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Convolution-Based Trajectory
Generation Methods Using
Physical System Limits
This paper proposes two novel convolution-based trajectory generation methods using
physical system limits such as maximum velocity, maximum acceleration, and maximum
jerk. Convolution is a mathematical operation on two functions of an input function and
a convoluted function, producing an output function that is typically viewed as a modified
version of input function. Time duration parameters of the convoluted functions with a
unit area are determined from the given physical system limits. The convolution-based
trajectory generation methods to be proposed in this paper have three advantages; first,
a continuously differentiable trajectory is simply obtained by applying successive convo-
lution operations; second, a resultant trajectory is always generated satisfying the given
physical system limits; third, the suggested methods have low computational burden
thanks to recursive form of convolution operation. The suggested methods consider both
zero and nonzero initial/terminal conditions. Finally, the effectiveness of the suggested
methods is shown through numerical simulations. [DOI: 10.1115/1.4007551]

1 Introduction

Motion systems are mainly composed of a desired trajectory
generator, a tracking controller to follow the trajectory, and a tar-
get system including actuators. Conventionally, the controller
plays a role in compensating quickly and accurately for an error
generated during tracking and the trajectory generator makes the
desired trajectory that the target system wants to follow. To be a
motion control system with high performance, the trajectory gen-
erator is as important as the controller because the trajectory to be
followed should be generated within physical limits of actuator
system. For this reason, a lot of researches as regards the trajec-
tory generation have been done for a few decades. The most im-
portant element in the trajectory generation is to make the
position (or configuration) trajectory of S-curve shape function
that is differentiable at least till either acceleration-level or jerk-
level. Especially, a jerk trajectory bounded in the physical jerk
limit of the actuator specification will reduce damages to the con-
trol system from unforeseen vibrations or overshoots as well as
improve the accuracy or speed when the system is under tracking
[1]. Also, the smaller the jerk is limited, the smoother the trajec-
tory is generated [2]. For a special purpose such as surgical robot
that makes contact with patients, the jerk-level trajectory bounded
with an arbitrary value must be considered rather than just the
bounded acceleration-level trajectory; moreover the jerk-level is
required to be kept as small as possible [3,4].

The control system has its own actuator such as electric motor,
hydraulic motor, pneumatic actuator and so on. Also, the actuator
has its own physical limits such as maximum velocity, maximum
acceleration, and maximum jerk. To realize the control system
with higher performance, the physical system limits should be con-
sidered when the desired trajectory is generated [2,5,6]. Also, Ref.
[7] is considered not only kinematic parameters but also torque li-
mitation. The trajectory generated over the physical system limits
is not only impossible to be followed by the controller, but also
gives damages to the system due to overload of the actuator. If we
make use of the trajectory generator without considering the sys-
tem limits, we may spend a lot of time to find experimentally a
range of the available trajectory. Last but not least, the economical

cost for realizing the trajectory generator is an important element
for extending application ranges to industrial and household control
systems. If the control system including the trajectory generator
can be implemented in a cheap processor, it is able to reduce the
economical cost in realizing the real-time control system [8,9].

Generally, the desired jerk trajectory has been generated using
higher order polynomial method above third order [10,11]. The
polynomial method is very useful because it can establish individ-
ual functions of velocity, acceleration, jerk, and so forth by chang-
ing its order. However, the conventional polynomial method has a
disadvantage that it cannot satisfy the given physical system lim-
its. As an alternative, several methods have been suggested to sat-
isfy the physical system limits by using the polynomial method.
The most intuitive method makes the desired trajectory divide
into many segments. For example, the trajectory generation
including arbitrary jerk limit requires sixteen segments using forth
order polynomial functions [12]. To generate the trajectory satis-
fying the given physical system limits, we should spend much
time to design the segmented desired trajectories. Also, many
other methods to remedy this disadvantage have been proposed
with the purpose of lower computational burden in Refs. [12–15].
Besides aforementioned methods, both ZSPOT (Zero States
Polynomial-like Trajectory) and ASPOT (Arbitrary States
Polynomial-like Trajectory) have been proposed with the aim of
reducing the computational load in the discrete-time domain,
respectively, in Refs. [8,16]. Also, the efficient trajectory genera-
tion method using LSPB (linear segment with parabolic blends)
has been proposed in Refs. [2,7]. The LSPB method is able to gen-
erate the time-optimal trajectory like the bang-singular-bang
method. Moreover, the time-optimal trajectory generation method
with the purpose of low computational burden has been proposed
in Refs. [9,10].

