Pelobacter gradually decreased and
completely disappeared after 5 days of CSTR operation. Instead,
Leuconostoc, which has similar LA productivity with Lactobacillus
emerged after 5 days of CSTR operation, constituting around 7% of
total sequences (Dartois et al., 1995).
To examine the diversity of genus Lactobacillus at the species

level, a representative of retrieved sequences was analyzed in the
EzTaxon server (Chun et al., 2007). Among the genus Lactobacillus,
only limited kinds of taxonomical groups related to Lactobacillus
delbrueckii were observed throughout the operation (Fig. 3). The
majority sequence (Group I) belonging to the genus Lactobacillus
showed a sequence similarity of 99–100% to that of L. delbrueckii
subsp. bulgaricus ATCC 11842Twhich is the same as L. delbrueckii
subsp. delbrueckii ATCC 9649T and L. delbrueckii subsp. indicus
NCC725T. As shown in Table I, subgroup I in L. delbrueckii was
found after the batch operation (Day 0) and developed their realm
continuously as CSTR operation continued. Subgroup II, III, and IV
accounted for a smaller composition, which fluctuated with time. It
was impressive to observe that only 0.1% of the L. delbrueckii-
related group was observed among the total 1,385 sequences after
batch operation. However, their abundance reached 85% of total
sequences after five days of CSTR operation, suggesting that
although the initial population of effective microbial consortium
producing LA was very low in the inoculum, environmental
conditions prevalent in the CSTR was suitable for making them
dominate so quickly.

Fermentation Performance in UASB

The daily performance of the UASB including LA concentration,
residual substrate concentration, and LA productivity at various

Figure 2. Taxonomic compositions of bacterial communities at genus level for the sequence retrieved from each sample.
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HRTs is shown in Figure 4. After transferring 1 L of mixed liquor
from the CSTR to the UASB, an LA concentration gradually
increased and reached 20–21 g L�1 with over 95% of substrate
removal within 5 days, suggesting a successful start-up of UASB. It
seemed that addition of yeast extract by 0.3% in the feed
contributed to yield over 100% of input glucose (>20 g L�1) (Altaf
et al., 2006; Yilmaz et al., 2010). The sum of soluble portion
(produced LAþ residual glucose) in the effluent was around 90% of
total input COD (23.4 g COD/L), indicating that 10% COD was used
for cell synthesis. The production of other organic acids such as
acetate, butyrate, and propionate was negligible (<0.01mM). The
LA concentration was maintained up to HRT 3.5 h, but a sudden

decrease of LA concentration with the increase of residual substrate
concentration was observed after decreasing HRT to 2.0 h. However,
it was soon recovered and showed a stable performance. During this
fluctuation period, pH suddenly increased from 4.0–4.5 to 5.0–5.5,
but it soon returned with process recovery. Indeed, this kind of
phenomenon was observed every time when HRT was further
reduced, which might be related to the lack of biomass to treat an
increased load of substrate (Lu et al., 2012). As operation went on,
however, it was possible to see the accumulation of biomass from
the lower part of the main body of the UASB, which could handle
higher substrate loading. From HRT 1.0 h, the biomass concen-
tration in the blanket zone of UASB ranged 40–60 g dry cell weight

Figure 3. Phylogenetic tree of the representative sequences that belong to the genus Lactobacillus and their abundances during the operation of lactic acid producing

bioreactor. (Scale bar of tree indicates the 0.01 nucleotide substitutions per site. Abbreviations for genus names: L, Lactobacillus).

Table I. The subgroup ratio in L. delbrueckii and their abundances during the operation of lactic acid producing bioreactor (unit, %).

CSTR

After batch operation (Day 0) Day 1 Day 2 Day 3 Day 4 Day 5 Granules in UASB

Subgroup Ia 42.3 61.5 69.0 76.3 79.5 74.5 81.8
Subgroup IIa — 8.8 11.4 8.2 3.3 — —

