
5588 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Trunk Pruning: Highly Compatible Channel Pruning
for Convolutional Neural Networks

Without Fine-Tuning
Nam Joon Kim , Graduate Student Member, IEEE, and Hyun Kim , Senior Member, IEEE

Abstract—Channel pruning can efficiently reduce the
computation and memory footprint within a reasonable accuracy
drop by removing unnecessary channels from convolutional
neural networks (CNNs). Among the various channel pruning
approaches, sparsity training is the most popular because
of its convenient implementation and end-to-end training. It
automatically identifies the optimal network structures by
applying regularization to parameters. Although this sparsity
training has achieved a remarkable performance in terms of the
trade-off between accuracy and network size reduction, it needs
to be accompanied by a time-consuming fine-tuning process.
Moreover, although activation functions with high performance
are being continuously developed, the existing sparsity training
does not display remarkable scalability for these new activation
functions. To address these problems, this study proposes a novel
pruning method, trunk pruning, which can produce a compact
network by minimizing the accuracy drop during inference even
without the fine-tuning process. In the proposed method, one
kernel of the next convolutional layer absorbs all the information
of the kernels to be pruned, considering the effects of the batch
normalization (BN) shift parameters remaining after the sparsity
training. Therefore, it is possible to eliminate the fine-tuning
process because trunk pruning can effectively reproduce the
output of the unpruned network after the sparsity training by
removing the pruning loss. Furthermore, because trunk pruning
is a technique that can effectively control only the shift parameters
of the BN in the CONV layer, it has the significant advantage of
being compatible with all BN-based sparsity training schemes and
can address various activation functions.

Index Terms—Convolutional Neural Network (CNN), Pruning,
Regularization, Fine-Tuning.

I. INTRODUCTION

IN RECENT years, convolutional neural networks (CNNs)
have been studied by several researchers. They have achieved

the best performance on a variety of computer vision tasks,

Manuscript received 18 November 2022; revised 22 February 2023, 9 May
2023, and 26 October 2023; accepted 22 November 2023. Date of publication
30 November 2023; date of current version 21 March 2024. This work was
supported by the MSIT (Ministry of Science and ICT), Korea through ITRC
(Information Technology Research Center) Program under Grant IITP-2023-
RS-2022-00156295, supervised by the IITP (Institute for Information & Com-
munications Technology Planning & Evaluation). The Associate Editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Xiaochun Cao. (Corresponding author: Hyun Kim.)

The authors are with the Department of Electrical and Information Engineer-
ing, The Research Center for Electrical and Information Technology, Seoul Na-
tional University of Science and Technology, Seoul 01811, South Korea (e-mail:
rlarla2626@seoultech.ac.kr; hyunkim@seoultech.ac.kr).

Digital Object Identifier 10.1109/TMM.2023.3338052

including image classification [1], [2], [3], [4], [5], [6] object
detection [7], [8], [9], [10], [11], and segmentation [12], [13].
However, the performance improvement is accompanied by high
computational costs, memory footprints, and power consump-
tion [14], [15], [16], [17]. This hinders the effective deployment
of CNNs on resource-constrained mobile/edge devices. There-
fore, network compression and acceleration studies as well as
performance improvement studies have been actively conducted
for the practical use of CNNs in real-world applications [18],
[19], [20], [21], [22]. Among these studies, network pruning
can significantly reduce the model size and computation while
maintaining reasonable accuracy by removing unnecessary fil-
ters from the convolutional (CONV) layers [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33].

State-of-the-art (SOTA) studies on various channel pruning
approaches have solved the problem of the significant accuracy
drop caused by the suppression of an excessive number of chan-
nels in the network, which is a disadvantage of channel pruning.
Among these approaches, sparsity training [24], [26], [34] has
received significant attention owing to its simple implementa-
tion and high performance. It automatically identifies unneces-
sary channels during training by applying regularization (e.g.,
�-1 or �-2). The following three processes generally characterize
the channel pruning method based on sparsity training: 1) Spar-
sity training: In general, the channel redundancy is generated in
the corresponding channels or filters by imposing sparsity regu-
larization on the batch normalization (BN) [35] scaling factors.
2) Pruning: The filters and output channels with scaling factors
lower than the predefined threshold, and the corresponding ker-
nels of the next CONV layer are removed. 3) Fine-tuning: After
the pruning, the pruned network is fine-tuned to recover the lost
performance.