On the other hand, a convolution-based trajectory generation
method has been suggested in Refs. [5,17], which does not use the
polynomial any more. The convolution-based method is able to
generate an S-curve trajectory within the allowable physical sys-
tem limits by applying successive convolution operations [18,19].
Also a recursive form of convolution operation can reduce the
computational loads drastically. However, the conventional
convolution-based trajectory generation method has been devel-
oped under only zero initial and terminal conditions. In this paper,
we are to extend it to more general case including nonzero initial
and terminal conditions as well as to establish it on the theoreti-
cally substantial basis.
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This paper is organized as follows; Sec. 2 deals with several
properties, conventional convolution-based trajectory generation
for the case of zero initial and terminal conditions, and the recur-
sive form of convolution sum to reduce the computational burden
for real-time issue. Section 3 proposes two novel convolution-
based trajectory generation methods for the case of nonzero initial
and terminal conditions; the one (method I) makes use of the sym-
metric property of acceleration and deceleration for nonzero ini-
tial and terminal velocity conditions and the other (method II)
reduces the elapsed time taken to move the same distance than
the former. Section 4 shows a few simulations results to confirm
the validity of the suggested methods. Finally, Sec. 5 draws the
conclusions.

2 Properties of Convolution Operations

Prior to suggest novel convolution-based trajectory generation
method, this section reviews several properties of convolution
operations. The convolution operation has mainly been used in the
linear time-invariant system to obtain an output function when
both an impulse response of the system and an input function are
given. Here we assume that the impulse response of the system,
hðtÞ, is a rectangular function having a unit area. Then, the output
can be obtained as a form of smoother function than the input by
applying the input to the system, only if the input is a piecewise
continuous function. Using this property, it is possible to generate
the smooth desired trajectory by applying successive convolution
operations.

Suppose that xðtÞ is an arbitrary input function defined in time
duration of 0 � t � tx, hðtÞ is a convoluted rectangular function
having the unit area defined in time duration of 0 � t � th,
namely, hðtÞ ¼ 1=th, for 0 � t � th, and yðtÞ is an output function
produced by the convolution operation on two functions xðtÞ and
hðtÞ. Here, we should note that two functions xðtÞ and hðtÞ are ze-
ros outside the defined time durations. Also let us denote that xm

and ym are the maximum values of xðtÞ and yðtÞ, respectively,
then the convolution operations have several properties as
follows;

Property 1. The output yðtÞ is defined in time duration of
0 � t � tx þ th, which is the sum of both time durations of the
input xðtÞ and the convoluted function hðtÞ.

Property 2. The area of output yðtÞ is always equal to that of
input xðtÞ.

Property 3. The maximum absolute value of output ym is
always smaller than or equal to that of input xm. Especially, if xðtÞ
maintains xm constantly for the time duration th or more, then ym

is equal to xm.
First, it is easy to prove the property 1 using the formal defini-

tion of convolution operation as follows:

yðtÞ ¼
ð1
�1

hðsÞxðt� sÞds

¼ 1

th

ðth

0

xðt� sÞds

¼
1

th

ðth

0

xðt� sÞds; 0 � t � tx þ th

0; otherwise

8<
:

(1)

This property comes out from convolution operation itself.
Extending this property to successive convolution applications,
we can know that the result function is defined in the total sum of
time durations of the input and the convoluted functions.

Second, suppose that XðsÞ, HðsÞ, and YðsÞ are the Laplace trans-
forms of xðtÞ, hðtÞ, and yðtÞ, respectively, then the area of yðtÞ
is denoted by YðsÞ=s and the convolution operation on two func-
tions xðtÞ and hðtÞ implies the multiplication of XðsÞ and HðsÞ.
Now, by using the final value theorem, we can easily prove the
property 2

lim
s!0

s
YðsÞ

s

� �
¼ lim

s!0
XðsÞHðsÞ

¼ lim
s!0

XðsÞ 1

ths
1� e�thsð Þ

� �
¼ lim

s!0
XðsÞ

(2)

where we should note that the Laplace transform of hðtÞ ¼ 1=th
for 0 � t � th is HðsÞ ¼ ð1� e�thsÞ=ðthsÞ and l’Hôpital’s rule was
used in Eq. (2). Above equation implies that the area of input is
always equal to that of output. This completes the proof of the
property 2. Moreover, the invariant area principle is always true
only if the convoluted functions have the unit area.