Subgroup IIIa — 2.3 7.0 — 6.5 1.9 7.8
Subgroup IVa — — 4.6 5.5 2.6 16.2 —

L. delbrueckii group in Lactobacillusb 42.3 72.6 92.0 90.1 92.0 92.5 89.6
L. delbrueckii group in total sequencesc 0.1 35.9 64.3 65.0 77.9 85.0 70.6

aSubgroups were divided by DNA GþC contents in a L. delbrueckii group.
bRelative abundance of a L. delbrueckiigroup in total Lactobacillus sequences.
cRelative abundance of a L. delbrueckiigroup in total microbial sequences.
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(dcw) L�1 (70–110 as optical density). Up to HRT 0.5 h, the
accumulated biomass, formed as granules, could successfully
produce LA, ranging 19–20 g L�1.
When HRTwas shortened to 0.33 h, there was a drastic decrease

of LA concentration to 13 g L�1, accompanied by a drop of substrate
removal around 60%. Although LA concentration increased again
and showed a stable performance within 5 days, it was still 20%
lower than that in the previous operation. As HRT was further
shortened, an LA concentration kept decreasing. Under steady-state
condition with operation at HRT 0.17 h, LA concentration and
substrate removal were 11.5 g L�1 and 60%, respectively. However,
the volumetric LA productivity continuously increased, reaching
67 g L�1h�1, which, to our best knowledge, was the highest value
reported ever. Previously, LA productivities of 22–57 g L�1h�1 were
obtained using a membrane-coupled reactor (Kwon et al., 2001;
Schepers et al., 2006; Tejayadi and Cheryan, 1995; Xu et al., 2006).
The microbial granule system for LA production carries significant
advantage over the membrane bioreactor such as being free from
technical challenges associated with membrane fouling. Actually,
the continuous operation lasted less than 5 days in the previous
works while the UASB in the current study showed a stable
performance for 10 days even at HRT 0.17 h. The future work would
be focused on making LA-producing granules by using cheap
feedstock including molasses, potato waste, and corn hydrolysate.

Granulation Process and SEM Image Analysis

To elucidate the granulation process in the UASB, samples were
prepared to get microscopic images and to measure the mean size
and hydrophobicity of granules. One day before changing HRT,
100mL of mixed liquor were taken from the two different ports (5

and 25 cm from the bottom) and used for these analyses. Since there
was not much biomass accumulated at HRT 8 h, sampling and
analysis were done from HRT 5.4 h.
The LA-producing granules had creamy color, probably due to

the suppression of sulfate reducing bacteria at pH lower than 5.0
(Fig. 5; Mu and Yu, 2006). Actually, the change of color was
obviously seen in the CSTR operation, which became white and
yellow as operation continued. From the microscopic images, it was
easily visible that bigger size granules were more dominant at HRT
1.0 and 0.5 h, compared to HRT 5.4 and 2.0 h. The reactor
hydrodynamics is known to have a significant role in the
granulation process, which is, in general, facilitated under high
up-flow velocity conditions (Arcand et al., 1994; Pan et al., 2004;
Verawaty et al., 2013). The up-flow velocity applied in this study
increased from 0.13 to 6.0 m h�1 with a decrease of HRT from 8.0 to
0.17 h.
Microbial granules are formed by dynamic processes involving

microbial attachment, detachment and growth, and reach a certain
stable size, which is influenced by various parameters including up-
flow velocity (Verawaty et al., 2013). As HRT decreased, the size of
granules gradually increased, reaching 6.0 mm at HRT 0.17–0.25 h
(Fig. 6). In particular, there was a drastic increase of size at HRT
1.0 h, which was consistent with the biomass movement behavior in
the UASB. It seemed that a transition occurred from a fixed-bed
regime to fluidized-bed regime at HRT 1.0 h. At HRT �1 h, it was
easy to see a lot of movement of granules, up and down, in the UASB
(Fig. S2). This process can lead to washout of non-granulated
biomass and to enhance mass transfer to the core of granules,
resulting in an increase of granule size.
Like the size of granules, hydrophobicity also increased with

decreased HRT. It reached around 60% of hydrophobicity at HRT

Figure 4. Daily lactic acid fermentation performance at various hydraulic retention times.
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�1 h, which was in the similar range of anaerobic methanogenic
granules and aerobic sludge granules, determined by MATH
method (Pan et al., 2004; Liu and Tay, 2004). MATH method can be
easily applied to flocculated cells and mixed culture, in which “%”
indicates the percentage of cells adhering to hexadecane after
partitioning for 15min. It was reported that an adequate HRT or
hydraulic selection pressure can compel the microorganisms to
modify their surface properties and increase their cell hydro-
phobicity (Pan et al., 2004; Mahoney et al., 1987). Moreover, high
hydrophobic force causes a decrease in the excess Gibbs energy of
the surface and facilitates cell-to-cell interactions, resulting in a
compact and strong structure of granules (Liu et al., 2004).