The accuracy loss after the pruning occurs because, during the
sparsity training, the BN scaling parameter is close to zero, but
the remaining shift parameter is not considered. As a result, a dis-
tortion is generated during the inference of the pruned network.
This, in turn, causes the network to make incorrect predictions.
Moreover, the pruned networks with a reduced representational
capacity can be easily trapped into bad local minima [31], [36].
Therefore, most existing studies consider fine-tuning to compen-
sate for the accuracy drop. However, this fine-tuning process is
time-consuming, and the use of GPUs for training CNNs has
increased tremendously in recent years [37]. This causes severe
environmental problems, such as a substantial CO2 emission. In

1520-9210 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0009-8200-039X
https://orcid.org/0000-0002-7962-657X
mailto:rlarla2626@seoultech.ac.kr
mailto:hyunkim@seoultech.ac.kr

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5589

TABLE I
PERFORMANCE COMPARISON BETWEEN THE PRUNED RESNET-56 AND 164
USING THREE SPARSITY TRAINING METHODS ON THE CIFAR-10 DATASET

addition, the existing methods cannot ensure the scalability of
several activation functions.

To solve these problems, we propose a novel pruning method,
trunk pruning, which can eliminate the time-consuming fine-
tuning process and has high compatibility and scalability with
BN-based sparsity training. Specifically, when the BN scaling
parameters are close to zero after the sparsity training, the output
before the pruning can be entirely reproduced by including the
remaining kernel weights into a kernel (trunk) in the following
CONV layer, considering the shift parameters. Therefore, the
fine-tuning process can be eliminated because the pruned net-
work can maintain the same output as the non-pruned network.
The main contributions of our study are summarized below:
� Exclusion of the fine-tuning: Trunk pruning, which enables

the pruned network to effectively reproduce the output of
the unpruned network after the sparsity training, displays a
negligible accuracy drop after the pruning. Consequently,
it eliminates the fine-tuning process, which is time-
consuming and requires significant hardware resources.
Specifically, several pruned ResNets [1] and VGG [38]
achieved SOTA performance in the CIFAR-10 [39] and
ImageNet ILSVRC-12 [40] datasets, compared with the
existing channel pruning methods (see Tables II and IV).

� Compatibility with the existing sparsity training methods:
The proposed trunk pruning effectively controls the BN
shift parameters. Hence, it can be applied to any BN-based
sparsity training. The compatibility of the method is high-
lighted by the results obtained using the trunk pruning
for two channel-pruning methods and a weight-pruning
method listed in Table I.

� Compatibility with various activation functions: Since the
ReLU considers negative values as zero, it is relatively
insensitive to an accuracy drop owing to the shift parameter.
However, the activation functions with negative regions,
such as Mish [41] and Swish [42], are significantly more
sensitive to the accuracy drop due to the shift parameter.
Therefore, trunk pruning is significantly more effective for
activation functions with negative values. These results are
presented in Tables VI and VII.

TABLE II
PERFORMANCE COMPARISON BETWEEN THE CHANNEL PRUNING METHODS ON

THE CIFAR-10 DATASET

TABLE III
PERFORMANCE COMPARISON BETWEEN THE CHANNEL PRUNING METHODS

USING RESNET-56 ON THE CIFAR-100 DATASET

TABLE IV
PERFORMANCE COMPARISON WITH THE CHANNEL PRUNING METHODS ON THE

IMAGENET ILSVRC-12 DATASET

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

5590 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

TABLE V
PERFORMANCE COMPARISON WITH CHANNEL PRUNING METHODS USING

MOBILENET-V1 ON THE IMAGENET ILSVRC-12 DATASET

TABLE VI
THE PRUNING RESULTS AFTER THE GBN-BASED SPARSITY TRAINING ON

VARIOUS NETWORKS USING VARIOUS ACTIVATION FUNCTIONS WITH

NEGATIVE VALUES

The remainder of this article is organized as follows.
Section II introduces existing studies related to pruning. Sec-
tion III provides a detailed description of the proposed trunk
pruning. Section IV presents the experimental results and an
analysis of the proposed method. Finally, Section V concludes
this article.

