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Weight reduction of vehicle is very important because vehicle weight directly affects energy consumption. Studies researching

lightweight vehicle manufacturing process that use polymers are reviewed in this paper. Approaches reducing the weights of vehicles

using polymers most frequently involve replacing ferrous and non-ferrous metals with polymers and increasing the specific strengths

and rigidities of polymers. Researches into polymers for use in lightweight vehicle are classified into high performance polymers,

polymers for weight reduction, reinforced polymer composites, polymer sandwich panels, and polymer/metal hybrid systems. A diverse

range of polymer materials can be used to make vehicle components and the manufacturing methods required to produce and work

those materials vary greatly. Shaping processes must be chosen according to the materials being used and the product design.

Replacement of metal products with polymer materials in current vehicles is limited. Large amounts of lightweight materials, such

as polymers, will be greatly used to construct newly developed vehicles, including electric and electric/hybrid vehicles.
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1. Introduction

Vehicle weight reduction is currently the hottest issue concerning

vehicles. Vehicle weight directly affects energy consumption and a

10% reduction in weight increases fuel economy by approximately 7%.

Fig. 1 shows a trend of fuel efficiency of automobile by year.1 The

recent emergence of electric vehicles has focused attention more on

vehicle weight. Vehicle weight reduction can be achieved by various

means employed simultaneously. 

These means involve reducing the size and number of engine-

related parts by maximizing engine efficiency, producing structurally

efficient body design, reducing overall vehicle size by maximizing

interior room using space efficient designs, as well as employing

lightweight materials.2-4 Lightweight materials can be utilized by

developing effectively advanced materials, pioneered molding

processes, and construction technologies. The materials used for

vehicle fabrication are largely classified as ferrous metals, non-ferrous

metals, and polymers. Fig. 2 shows material consumption ratio for a

light vehicle.5

In this paper, studies researching lightweight vehicle manufacturing

process that use polymers are reviewed. Approaches reducing the

weights of vehicles using polymers most frequently involve replacing

ferrous and non-ferrous metals with polymers and increasing the

specific strengths and rigidities of polymers. Developing novel

polymers and improving the material properties of existing polymers

are two common approaches to replacing metal with polymers. Most of

the interior parts of an automobile are well known polymers.

Additionally, several invisible interior and exterior parts of a car have

traditionally been made of metals; however, many of them are now

being replaced with polymer-based parts. The parts that can be replaced

with polymers vary according to class and type of vehicle.    Currently,

approximately 15 to 20% of the total weight of a vehicle is polymer

materials. Typical parts that are being replaced with polymers are front

ends, bumpers and fascia systems, grills, fenders, intake manifolds,

engine mounts, door structures and panels, door impact beams, bonnet

panels, under hood parts, pedal boxes, body structures, steering

columns, wheel rims, seat backs and under parts, roof modules, sun

roofs, interior trim components, instrument panel, etc.6-9 Table 1 shows

applications of polymers in automobile parts and Table 2 shows

amount of polymers used in automobile parts.10
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2. Research Trends in Polymers for Vehicle

2.1 High performance polymers

Generally thermoplastics are more popular than thermosets for

automobile parts manufacturing because shaping thermoplastics is

simpler and faster. Materials to be applied near engine parts should

have high thermal resistance, whereas exterior and structural parts

should be fabricated from materials with high mechanical strengths.

Thermoplastics, however, have limited thermal resistance and

mechanical properties, and thus, can be applied only after they are

modified for high performance polymers through reinforcements.

After PA (Polyamide, Nylon) emerged in the late 1930s, high rigid

and thermally resistant engineering plastics have been in the limelight.