Third, let us assume that yðtÞ has the maximum value ym at any
time tm, then we can get the following relation from the Eq. (1):

yðtmÞ ¼ ym ¼
1

th

ðth

0

xðtm � sÞds

� 1

th

ðth

0

xmds ¼ xm

(3)

where we can know that above inequality is always true because
we chose the maximum value xm among all values of function
xðtÞ. Namely, the maximum value of the output is smaller than or
equal to that of the input. Also, if xðtÞ ¼ xm for 0 < th � tx, then
ym ¼ xm. These complete the proof of the property 3. In other
words, the maximum value of the output cannot exceed that of the
input only if the convoluted functions have the unit area. In the
following Sec. 2.1, we will illustrate a convolution-based trajec-
tory generation method under the condition of the zero states
(zero initial and terminal velocities).

2.1 Convolution-Based Trajectory Generation: Zero
States. For the sake of simplicity, we will consider a single-axis
motion control system as a target system. Also, suppose that the
system has the limits such as the maximum velocity, denoted by
vmax, the maximum acceleration, denoted by v

ð1Þ
max, and the maxi-

mum jerk, denoted by v
ð2Þ
max. Without loss of generality, the system

limit for nth order differentiation of velocity function is denoted
by v

ðnÞ
max. Also, assume that the system moves given distance, S,

then we can make the input function y0ðtÞ using the maximum ve-
locity vmax as follows:

y0ðtÞ ¼
v0; 0 � t � t0

0; otherwise

�
(4a)

v0 ¼ sgnðSÞvmax and t0 ¼
Sj j

vmax

(4b)

where v0 and t0 imply the signed maximum velocity and time du-
ration of the rectangular input function as shown in Fig. 1.

Now let us define the first convoluted function h1ðtÞ as the rec-
tangular function with the time duration 0 � t � t1, then we can
get the trapezoidal function y1ðtÞ produced by the convolution
operation on two rectangular functions y0ðtÞ and h1ðtÞ as shown
in Fig. 1. By the property 1, the output function y1ðtÞ is defined
in the time duration 0 � t � t0 þ t1. By the property 2, the dis-
tance to be moved S is not changed by the convolution. By the
property 3, the maximum absolute value jv1j of y1ðtÞ becomes
smaller than or equal to the maximum velocity vmax of the given
system. From the trapezoidal function y1ðtÞ of the Fig. 1, we can
know that each time duration for acceleration and deceleration is
t1, respectively, thus the maximum acceleration of y1ðtÞ becomes
vmax=t1. To make active use of the physical limit about maximum
acceleration v

ð1Þ
max, let us determine the time duration of first con-

voluted function h1ðtÞ to be t1 ¼ vmax=v
ð1Þ
max. Moreover, if y0ðtÞ

maintains the signed maximum v0 constantly for the time

011001-2 / Vol. 135, JANUARY 2013 Transactions of the ASME

Downloaded 01 Jan 2013 to 220.149.195.116. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



interval t1 or more, namely, if t0 � t1 in the Fig. 1, then v1 ¼ v0

by the property 3.
Let us apply the convolution operation once more using the

trapezoidal velocity function y1ðtÞ as the input. Similarly we
define the second convoluted function h2ðtÞ as the rectangular
function with time duration 0 � t � t2, then we can get the S-
curve function y2ðtÞ produced by the convolution of y1ðtÞ and
h2ðtÞ as shown in Fig. 1. By the property 1, the output function
y2ðtÞ is defined in time duration 0 � t � t0 þ t1 þ t2. By the prop-
erty 2, the distance S is also not changed through the convolution.
By the property 3, the maximum absolute value jv2j of y2ðtÞ
becomes smaller than or equal to the maximum velocity vmax of
the given system. For the similar reason for the process of obtain-
ing t1, to make active use of the physical limit about maximum
jerk, we determine the time duration to be t2 ¼ v

ð1Þ
max=v

ð2Þ
max. Also, if

y1ðtÞ maintains the maximum v1 constantly for the time duration
t2 or more, namely, if t0 � t1 � t2 and t1 � t2 in y1ðtÞ of the Fig.
1, then v2 ¼ v1 by the property 3. Furthermore, if t0 � t1 þ t2 and
t1 � t2 are satisfied, then we can say that the S-curve velocity
function is an optimal trajectory to move the given distance by
making active use of the given physical system limits such as the
maximum jerk, the maximum acceleration and maximum veloc-
ity. Similarly, the results took more convolution operations stay
within properties mentioned above and have certain rules espe-
cially for tk. In other words, we can notice that relationship
between tk and the number of the convolution k has a certain rule,
from the convolution process mentioned above explanation.
Moreover, although solving any optimal problems with perform-
ance index, the convolution method with zero initial and zero
terminal conditions result in the trajectory very similar to time-
optimal trajectory to move the given distance by utilizing the
given physical system limits such as the maximum velocity and
maximum acceleration mentioned in Ref. [6].