II. RELATED WORKS

A. Weight Pruning

Through several heuristics or optimization processes, the
weight pruning results in an unstructured sparsity in the net-
work. Therefore, it is generally used with quantization [18]. The
OBD [43] determines the importance of the connection using
the Hessian matrix of the loss function and removes those with
low importance. The DSD [44] introduces a dense-sparse-dense
training framework that restores the connection after pruning for
regularizing deep neural networks (DNNs). The GSM [45] eval-
uates the importance of the weights using the first-order Taylor
series and then divides the existing momentum-based stochastic
gradient descent (SGD) update rules into two types: passive and
active updates. The modified update rule of the GSM eliminates
the fine-tuning process because it can completely zero out the
weights that are unimportant. However, weight pruning cannot

improve the inference speed of DNNs without using customized
software (SW) or hardware (HW).

B. Filter Pruning w/ Extra Fine-Tuning

The channel pruning can achieve structured sparsity by re-
moving the filters/channels of the CNNs. This structured sparsity
is optimized for the basic linear algebra subprograms (BLAS) li-
brary. Consequently, it is possible to accelerate the training and
inference speeds without customized SW/HW support. Spar-
sity training is characterized by convenient implementation and
end-to-end training. It is an extremely efficient and popular
approach among the many channel pruning methods. Slim-
ming [24] obtains a structured sparsity by imposing the �-1
regularization on the BN scaling parameters during the spar-
sity training and then removing the filters below a predefined
threshold in the pruning step. Subsequently, fine-tuning is per-
formed to restore the performance loss to a reasonable level.
The GBN [34] uses the Taylor expansion to estimate the impor-
tance of the channels. The tick-tock framework of the GBN [34]
imposes a sparsity penalty (tick) only on unimportant scaling
parameters and fine-tunes the network after the pruning process
(tock). Polarization [46] proposes polarization regularization to
separate the filters to be removed and those to be preserved.
This demonstrates the effectiveness of the proposed regulariza-
tion method, both theoretically and experimentally. However,
these conventional channel pruning methods remove the chan-
nels while ignoring the influence of the BN shift parameter. This
results in a severe performance loss because the network can
propagate distorted outputs during forward propagation. In par-
ticular, these conventional pruning methods can cause a signifi-
cant pruning error in the networks that use activation functions
with a negative value. Therefore, time-consuming fine-tuning is
essential to recovering the lost performance. However, because
of their smaller representational capacity, fine-tuning causes the
pruned networks easier to get trapped in bad local minima [27],
[31].

Neural architecture search (NAS)-based channel pruning is
another method that requires fine-tuning to identify an opti-
mal neural architecture that can maintain a high level of ac-
curacy under the required inference and computation budgets.
Metapruning [47] first trains an auxiliary network called Prun-
ingNet. Then, PruningNet receives network encoding vectors as
input and generates the weights for the pruned network. Finally,
the best-pruned network is fine-tuned. In [48], the objective was
to determine the optimal number of channels for each layer, un-
like the existing channel pruning method that selects important
channels, and a channel pruning method based on the artifi-
cial bee colony algorithm was proposed to identify the optimal
network structure. However, these NAS-based channel pruning
methods require the use of many GPUs owing to the substantial
search cost to identify the optimal network structure.

C. Filter Pruning w/o Extra Fine-Tuning

Several studies have been conducted to solve the problem
of time-consuming fine-tuning. The Variational [29] eliminates
the fine-tuning process by reformulating the BN affine function