Commodity plastics include PE (Polyethylene), PP (Polypropylene),

PS (Polystyrene), PVC (polyvinylchloride), PMMA

(polymethylmethacrylate), ABS (Acrylonitrile-butadiene-styrene), etc.

and engineering plastics that have high mechanical strength and

thermal resistances are PC (polycarbonate), PA, POM

(polyoxymethylene), Polyester, etc. Development of most of these

engineering plastics began in the 1970s. Examples of super engineering

plastics, plastics that have better mechanical properties, and much

better thermal resistances than engineering plastics, are PPS

(polyphenylene Sulfide), PES (Polyethersulfone), PAI

(Polyalkyleneisophthalate), PAR (Polyarylate), PEEK

(Polyetheretherketone), PEI (Polyetherimide), PI (Polyimide), PTFE

(Polytetrafluoroethylene), and LCP (Liquid Crystalline Polymer), and

most of these were developed after the 1970s. The historical progress

of polymers reflects the fact that the synthesis technologies used for the

preparations of novel polymers were developed in accordance with the

needs for polymers with higher mechanical strengths and thermal

resistances. These high performance polymers are used in automobile

parts alone, as alloys, and with reinforcements. Compound-type

polymers are widely used since developing synthetic methods for

producing multi-functional polymers takes a long time and is costly.

Compound-type polymers are manufactured by mixing and

Fig. 1 Fuel efficiency of automobile by year

Fig. 2 Material consumption ratio for a light vehicle

Table 1 Applications of polymers in automobile parts

Polymer Name Properties Application Examples

Polypropylene
Low-cost, good solidity, 

chemical resistance

Bumpers, wheel housings, 
air filter housings, guide 
chnnels, containers, side 
panels, bettery case, door 

trim, crash panel

Polyurethane
Damping, good 

elasticity, low heat 
conductivity

Seat upholstery, dashboard 
and roof padding, exterior 

elements

Acrylonitrile
Butadiene Styrene

Copolymer

Electroplatable, 
dimensionally stable, 

solid

Interior paneling, wheel 
panels, rediator grills, 

dashboard

Polyamide

Temperature-stable, low 
gas permeability, 

permanently solid, rigid, 
ageing-resistant

Motor covering, suction 
elbows, wheel panels, 
plugs, mirror housing, 

door handles, connector 
housing

Polyvinylchloride
Weather-resistant, low-
cost, non-inflammable, 

good haptics

Underbody protection, 
protective bordering, 

cable insulation, interior 
paneling

Polyethylene
Low-cost, ageing-
resistant, chemical 

resistance, good solidity

Fuel tanks, windshield 
fluid containers

Polyoxymethylene

Chemical resistance, 
abrasion-resistant, 

impact-resistant, low 
tendency to creeping, 

thermally stable

Clips, connectors,
bearing components

Polymethyl-
methacrylate

Transparent, scratch-
resistant, UV-resistant, 
stress-cracking resistant

Headlight lenses for 
blinker and rear lamps

Polycarbonate
Impact-resistant, 
transparent, UV-

resistant

Headkight lenses, tail 
light cover, bumper 

coverings, exterior auto 
body parts

Polyethylenetere-
phthalate

Tensile strength, rigid, 
good barrier effect

Textiles, coverings, seat 
belts, airbags

Polybutylenetere-
phthalate

Rigid, heat-resistant, 
good electrical 

insulating, behavior, 
dimensional accuracy

Electronic housings, 
bumper coverings, 

exterior auto body parts, 
plugs, connector housing

Polyether-
etherketone

Heat-resistant, friction-
wear properties, 

chemical resistant

Oil pump, bearing, washer, 
transmission parts, ball 

joint, brake parts
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compounding polymers with reinforcements and additives. This

approach is much easier and simpler, in most cases, than synthesizing

polymeric materials with new functionalities.11-15

Polymers have advantages, in addition to their ability to reduce

weight, for vehicle part applications. Polymers inherently self-lubricate

and can be used in bearings, gears, and ball-and-socket joints. A one-

time injection of lubricant would be enough to sustain a polymer ball-

and-socket joint in a vehicle until it went to the junkyard. This cannot

be expected of metal ball-and-socket joints. Polymers used in bearings

and gears include PA and POM, usually reinforced with glass fibers.

Polymers can also reduce vehicle noises and vibrations, which can

increase driving comfort.16-18

2.2 Polymers for weight reduction

The walls of polymer products are thicker in many cases in order to

increase their strengths. Thicker walls are heavier. Forming foams,

bubbles, or cells in a component’s construction material can obviously

reduce a product’s weight. This method originated at MIT in the 1980s,

commercialized by Trexel Inc., and was named Mucell process. In this

method, microcellular foams are developed during injection molding.