In the convolution method, tk stands for a minimum time dura-
tion with respect to the number of the convolution k, which is how
long it takes to reach v

ðk�1Þ
max from its initial value with v

ðkÞ
max. Take

the case of a result performing three times convolution for exam-
ple. Because it takes vmax=v

ð1Þ
max for velocity to reach its maximum

velocity with maximum acceleration, the minimum time duration
that the velocity increase from zero to maximum velocity, t1 is
vmax=v

ð1Þ
max. Similarly, because it takes v

ð1Þ
max=v

ð2Þ
max for acceleration

to reach its maximum acceleration with maximum jerk, the mini-
mum time duration that the acceleration increase from zero to
maximum acceleration, t2 is v

ð1Þ
max=v

ð2Þ
max. Without loss of generality,

we can extend above procedures to the smoother S-curve velocity
function within the allowable physical system limits such as

v
ðnÞ
max;…; v

ð2Þ
max; v

ð1Þ
max, and vmax. Here, only design parameters to be

considered are the time durations of the convoluted functions,
which should be determined as follows:

tk ¼
v
ðk�1Þ
max

v
ðkÞ
max

for k ¼ 0; 1; 2; � � � ; n (5)

where v
ð0Þ
max ¼ vmax and v

ð�1Þ
max ¼ jSj. Also, in order to generate the

optimal trajectory by making active use of all the physical system

limits such as v
ðnÞ
max;…; v

ð2Þ
max; v

ð1Þ
max, and vmax, the following inequal-

ity conditions as regards the time durations should be satisfied:

tl �
Xn

k¼lþ1

tk for l ¼ 0; 1; 2;…; n (6)

In summary, for given the distance S and the physical system
limits v

ðnÞ
max;…; v

ð2Þ
max; v

ð1Þ
max; vmax, if we determine the time durations

by using Eq. (5), then the S-curve velocity function generated by
the suggested convolution-based method is always within the
allowable physical limits or at their boundary. Moreover, if the
determined time durations satisfy the inequality conditions of Eq.
(6), then the generated S-curve trajectory must be optimal in view-
point that it makes active use of the physical limits, not within the
allowable physical limits. As mentioned before, the convolution-
based trajectory generation method is effective because it satisfies
automatically the physical system limits, but the convolution
operations require much computational burden. The following
Sec. 2.2 suggests a recursive form of convolution operation to
reduce it drastically.

2.2 Recursive Form of Convolution Operation. The convo-
lution operation can be expressed by two forms such as convolu-
tion integral in the continuous time domain and convolution sum
in the discrete-time domain. Actually, the implementation of con-
volution integral must be inappropriate for the digital motion con-
trol systems, especially for real-time issue. Thus, the convolution
sum is considered with nth convoluted function having unit area,
hn½k� ¼ 1=mn for 0 � k � mn � 1, as follows:

yn½k� ¼
X1

l¼�1
hn½l�yn�1½k � l�

¼ 1

mn

Xmn�1

l¼0

yn�1½k � l�

¼ 1

mn
yn�1½k� þ yn�1½k � 1� þ � � � þ yn�1½k � mn þ 1�ð Þ

(7)

In addition, yn½k � 1�, preceding value of yn½k�, is expressed as the
following form:

yn½k � 1� ¼ 1

mn
yn�1½k � 1� þ yn�1½k � 2� þ � � � þ yn�1½k � mn�ð Þ

(8)

Subtracting Eq. (8) from (7), we can obtain a recursive form of
the convolution sum as follows:

yn½k� ¼
yn�1½k� � yn�1½k � mn�

mn
þ yn½k � 1� (9)

As we can see in the Eq. (9), the recursive form of convolution
sum is very effective because it requires just two additions and
one division for the convoluted function having unit area. In
Eqs. (7)–(9), k and mn are positive integers satisfying k ¼ ½t=Ts�
and mn ¼ ½tn=Ts�, respectively, with sampling time Ts and Gauss
floor function ½x� to denote the largest integer not greater than x.