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5591

TABLE VII
PERFORMANCE COMPARISON OF PRUNED RESNET-56 WITH EXISTING METHODS ON THE CIFAR-10 DATASET USING TWO ACTIVATION FUNCTIONS

so that only the scaling parameter is considered to estimate
the importance of the channel. In addition, unlike the existing
deterministic method, the importance of the channel is evaluated
probabilistically to ensure stable pruning. However, this refor-
mulation method modifies the flow and value of the gradients
in the network and cannot ensure optimal performance. The
SCP [31] optimizes the network with differentiable masks and
the existing parameters. In addition, it is feasible to prune the
network without fine-tuning safely because the importance of
the channel is evaluated probabilistically by considering the BN
and ReLU operations in conjunction. However, the SCP [31]
is a pruning method that targets only ReLU. Consequently, the
accuracy degradation is highly significant in the activation func-
tions other than ReLU. The C-SGD [27] proposes a centripetal
SGD that makes the filters (including the BN parameters)
gradually become more similar and eventually identical. The
pruning process does not damage the network because all the
parameters are considered during the C-SGD training process.
Therefore, fine-tuning is unnecessary. However, the C-SGD [27]
cannot achieve optimal performance because it has a predefined
pruning ratio (such as a predefined network structure). These
predefined channel pruning methods are incapable of dealing
with a variety of scenarios. Therefore, it is infeasible to achieve
the best performance [34].

III. PROPOSED METHOD

A. Motivation and Overview of This Work

To address the problems presented in the existing studies,
we propose trunk pruning which displays good compatibility
with sparse training. We start by selecting the best-performing
sparsity training method. It should be noted that the proposed
method is compatible with any sparsity training method using
BN, wherein techniques with better performance are being stud-
ied continuously. That is, the application of trunk pruning based
on the sparsity training method with better performance results
in a significantly lower accuracy loss. In general, when the BN
scaling parameters are close to zero after the sparse training, the
input channels of the next CONV layer may become constant
because they are influenced by the remaining shift parameters.
The existing channel pruning methods that use sparsity training
neglect these constant channels. Meanwhile, the proposed trunk
pruning considers these by absorbing all the constant channels of

the kernel to be removed in one of the following CONV kernels
(named the trunk filter). As a result, the proposed method can
completely reproduce the model after sparsity training (i.e., not
the baseline model) by preserving the influence of the remained
shift parameters after sparsity training. Because this process
can compensate for the losses caused by the pruning process,
fine-tuning can be eliminated while maintaining the advantages
of sparsity training. In addition, recently proposed CNNs with
SOTA performance use activation functions with negative val-
ues (not ReLU). The trunk pruning can be applied to any ac-
tivation function because it uses the value passed through the
activation function. Please note that the term “Trunk” refers to
the main trunk that supports the branches of a tree. We intend
to express the concept of including unnecessary branches re-
maining on this one main trunk. Accordingly, in trunk pruning,
the remaining filters /channels are absorbed into one trunk and
removed.

B. Preliminary

In this subsection, we define the symbols and notations used
to describe the proposed pruning method. Here, i is the CONV
layer index, andM (i) ∈ Rwi×hi×ci is thewi × hi output feature
map with ci channels. For example, the output feature map of the
j-th channel in the i-th CONV layer is M (i)

:,:,j . In the i-th CONV

layer, K(i) ∈ Rk×k×ci−1×ci represents ci CONV layer filters
with a kernel size of k × k. We use μ(i),σ(i),γ(i),β(i) ∈ Rci

to indicate the BN parameters [35]. BN performs normalization
through the mean and variance for each batch in the training
process. It enables faster convergence and stabilization of the
network training and is used in most advanced CNNs. The BN
process can be expressed as follows:

xBNout
= γ(i) · xBNin

− μ(i)

σ(i)
+ β(i) (1)

where μ(i)and σ(i) are the accumulated mean and standard de-
viation, respectively, and are used to normalize each channel.
γ(i) and β(i) are the learnable scaling and shifting parameters,
respectively, for the affine transformation. Furthermore, xBNin

and xBNout
are the BN input and output, respectively. Using ∗

to represent the CONV operation, the output feature map M (i)
:,:,:

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

5592 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

with BN is expressed as follows:

M (i)
:,:,: = Act(γ(i) ·

Σci−1
k=1(M

(i−1)
:,:,k ∗K

(i)
:,:,k,:)− μ(i)

σ(i)
+ β(i))

(2)
whereAct denotes the activation function following CONV-BN.
Since the BN layer has channel-wise scaling/shifting parame-
ters, scaling parameter γ(i) gradually approaches zero during
sparsity training for channel-wise pruning [24].