In the Mucell process, polymers are melted in the injection unit of the

injection molding machine and then a supercritical fluid is dissolved in

the melted polymer using a physical blowing agent (PBA), such as N2

and CO2. Then, the melted polymer, containing the supercritical fluid,

is injected using by high pressure, into the mold cavity and allowed to

solidifying. Cell sizes are approximately 1-100 um and their densities

range between 109 and 1015 cells/cm3. Cell size and density depend on

supercritical fluid concentration, which is controlled through gas

saturation, microcellular processing pressure, and mixing temperature

during processing. Various polymers are used in this process, such as

PPS, PS, POM, PET (Polyethyleneterephthalate), TPE (Thermoplatic

Elastomer), PP, HDPE (High Density Polyethylene), PA, and PC.

Weight reductions of approximately 10-60% can be achieved, depending

on the materials, using this process. Products containing foams also

demonstrate better thermal insulation properties. Some problems can

arise during the foaming processing, such as the swirl marks on the

molded surface as a result of trapped air, silver streaks on the surface

as a result of bubbles breaking, surface blistering, and post-blowing.

These attributes deteriorate surface quality and limit the applicability of

the process. Mechanical strength drops markedly when the size of the

foam exceeds 0.25 mm, thus research into overcoming these problems

is needed. One approach to overcoming these problems is to use

injection compression molding instead of injection molding. Injection

compression molding leads to enhanced control of microcellular

structure. In many cases glass fibers are added to polymers during this

process to enhance the mechanical properties of the final products.

Chemical blowing agents are used in glass fiber reinforced PP to reduce

its viscosity and prevent fibers breakage. When rubber particles are

added, impact and fracture toughening properties increase. Injection

ready pellets can be made by extruding them with a twin screw extruder,

within which the polymer and blowing agent are mixed. Injection

molding is then performed using these pellets. This approach is called

supercritical fluid laden pellet injection molding foaming technology

(SIFT).19-24

The other process used to form microcellular foams follows. The

mold cavity is filled with the beads that contain the blowing agent and

then high temperature steam is injected into the mold cavity to bond the

beads. The temperature and pressure of the steam greatly affect the

mechanical properties and property uniformities of the resulting

products. This process is called steam chest molding. The mold opening

is controlled during this process to adjust the foam size through pressure

variation. Gas venting is very important in this process and the mold

contains many vent holes. PP, PE, and PS are mostly used for this

process. Blowing agent containing resins, such as commercially available

EPP, EPE, and EPS are called expandable resins. Of them, EPP shows

high impact strength, high-energy absorption, and high heat and noise

insulation. Therefore, it is a material with high potential for use in

vehicles.25-28

2.3 Reinforced polymer composites

Attempts have been made to incorporate polymer nanocomposite-

based parts into vehicle since the 1960s. A nanoscale clay was

dispersed in a polymer matrix and the resulting composite was used to

construct automobile parts located near the engine since the

nanocomposite had good thermal properties. Many studies into

polymer nanocomposites followed this. Clay nanocomposites with PP,

PA, PBT (Polybutyleneterephthalate), PC, etc. have been reported.

Clays such as montmorillonite can be spread to nanoscale thicknesses

to produce what are called layered clay minerals. When nanoscale clays

are dispersed in polymers, their thermal resistance and flame retardance

Table 2 Amount of polymers used in automobile parts

Part Main Plastic Type
Weight in

Average Car (kg)

Bumpers PP. ABS, PC 10.0

Seats PUR, PP, PVC, ABS, PA 13.0

Dashboard PP, ABS, PA, PC, PE 15.0

Fuel Systems PE, POM, PA, PP 7.0

Body
(Including body panels)