Fig. 1 Convolution-based trajectory generation method: zero
states

Journal of Dynamic Systems, Measurement, and Control JANUARY 2013, Vol. 135 / 011001-3

Downloaded 01 Jan 2013 to 220.149.195.116. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



An error can be caused by the Gauss floor function according to
the size of sampling time in the convolution sum. As an alterna-
tive, Ref. [20] has proposed the compensation method for the
error. In this paper, however, this error will be neglected by add-
ing the assumption that sampling time is enough small. Till now
we dealt with several properties of the convolution operation,
convolution-based trajectory generation method under the condi-
tion of zero states (zero initial and terminal velocities), and the re-
cursive form of convolution sum for real-time implementation
issue. Section 3 will propose the more general convolution-based
trajectory generation method including the condition of nonzero
states (nonzero initial and terminal velocities).

3 Convolution-Based Trajectory Generation Method:

Nonzero States

First, in order to generate desired trajectory with nonzero ter-
minal velocity, let us consider the input of stepwise function that
is composed of the maximum velocity v0 for 0 � t � t0 and ter-
minal velocity vf for t0 � t � a, where a is a sufficiently large
time parameter. Actually, the value of a is dependent on the
number of convolution operations to be applied, which is
expressed by a ¼

Pn
k¼0 tk; e.g., if n¼ 2, then a ¼ t0 þ t1 þ t2 and

if n¼ 3, then a ¼ t0 þ t1 þ t2 þ t3. If the stepwise input y0ðtÞ is
convoluted with the unit area function h1ðtÞ, then we have the
output y1ðtÞ as shown in Fig. 2. Once more, if we perform the
convolution operation on two functions of y1ðtÞ and h2ðtÞ, then
the S-curve function is generated as shown in Fig. 2. Here, by
the property 3, the maximum velocity of output function vn is
smaller than or equal to that of the stepwise input v0. Also, the
output ynðtÞ goes to zero passing through vf at the time
t ¼

Pn
k¼0 tk as shown in Fig. 2. Hence, the trajectory satisfying

the nonzero terminal condition can be generated by performing
the successive convolution operations until t ¼

Pn
k¼0 tk. As we

can see in the Fig. 2, the convolution time duration in the case of
nonzero terminal condition is equal to that of zero states sug-
gested in the previous Sec. 2.1. Namely, the time duration of the
convolution-based trajectory generation method is independent
of the value of terminal velocity.

In the case of nonzero terminal condition, the distance to be
moved becomes different according to the number of convolu-
tions. Since the acceleration and deceleration during time interval
of t0 � t �

Pn
k¼0 tk always are formed symmetrically regardless

of the number of successive convolution operations, the area Sn of
final velocity function ynðtÞ with the nonzero terminal condition is
obtained as follows:

Sn ¼ S0 þ vf a� t0ð Þ � vf

2

Xn

k¼1

tk

¼ v0t0 þ vf

Xn

k¼0

tk � t0

 !
� vf

2

Xn

k¼1

tk

¼ v0t0 þ
vf

2

Xn

k¼1

tk

(10)

where we can see that the property 2 holds if the terminal velocity
condition is zero.

Second, if the trajectory should have both nonzero initial and
terminal velocity conditions, then the trajectory can be decom-
posed into a rectangular initial velocity function and the nonzero
final velocity function as shown in Fig. 3. The rectangular func-
tion has a value of initial velocity vi for 0 � t �

Pn
k¼0 tk and the

nonzero final velocity function has a difference between terminal
and initial conditions vf � vi at the terminal time as shown in
Fig. 3. Also, its area Sn in the case of nonzero initial and terminal
conditions can be obtained as the sum of areas of two functions,
St

n and Sb
n, as following form:

Sn ¼ St
n þ Sb

n

¼ v0t0 þ
ðvf � viÞ

2

Xn

k¼1

tk

 !
þ vi

Xn

k¼0

tk

¼ ðv0 þ viÞt0 þ
ðvf þ viÞ

2

Xn

k¼1

tk

(11)

where we can see that the property 2 holds if both initial and termi-
nal conditions are zero. In the case of nonzero initial and terminal
conditions, the distance to be moved becomes different according
to the number of convolutions. Since the area Sn of the final veloc-
ity function ynðtÞ should be equal to the given distance S of the
system, we are to modify how to determine v0 differently from
Eq. (4b). Accompanied by the change of v0, other two parameters
t0 and t1 should be also modified. The following Secs. 3.1 and 3.2
suggest how these three parameters (v0; t0; t1) should be changed in
order to satisfy the given distance, namely, Sn ¼ S.