C. Trunk Pruning

As mentioned earlier, the proposed trunk pruning is aimed at
ensuring that the pruned network reproduces the output of the un-
pruned network, thereby eliminating the need for the fine-tuning
process. That is, we aim to satisfy the following relationship:

M
(i+1)
unpruned:,:,:

≈M
(i+1)
pruned:,:,:

(3)

where M (i+1)
unpruned and M

(i+1)
pruned are the output feature maps of

the unpruned and pruned networks, respectively, of the (i+ 1)-
th layer. Let the filter index set of the layer i be F (i) (e.g.,
F (2) = {1, 2, 3, 4} if the second layer has four filters), the filter
index set (such as the filter set that is the target of the pruning after
the sparsity training) with scaling parameters below the thresh-
old be P (i) = {j ∈ F (i)||γ(i)

j | < threshold}, and the opposite

filter index set be U (i). This threshold is an adjustable param-
eter. A large network-size reduction can generally be achieved
at a high threshold, although a large accuracy drop may occur
accordingly. However, there is no significant difference in per-
formance. Therefore, we empirically fix the threshold at 0.001.
The output channels corresponding toP (i) arewi × hi channels
filled with a constant value β(i) because all the scaling factors
in the output channels corresponding to P (i) are zero. The con-
stant channels are maintained after applying the activation func-
tion. For example, the output feature map can be represented by
M

(i)
:,:,j = Act(β

(i)
j) · 1wi×hi when the j-th channel is a con-

stant channel. Here, 1wi×hi is a wi × hi matrix filled with ones.
The conventional pruning methods remove this constant chan-
nel,M (i)

:,:,j . The neglection of the constant channel influence can
result in distortion and performance degradation in the network.
However, this distortion can be eliminated effectively as follows.

Let the output of the (i+ 1)-th layer immediately after the
CONV operation before BN be CO(i+1)

:,:,: . After sparsity train-
ing, due to the zero scaling parameters and remaining shift pa-
rameters, we can divide the output into two parts (i.e., constant
channels and non-constant channels). Consequently, CO(i+1)

:,:,:

can be expressed as follows:

CO(i+1)
:,:,: =

∑
k∈U(i)

(M
(i)
:,:,k ∗K

(i+1)
:,:,k,:)︸ ︷︷ ︸

Not constant channel

+
∑

k∈P (i)

(M
(i)
:,:,k∗K

(i+1)
:,:,k,:)︸ ︷︷ ︸

Constant channel

(4)

where M (i)
:,:,k = Act(β

(i)
k) · 1wi×hi in the constant channel and

Act(β
(i)
k) is a per-channel scalar. We can randomly select one

from P (i) and define it as the trunk for the trimming kernels as

with C-SGD [27]. However, it should be noted that C-SGD per-
forms the k-means algorithm before C-SGD training to make
the filters in each cluster have the same value, then removes
the remaining filters, leaving only one filter in each cluster. In
contrast, our method does not include any process of training
filters to have the same values. Trunk pruning is a method of ab-
sorbing shift parameters in filters to be removed, determined by
various BN-based sparsity methods, into an additional trunk fil-
ter to preserve them, and therefore does not involve any process
of matching filter values. Based on (4), we obtain the follow-
ing using the inverse of the distributive property on the constant
channel part in (4):∑

k∈P (i)

(M
(i)
:,:,k ∗K

(i+1)
:,:,k,:) ≈ (Act(β

(i)
Trunk) · 1wi×hi)

∗

⎛
⎜⎜⎝K

(i+1)
:,:,Trunk,: +

∑
k∈P (i)∧
k �=Trunk

(
Act(β

(i)
k)

Act(β
(i)
Trunk)

·K(i+1)
:,:,k,:

)⎞⎟⎟⎠
(5)

where Act(β
(i)
Trunk) · 1wi×hi serves as the new input channel

for the subsequent CONV operation, denoted by the first term
on the right side. Furthermore, the second term on the right side
indicates the kernel weights for the subsequent CONV operation.
The kernel corresponding to the trunk is updated as (6), whereas
the remaining kernels, filters, and channels associated with the
constant channel are removed [23].