PP, PPE, PBT 6.0

Under the Hood
Components

PA, PP, PBT 9.0

Interior Trim PP, ABS, PET, POM, PVC 20.0

Electrical Components PP, PE, PBT, PA, PVC 7.0

Exterior Trim ABS, PA, PBT, ASA, PP 4.0

Lighting PP, PC, ABS, PMMA, UP 5.0

Upholstery PVC, PUR, PP, PE 8.0

Other Reservoirs PP, PE, PA 1.0

Total 105.0

Fig. 3 Types of polymer materials used in a vehicle
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increase. The most significant aspect of clay nanocomposites is how

one can disperse the nanoclays in the polymer matrix since the material

properties of the nanocomposites strongly depend on their nanoparticle

dispersion. Full exfoliation or intercalation of nanoclays in a polymer

matrix secures the properties of the nanocomposite. However, strictly

speaking, full exfoliation or intercalation of nanoparticles in a polymer

matrix can only be achieved in situ. Polymer nanocomposite

preparations have limitations since mixing and compounding in a melt

using a continuous mixer, such as a twin screw extruder, cannot secure

fully exfoliated or intercalated nanoparticles.29-34

In contrast to nanocomposites, polymer composites that exhibit a

wide range of properties can be achieved through various convenient

manufacturing processes. These polymer composites are achieved by

compounding reinforcements with polymers or molding polymers with

a preset preform simultaneously in the mold. Reinforcements are usually

mineral fibers, such as glass fibers, carbon fibers, boron fibers, and

basalt fibers. Polymer fibers, aramid fibers and PE fibers are also used.

The mechanical strength and stiffness of a polymer composite depend

on the content, type, and shape of reinforcement used. Fibers used in

fiber reinforced polymer composites are designated as discontinuous

fibers or continuous fibers, according to their forms. Discontinuous fibers

are short fibers, long fibers, and chopped strand mats. Continuous fibers

are continuous fiber mats, unidirectional or multiaxial laminates, woven

fabrics, knitted fabrics, and braided fabrics (Fig. 4).35-43

Manufacturing processes for producing parts with fiber reinforced

polymer composites are diverse. Short glass fibers (typically < 3 mm)

reinforced polymer composites are used in conventional injection

molding, long glass fibers (typically 3-25 mm in length) reinforced

polymer composites are used in extrusion-compression and sheet

extrusion processes. Continuous fiber and woven fabric containing

polymer composites are used in pultrusion, thermostamping, and

compression molding. The compression molding process was adopted

for manufacturing parts with thermoset-matrix composites and uses

sheet molding compounds (SMCs) as starting materials. A SMC is a

thin sheet containing glass fibers, most of which are approximately

25 mm in length, in a thermosetting resin. When para-aramid fibers

(such as Kevlar) or carbon fibers are used as reinforcing fibers in

SMCs, these composites can replace metal. Racing cars already use

these composites. The most common thermoset resin systems are

polyester, vinylester, epoxy, phenolic, and bismalyamide.44-47

Molding thermoset parts reinforced with glass fibers during reaction

injection molding (RIM) is called reinforced reaction injection molding

(RRIM). The thermoset resins usually used are polyurethane and

polyurea, and short glass fibers are used with RRIM. When using long

fiber mats in RIM, the preset perform is first inserted into the mold and

then RIM is performed. Finally, the thermoset is cured. Reinforced

polymer composite parts also can be made using RTM by presetting the

preform in the mold and then feeding the thermosets. Reactants are fed

separately and they meet and are mixed in the mixing chamber, then

the mixed reactants are injected into the RIM mold. In contrast, in

RTM, premixed reactants, held in the reservoir, are fed into the mold

by a plunger. RTM involves low flow velocity and low resin viscosity.

Thus, the location of the reinforcement is stable in the mold during

molding. Preforms used in RTM are manufactured by spraying fibers

and binder into perforated molds or heating and pressing mats and/or

fabrics with thermoplastic binders.48-53

2.4 Polymer sandwich panels

Polymer sandwich panels and structural composites have two types

of core geometries, solid and spatial. The properties of structural

composites depend on the properties of their core layers and the

geometric arrangements of their core structures.

Polymer sandwich panels with solid core are manufactured by RTM

thermosets after presetting glass fiber laminates into the molds.

Thermoset resins form skin layers during this process. This process has

the advantages of lower processing costs and higher surface qualities,

compared to SMC, and it is suitable for smaller numbers of products.