3.1 Method I. For given vi and vf , one of four possible tra-
jectories can generally be generated according to the distance to
be moved Sn as shown in Fig. 4, upper two trajectories in the
Fig. 4 are for the case of vi < vf and below ones for the case the
of vi > vf . Also, the maximum velocity of the generated trajectory
can be either vn ¼ vmax or vn ¼ �vmax according to the given dis-
tance. Now, let us introduce a concept of criterion distance

Fig. 2 Convolution-based trajectory generation method: non-
zero terminal condition

Fig. 3 Decomposition of the trajectory with nonzero states
into a rectangular initial velocity function and the nonzero final
velocity function
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denoted by S�n, namely, two trajectories shown in left ones of the
Fig. 4 are generated using vn ¼ vmax when Sn > S�n and two trajec-
tories shown in right ones of the Fig. 4 are generated using
vn ¼ �vmax when Sn < S�n. In order to find out the criterion dis-
tance S�n, if we approach t0 to zero in the Fig. 2, then we have
Fig. 5. Figure 5 shows an inevitable distance for moving from
zero to terminal velocity under the case of zero initial velocity. In
the case of nonzero initial velocity, corresponding decomposition
like the Fig. 3 should be considered. Moreover, since the S�n is de-
pendent on the value of t1, we take the value of S�n from the mini-
mum t�1 determined as a small value between vn � vij j=v

ð1Þ
max and

vn � vf

�� ��=v
ð1Þ
max. More detail, since vn can be either vmax or �vmax,

we have possible eight cases of the minimum t�1 according to the
relationship between vi and vf as shown in Table 1. Fortunately,
the possible eight cases can be expressed by one equation as the
following form:

t�1 ¼
vmax � sgnðvivf Þminð vij j; vf

�� ��Þ
v
ð1Þ
max

(12)

Once the value of t�1 is determined, the criterion distance can be
obtained from Eq. (11) by t0 ! 0 as follows:

S�n ¼
vf þ vi

2
t�1 þ

Xn

k¼2

tk

 !
(13)

Since the generated final velocity function should be bounded as
the maximum velocity of the given system, the value of v0 can be
either vmax � vi when Sn > S�n or �vmax � vi when Sn < S�n. Also,
the value of v0 can take any value when Sn ¼ S�n because t0 will
be zero in that case. Thus, the value of v0 can be expressed by
either

v0 ¼ sgnðSn � S�nÞvmax � vi or v0 ¼
1

sgnðSn � S�nÞ
vmax � vi (14)

If Sn > S�n, then we can see that the value of t1 should take the

large value between ðvmax � vf Þ=v
ð1Þ
max and ðvmax � viÞ=v

ð1Þ
max from

left two trajectories in the Fig. 4, on the other hand, if Sn < S�n,
then the value of t1 should take the large value between

ðvmax þ vf Þ=v
ð1Þ
max and ðvmax þ viÞ=v

ð1Þ
max from right two trajectories

in the Fig. 4. Thus, the value of t1 is expressed as following form:

t1 ¼
max vmax � sgnðSn � S�nÞvi; vmax � sgnðSn � S�nÞvf

� �
1

2
1þ sgnðSn � S�nÞ

2
� 	

vð1Þmax

(15)

where we should note that we take t1 ¼ 2vmax=v
ð1Þ
max when Sn ¼ S�n.

Finally, the value of t0 can be obtained by applying Eqs. (14) to
(11) as follows:

t0 ¼
sgnðSn � S�nÞ

vmax

Sn �
vf þ vi

2

Xn

k¼1

tk

 !
(16)

Fig. 4 Four possible trajectories according to the given distance, initial and terminal
conditions

Fig. 5 Criterion distance S�n obtained as t0 fi0 in the Fig. 2, in
the case of zero initial velocity

Table 1 The value of t�1 according to relationship between vi

and vf

vi� 0 vi< 0

|vi|� |vf| |vi|< |vf| |vi|� |vf| |vi|< |vf|

vf� 0
vmax � vf

v
ð1Þ
max

vmax � vi

v
ð1Þ
max

vf� 0
vmax þ vf

v
ð1Þ
max

vmax � vi

v
ð1Þ
max

vf< 0
vmax � vf

v
ð1Þ
max

vmax þ vi

v
ð1Þ
max

vf< 0
vmax þ vf

v
ð1Þ
max

vmax þ vi

v
ð1Þ
max
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This section has suggested how these three parameters (t0; t1; v0)
should be changed for satisfying Sn ¼ S in the case of nonzero ini-
tial and terminal condition. As a result, the suggested method I
can be summarized as follows:

For given physical system limits, initial/terminal velocities
and distance such as vmax, v

ð1Þ
max,.� � �,vðnÞmax, vi, vf , and Sn

(1) Determine t2, t3,…, tn using Eq. (5).
(2) Calculate the criterion distance, S�n, using Eqs. (12) and

(13).
(3) Obtain v0, t1, and t0 using Eqs. (14)–(16), respectively.
(4) Perform the convolutions of Eq. (9) as many as the number

of n at each sampling time, and add vi on the result of the
preformed convolutions.