K(i+1)
new:,:,Trunk,:

≈K
(i+1)
:,:,Trunk,:

+
∑

k∈P (i)∧
k �=Trunk

(
Act(β

(i)
k)

Act(β
(i)
Trunk)

·K(i+1)
:,:,k,:

)
(6)

It is noteworthy that the proposed trunk pruning essentially re-
quires that the shift parameters of the filters to be removed must
be absorbed into one of the constant channels whose scaling pa-
rameter of the BN is zero after sparsity training (=a channel that
is about to be deleted). If pruning is performed after setting a
channel whose scaling parameter is not zero (=the channels that
are going to be preserved) to the trunk, the inverse of the dis-
tributive property cannot be applied in (5), and eventually, in the
trunk kernel calculation in (6), large approximation errors occur.
The updated K(i+1)

new:,:,Trunk,:
contains all the information of the

removed kernels. Therefore, (5) can be modified as follows:∑
k∈P (i)

(M
(i)
:,:,k ∗K

(i+1
:,:,k,:) ≈M

(i)
:,:,Trunk ∗K(i+1)

new:,:,Trunk,:
(7)

where M
(i)
:,:,Trunk = Act(β

(i)
Trunk) · 1wi×hi . Therefore, the

output CO(i+1)
:,:,: of the pruned network before the BN is ex-

pressed as follows:

CO(i+1)
:,:,: ≈

∑
k∈U(i)

(M
(i)
:,:,k ∗K

(i+1
:,:,k,:)

+M
(i)
:,:,Trunk ∗K(i+1)

new:,:,Trunk,:
(8)

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5593

Algorithm 1: Trunk Pruning Algorithm.
Input: Model after sparsity trainingM, Scaling
parameter γ, Shift parameter β, # of Layers n , # of
Filters m , Threshold T

Output: The pruned modelM′

1: for i ← 1 to n do
2: for j ← 1 to m do
3: if |γ(j)| < T and β(j) > 0 then
4: Select one Trunk
5: end if
6: end for
7: end for
8: for i ← 1 to n do
9: for j ← 1 to m do

10: if |γ(j)| < T and β(j) > 0 then
11: TrunkPrune() via (6) in Section III-C
12: else if |γ(j)| < T then
13: Prune() // Zeroing out filters
14: end if
15: end for
16: end for
17: ReturnM′

where the first term on the right is the not constant channel and
the second term is the convolution operation using the trunk.
Finally, we obtain the output of the pruned network after the BN
as follows:

M
(i+1)
pruned:,:,:

≈ γ(i+1) ·
CO(i+1)

:,:,: − μ(i+1)

σ(i+1)
+ β(i+1) (9)

This pruning process has little impact on the network because
no approximation is used other than treating BN scaling factors
less than the near-zero threshold (<0.001 in our environment) as
zero. That is, no loss occurs during the pruning process because
a pruned network almost completely reproduces the output of
an unpruned network after the sparsity training. Therefore, the
fine-tuning process can be eliminated. Although the process of
trunk pruning using (6) consists of multiplication, division, and
addition operations on the number of total layers × constant
channels× kernel size, these additional operations occupy only
0.005% of the total training time. In detail, the proposed trunk
pruning consumes approximately twice the time consumed by
conventional pruning owing to the additional absorption into the
trunk, but this pruning time is significantly short considering the
entire training process including pruning.

Fig. 1 shows a practical example of the proposed trunk pruning
using two consecutive CONV layers. Let the fourth, fifth, sev-
enth, and eighth scaling parameters γ of the i-th layer be below
the threshold (such as P (i) = {4, 5, 7, 8}). We arbitrarily set the
seventh filter (such as K(i)

:,:,:,7, M (i)
:,:,7, K(i+1)

:,:,7,:) of layer i to the
trunk. We absorb the fourth, fifth, and eighth kernels into the sev-
enth trunk kernel through (6) to trim the network (see Fig. 1). As
a result, the seventh kernel becomes a new kernel that includes
the shift parameters of the fourth, fifth, and eighth kernels, and
the corresponding filters, channels, and kernels of the fourth,

fifth, and eighth kernels are completely removed. Unlike the
conventional pruning methods, this method leaves an additional
output channel per layer corresponding to the trunk. Therefore,
the proposed method causes a marginal loss in pruning ratio
compared with the conventional pruning method. However, this
addition is negligible because the number of channels removed
from a layer of the DNNs is significantly large. Moreover, owing
to the characteristics of the layer, there are cases where trunk fil-
ters are not created. Consequently, the influence of these trunks
can be observed to be more insignificant. This also implies that
the number of trunks and the number of layers do not necessarily
match.