The SEM images of granules obtained at HRT 1 h are shown in
Figure 5. At macro-scale, the surface of granules was smooth
(Fig. 7a). However, cracks became visible as magnification
increased, which might be related with mass transfer and the
release of gaseous products from microbial metabolic processes
within the granules (Fig. 7b and c). These kinds of cavities also have
been observed in other kinds of biogranules (Zhang et al., 2008).
The granules comprised uniform rod bacteria (Fig. 7d), presumably
rod bacterium Lactobacillus, which is consistent with the results of
pyrosequencing analysis. Although, there was a slight increase of
Leuconostoc population in the UASB operation, Lactobicillus sp.

were the dominant species, occupying about 80% of total bacterial
composition (Fig. 2).

Physicochemical Characteristics of Granules

At the end of operation, 40 granules were taken from the reactor and
a settling experiment was carried out to measure their
physicochemical characteristics. The granule size varied from 3.4
to 9.7 mm, with a dry mass ranging from 2.6 to 25.9 mg (Fig. 8a).
Based on the slope of logarithmic relationship between the dry mass
and size, the fractal dimension of the granules was calculated to be
D¼ 2.00. This fractal dimension was within the range that is
expected for biological aggregates. Li and Ganczarczyk (1989)
reported a relatively wide range of fractal dimensions, 1.4–2.85, for
particle aggregates generated in water and wastewater treatment
processes.

The granule became more porous as its size increased, with
porosity ranging from 0.39 to 0.92 (Fig. 8b). It seemed that the
granules have lower porosity compared with conventional aerobic
granules or anaerobic methanogenic granules which normally have
porosity greater than 0.96 or in a range of 0.64–0.90, respectively (Li
and Yuan, 2002). The LA-producing granules were much denser
than other bio-aggregates, as demonstrated by their lower porosity.

Figure 5. Microscopic images of lactic acid producing granules (a–d), applied hydraulic retention times are 5.4, 2.0, 1.0, and 0.5 h, respectively.)
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Figure 6. Hydrophobicity and mean size of granules adapted at different HRTs.

Figure 7. SEM images of lactic acid producing granules obtained at HRT 1 h: (a) 100� magnification; (b) 1,000� magnification; (c) 5,000� magnification; and (d) 10,000�
magnification.
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This might be linked to the fact that LA production from glucose
does not involve gaseous matters (C6H12O6!2C3H6O3) while
anaerobic methanogenic granules produce CH4 and CO2 and
aerobic granules require O2 as an electron acceptor.

The settling velocities of granules varied from 2.69 to 4.73 cm s�1

with an average of 3.79 cm s�1 (Fig. 6c), which were higher than
those for aerobic granules (0.17–3.21 cm s�1), anaerobic H2-
producing granules (0.89–2.08), and anaerobic mathanogenic
granules (0.37–6.60 cm s�1). The high settling velocity in this study
enabled successful operation of the UASB under very short HRT
conditions. The corresponding Reynolds numbers were
231.2� 67.3, which were greater than unity. Therefore, the
application of Equation (2) for calculation of Cd (empirical drag
coefficient) was found to be suitable. The observed settling
velocities were in good agreement with the predictions for porous
but impermeable objects from Stokes’ law.

The dimensionless ratio of the observed to predicted velocities,
G, is 1.03� 0.14. This value close to unity suggests that the internal
permeation of the granule was not sufficient to affect their settling
behavior. The impermeable nature of the granule could also be
explained by a permeability and fluid collection efficiency. The
permeability and fluid collection efficiency were calculated to be
0.016� 0.0017 and 0.0487� 0.021 cm2, respectively. In general,
these granules had much lower permeability compared with those
previously reported for aerobic and anaerobic granules, which
ranged 0.14–0.19 (Cho et al., 2013; Johnson et al., 1996; Li and
Yuan, 2002; Mu et al., 2006).

The observation of this study was consistent with the argument
that although microbial granules are highly porous and fractal, the
internal permeation of the granules did not appear to have much
hydrodynamic significance. Highly permeable inorganic aggregates
have been found to have 4–8 times faster settling velocity than was
predicted by Stokes’ law, but the granules in this study had settling
velocities that generally agreed with those predicted by Stokes’ law
for porous but impermeable spheres. This agreement suggests that
there was little convective flow through the granule interior,
probably due to pore clogging by large amounts of EPS generated by
LA-producing granules. The high concentration of extracted EPS
from the granule (145� 16mg carbohydrate g VSS�1 and
68� 4mg protein g VSS�1) is consistent with the explanation of
low permeability of this granular biomass.
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