(5) Calculate the position profile and the acceleration profile
through the integration and the differentiation, if necessary.

3.2 Method II. In the previous method I, an interval of ve-
locity increment and that of velocity decrement are always the
same because they are determined by t0; t1;…; tn. In other words,
the method I is impossible to set up the acceleration and decelera-
tion separately. Thus, the acceleration and deceleration in each
interval would be also not the same when the initial velocity and
the final velocity are not the same. However, in order for more ef-
ficient trajectory, the maximum acceleration should be utilized in
both intervals. In the both intervals, Eq. (9) implies the Euler inte-
gration if the condition of Eq. (6) is satisfied. First term of Eq. (9)
means increasing quantity of velocity per sampling time, and sec-
ond term implies total velocity calculated until previous step.
Indeed, since the maximum acceleration is determined by the con-
volution performed at first time, it is possible to set the accelera-
tion separately by modifying t1 with respect to the time. Let us
denote the interval of velocity increment as tþ1 and the interval of
velocity decrement as t1, then tþ1 and t1 in order to make same
acceleration in both intervals are obtained as following form,
respectively:

tþ1 ¼
vmax � sgnðSnÞvi

v
ð1Þ
max

(17a)

t1 ¼
vmax � sgnðSnÞvf

v
ð1Þ
max

(17b)

Moreover, in order to apply the same acceleration value to both
intervals, the first-time convolution form of Eq. (9) is also
changed as below

y1ðkÞ ¼
y0ðkÞ � y0ðk � mþ1 Þ

m�1ðkÞ
þ y1ðk � 1Þ (18)

where, mþ1 and m�1ðkÞ denote ½tþ1 =Ts� and ½tc
1ðtÞ=Ts�, respectively,

and tc
1ðtÞ is the function with respect to time constructed by tþ1 and

t1 as follows:

tc1ðtÞ ¼
tþ1 ; 0 � t < t0

t1; t0 � t

�
(19)

Also, the condition of t0 is expressed as follows:

t0 � max tþ1 ; t1

� �
þ
Xn

k¼2

tk (20)

In this method, the distance to be moved can be obtained by the
area of the polygon as suggested in Fig. 6. Since the accelerations
in intervals of velocity increment and decrement are generated as
skew-symmetric form when the conditions of Eqs. (6) and (20) are
satisfied, A and A0 , and B and B0 in Fig. 6 have the same area,
respectively. Thus, the moving distance, Sn, obtained by performing
the convolutions until

Pn
k¼0 tk, is calculated from Fig. 6 as follows:

Sn ¼ ðv0 þ viÞt0 þ
v0

2
t1 � tþ1
� �

þ vf þ vi

2
t1 þ

Xn

k¼2

tk

 !
(21)

where the sign of Sn and that of v0 � vi are always the same, that
is, Sn is positive when v0 ¼ vmax � vi and negative when
v0 ¼ �vmax � vi. Therefore, the value of v0 can take vmax � vi or
�vmax � vi, and it is expressed by either

v0 ¼ sgnðSnÞvmax � vi or v0 ¼
1

sgnðSnÞ
vmax � vi (22)

where above two equations has the same meaning. Substituting
Eq. (22) into (21), we can obtain t0 as follows:

t0 ¼
sgnðSnÞ

vmax

Sn �
vf þ vi

2

Xn

k¼1

tk þ
vi

2
t1 � tþ1
� � !

� 1

2
t1 � tþ1
� �

(23)

In summary, the suggested method II is able to be utilized only
when Eqs. (6) and (20) are satisfied, and the trajectory making use
of the maximum acceleration in both intervals of velocity incre-
ment and decrement can be obtained by using the modified convo-
lution of Eq. (18). This section has suggested how these three
parameters (t0; t1; v0) should be changed for making active use of
the maximum acceleration value in both intervals of acceleration
and deceleration. As a result, the suggested method II can be sum-
marized as follows:

For given system limits, initial/terminal velocities and distance
such as vmax, v

ð1Þ
max, � � �, v

ðnÞ
max, vi, vf , and Sn

(1) Determine t2, t3, � � �, tn using Eq. (5).
(2) Calculate tc

1, v0, and t0 using Eqs. (19)–(23), respectively.
(3) Check whether both Eqs. (6) and (20) are satisfied, if those

are satisfied, then go next step, otherwise, the method II
fails.