The overall process for generating a pruned model using trunk
pruning is summarized in Algorithm 1. First, we generate a
sparse model (i.e.,M) through sparsity training. Subsequently,
the trunk is selected from among the filters that satisfy both the
conditions |γ(j)| < T and β(j) > 0 for each layer (Lines 1–7).
Based on the selected trunk, trunk pruning is applied to the fil-
ters/channels/kernels of the next layer that satisfy both |γ(j)| <
T and β(j) > 0 (Lines 10–11). Then, conventional pruning is
applied to filters that satisfy only |γ(i)| < T (Lines 12–13). We
can generate the pruned modelM′ through this process.

IV. EXPERIMENTS

A. Experimental Environments

We used the CIFAR-10 [39] and ImageNet ILSVRC-
2012 [40] datasets for the evaluation. These are commonly used
to compare pruning performance. The CIFAR-10 dataset con-
tains 50,000 training images (32 × 32) and 10,000 test images
for 10 classes. The baseline model is trained with a batch size of
64 for 300 epochs using SGD from scratch. The initial learning
rate is set to 0.1 and is divided by 10 at 50% and 75% of the
total training steps. We used a Nesterov momentum of 0.9 and a
weight decay of 10−4 for fast convergence and regularization of
the model. The ImageNet ILSVRC-2012 dataset is a large-scale
dataset containing 1.28 million training images and 50,000 test
images of 1,000 classes. The baseline model is trained with a
batch size of 128 for 80 epochs using SGD from scratch. The
initial learning rate is also set to 0.1 and is divided by 10 at
50% and 75% of the total training steps. The experiments are
conducted with darknet [8] on NVIDIA Geforce RTX 2080 Ti
GPUs.

B. Compatibility With Various Sparsity Training Methods

In this subsection, we show the compatibility of the pro-
posed trunk pruning using two channel-pruning schemes (Slim-
ming [24] and GBN [34]) and a weight-pruning scheme
(GSM [45]) as sparsity training methods. In particular,
GSM [45], the weight pruning method, used momentum-SGD to
remove unnecessary weights from the filter. Therefore, we apply
the sparsity training method of the GSM in units of BN scaling
factors rather than individual weights. Because GReg [49] pre-
sented the results of applying the sparsity training method to both
weight and channel pruning, we too apply the GSM [45] for the

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

5594 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 1. Trunk pruning in two consecutive convolutional layers. The Conv-BN-Act indicates each Convolution-Batch Normalization-Activation operation. After
sparsity training, the four filters (i.e., the fourth, fifth, seventh, and eighth) of layer i become redundant. When applying trunk pruning, we set the seventh filter
of layer i to the trunk. Accordingly, the seventh kernel of the corresponding layer i+ 1 is also set as the trunk. Only the seventh filter of layer i remains (i.e., the
fourth, fifth, and eighth filters are removed), and the trunk pruning equation is applied to the seventh kernel of layer i+ 1.

channel/filter pruning rather than the weight pruning in a sim-
ilar manner. As an experimental network, we use ResNet [1],
which is widely used in various applications and is difficult
to prune owing to its efficient network structure. It should
be noted that we only prune the internal CONV layer in the
residual blocks, similar to other channel pruning methods [23],
[24], [25]. However, if the input channels of the next resid-
ual block are the constant channels, trunk pruning can also
be conveniently applied to the first CONV layer of the next
residual block. To control the floating point operations per sec-
ond (FLOPs), we use the penalty term λ suitable for the spar-
sity training scheme (Slimming: 5× 10−4, GSM: 5× 10−5, and
GBN: 8× 10−4).