Carbon fibers or para-aramid fibers can be used for reinforcement when

core layers are manufactured using reinforced thermoset resin (such as

epoxy) laminates. Laminated core layered polymer sandwiches are

similar to polymer composites and their rigidities are poor compared to

structural core layered polymer sandwich panels.54-57

Polymer sandwich panels consist of core and skin layers. The

mechanical properties of polymer sandwich panels depend on the

geometrical structures of their core layers and the mechanical properties

of their skin layers. Using foam structures for core layers instead of the

solid structures produced by RTM produces components with better

mechanical properties and smoother surfaces than SMC does. The

mechanical properties of foam cored polymer sandwich panels vary

with the size and density of foam used, and those parameters should be

well controlled during molding. If the structure of the core is consistent

instead of being a random foam, then it is easy to control the mechanical

strength to be high and uniform. The most typical core layer structure

is the honeycomb. Applications of polymer sandwich panels vary since

sandwich panels with new functions can be achieved by imposing

special properties onto core layers. Highly rigid honeycomb structures

can be made from meta-aramids such as Nomex, and flame retardant

PEI can be used for honeycomb materials. This means that varieties of

materials and structures of core layers can be used to obtain polymer

sandwich panels with highly variable properties. 58-66

If one designs polymer sandwich panels that contain full three-

dimensional core structures instead of two and a half dimensional

structures like the honeycomb shape, mechanical properties can be

greatly improved. This kind of core design has been attempted on metal

sandwich panels and recently it has also been applied to polymer

sandwich panels. Many consider the kagome structure to be the best

core structure design. Polymer sandwich panels with kagome-structured

pyramidal cores show high rigidity, high energy absorption, and high

Fig. 4 Application types of fibers used to reinforce polymers
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impact resistance. Thus this design is very attractive for vehicle

materials. Complete adhesion between skin and core layers is very

important for these structural sandwich panels and the strong points of

these panels are only secure once perfect adhesion has been achieved.67-73

2.5 Polymer/metal hybrid systems

Combining two different materials in vehicle parts began in the

1920s when steel chassis were combined with timber-framed aluminum

bodies. After the appearance of this hybrid system, it evolved into steel

chassis with glass fiber reinforced polymer bodies. Polymer/metal

hybrid systems are classified into two types: sheet metal/reinforced

plastics (two layers or two components) and sheet metal/plastic foam/

sheet metal (three layers).74-76

Joining plastics to metals is usually accomplished during molding.

The most common approach is to use an insert injection molding

method. The preset metal insert is placed in the mold cavity and then

thermoplastics are injected into the cavity after closing the mold. The

metal is buried and fixed in the thermoplastic. Crystalline thermoplastics,

such as PA and PBT, have advantages for insert molding since they

allow for residual stress relaxation. Glass fiber containing crystalline

thermoplastics are suitable for metal insert molding because the

differences between the thermal contractions of the metals and those of

the plastics are small.77-79

Thermosets/metal hybrid parts can be prepared by RIM. The RIM

process can be described as follows. Two or more components are fed

into the mixing chamber and then the mixed components are injected

into the mold. The mixed components polymerize (cure). The metal is

inserted into the mold, RIM is performed with PU, and then a metal/

PU hybrid composite is obtained. Introducing glass fibers during RIM

reduces the difference between the thermal expansion coefficients of

the two materials. Like RIM, RTM also can be used to manufacture

thermoset/metal hybrid parts. Thermosets that can be used in insert

RTM are epoxy, vinylester resin-based systems, and PU. Controlling

insert RIM and insert RTM processes is somewhat complicated and

they make recycling composites difficult.80-82

3. Closing Remarks

A diverse range of polymer materials can be used to make vehicle

components and the manufacturing methods in accordance with

products and materials vary greatly. Shaping processes must be chosen

according to the materials being used and the product design. Thus, our

ability to replace metal products with polymer materials in current

vehicles or vehicles designed to be made of metal is limited.

Consequently, large amounts of lightweight materials, such as

polymers, will be greatly used to construct newly developed, polymer-

based, vehicles, including electric and electric/hybrid vehicles. This

reduces vehicle weight remarkably.
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