(4) Perform the convolutions of Eq. (9) as many as the number
of n at each sampling time, and add vi on the result of the
preformed convolutions, especially, if n ¼ 1, perform the
convolution of Eq. (18).

(5) Calculate the position profile and the acceleration profile
through the integration and the differentiation, if necessary.

4 Simulation Results

The proposed trajectory generation methods have been imple-
mented using the MATLAB Ver. 7.1. For the simulation, first, the
algorithm is built as shown in Fig. 7. The Parameter Calculator
calculates the corresponding coefficients (v0; t0; t1; � � � ; tn) for gen-
erating the stepwise function after accepting inputs such as the
moving distance, the system limits, the sampling time, and initial and
terminal conditions. The Convolution Operator plays a role in per-
forming the successive convolutions according to the number of n.

Fig. 6 The distance to be moved is equal to the area of
polygon
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Each convolution follows process as shown in Fig. 8, connected
in serial as many as the number of n. The initial velocity is added
to the output of the Convolution Operator, which completes the
final velocity trajectory considering both initial and terminal con-
ditions. If necessary, the trajectory of position can be obtained
using the integration method such as the Euler and Runge–Kutta.
In this paper, to obtain the position profile, Euler integration is
used. The simulation performs twice convolutions in order to gen-
erate the trajectory whose jerk is bounded, and its sampling time
is set to 1 ms.

4.1 Method I. For the simulation of the method I, the input
parameters in order to generate the trajectory are given as shown
in Table 2. Figure 9 shows the simulation results. Both results, (a)
and (b) in the Fig. 9, show that the trajectories are generated
within given system limits such as the maximum velocity, the
maximum acceleration, and maximum jerk. Comparing (a) with
(b), however, the velocity of (b) does not reach to the given maxi-
mum velocity, while that of (a) reaches to the given maximum ve-
locity. That is because, in the case of (b), Eq. (6) is not satisfied.
We can notice that t0 takes 0.625 from Eq. (16) and that t1 and t2

take 1.75 and 0.25, respectively, so t0 is smaller than the sum of t1
and t2. The method I can generate the trajectory under any input
parameters, as this result tells us.

4.2 Method II. In the case of the method II, the input param-
eters are set as suggested in Table 3. Figure 10 shows the simula-
tion results. If the initial velocity is equal to the terminal velocity,
the method II brings same results with the method I only if the

condition of Eq. (6) is satisfied, as shown in Fig. 10(a). On the
other hand, in the case that the initial velocity is not equal to the
terminal velocity, the trajectory is generated using the maximum
jerk, as shown in Fig. 10(b). Comparing this result with Fig. 9(b),
since the method II requires shorter time in generating the trajec-
tories using the same input parameters; it is more efficient than
the method I. However, we should notice that the method II can
be applied only when Eqs. (6) and (20) are satisfied, otherwise,
the method II fails.

Fig. 7 Block diagram of the whole algorithm

Fig. 8 Block diagram of the convolution

Table 2 The input parameters for simulation of the method I;
as such, system limits, distance to be moved, and initial/terminal
conditions

vmax (m/s) v
ð1Þ
max (m/s2) v

ð2Þ
max (m/s3) vi (m/s) vf (m/s) S (m)

(a) 4 4 16 1 1 8
(b) 8 8 16 2 1 8

Fig. 9 Simulation results of the method I

Table 3 The input parameters for simulation of the method II

vmax (m/s) v
ð1Þ
max (m/s2) v

ð2Þ
max (m/s3) vi (m/s) vf (m/s) S (m)

(a) 4 4 16 1 1 8
(b) 8 8 16 2 1 8
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5 Concluding Remark

The novel two trajectory generation methods making active use
of physical system limits such as maximum velocity, maximum
acceleration, and maximum jerk have presented in this paper. The
proposed methods have utilized the recursive convolution sum,
being required two additions and one division per one convolution,
for practical use. Through the proposed convolution-based trajec-
tory generation methods, we could get a continuously differentiable
trajectory simply within the given physical system limits. The sug-
gested methods were able to be applicable to both zero and nonzero
initial/terminal conditions. Finally, the effectiveness of the sug-
gested methods was shown by the numerical simulations.
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