Table I shows the results obtained by applying the conven-
tional and trunk pruning methods after each sparsity training
using ResNet-56 and 164 on the CIFAR-10 dataset. “Base-
line”, “Pruned Acc. before fine-tuning”, and “Pruned Acc.
after fine-tuning” represent the Top-1 accuracy of the base-
line, pruned networks without fine-tuning, and pruned networks
with fine-tuning, respectively. “Acc. Drop before fine-tuning”
and “FLOPs reduction” denote the accuracy drop between the
baseline and pruned network without fine-tuning and the FLOPs
reduction of the pruned network compared with the baseline,
respectively. The experimental results show that trunk pruning
before fine-tuning achieves the best performance in all three
sparsity training methods (i.e., Slimming, GSM, and GBN).
That is, because trunk pruning already has an optimally reduced
representational capacity, fine-tuning has a negative effect on
network performance, whereas performance recovery through
fine-tuning has a certain effect when the performance degrada-
tion is large (such as in conventional pruning). It should be noted
that, as mentioned in Section III-C, this negligible difference in

FLOPs reduction occurs because the proposed method uses ad-
ditional output channels (i.e., trunk). These results demonstrate
that the proposed method is sufficiently compatible with various
sparsity training methods and, thereby, provides a remarkable
performance without fine-tuning. In the following subsection,
we present the experimental results using the GBN as a base
sparsity training method because the GBN has the best trade-off
between accuracy drop and FLOPs reduction.

To analyze the cause of the accuracy drop in conventional
pruning, Fig. 2 shows the distribution of the constant channels
with the BN scaling parameters below the threshold (10−3 in
our environment) for various pruning methods (GBN [34], Slim-
ming [24], and GSM [45]). The internal layer index of the resid-
ual blocks and the number of the constant channels in ResNet-56
and ResNet-164 are displayed on the x-axis and y-axis, respec-
tively. In ResNet-56 with GBN and Slimming, the number of
positive shift parameters (orange bars) among the channels with
a scaling factor below the threshold is highly marginal. The neg-
ative shift parameters (i.e., blue bar–orange bars) become zero
because ResNet in Fig. 2 uses the ReLU activation function.
Therefore, no performance loss occurs even when these are re-
moved. As a result, the difference in accuracy drop between the
conventional and trunk pruning methods is negligible, as shown
in Table I. Meanwhile, the GSM has significantly more constant
positive channels than the GBN or Slimming. Therefore, conven-
tional pruning results in a significant accuracy drop (i.e., 4.59%
vs. 0.53%). There are a number of constant positive channels
(orange bars) in ResNet-164. In addition, because the network
is significantly deeper compared with ResNet-56, the pruning
loss in the early layer accumulates gradually in the prediction
layer. This results in a significant loss. Thus, in ResNet-164,
trunk pruning can achieve a significantly higher performance

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5595

Fig. 2. Distribution of the constant channels with the BN scaling parameters below the threshold (10−3 in our experiment) for ResNet-56 and ResNet-164
according to various sparsity training schemes (i.e., GBN, Slimming, and GSM). The blue and orange bars represent the number of constant channels (both positive
and negative) and the number of constant channels with only positive values, respectively. The x-axis and y-axis represent the internal layer index and number of
constant channels of the residual block, respectively. FLOPs reduction and accuracy corresponding to the number of channels of each sub-figure are presented in
Table I Among the three sparsity training techniques, the Slimming method with the lowest positive shift parameter ratio causes the greatest decrease in accuracy.
Additionally, a greater decrease in accuracy occurs in ResNet-56, where the proportion of positive shift parameters is lower than in ResNet-164. (a) ResNet-56
with GBN (b) ResNet-56 with Slimming (c) ResNet-56 with GSM (d) ResNet-164 with GBN (e) ResNet-164 with Slimming (f) ResNet-164 with GSM.

than conventional pruning with a marginal FLOPs loss. This is
because it can reproduce the output of the unpruned network en-
tirely, so that the pruning loss is not transferred to the prediction
layer.

C. Comparison Results for Various Networks With the
CIFAR-10 and CIFAR-100 Datasets

Table II shows the results of the performance comparison
using ResNet-56, ResNet-164, and VGG-19 [38], which are
the representative networks for image classification, on the
CIFAR-10 dataset. As mentioned in the previous subsection,
“Ours” denotes the results obtained by applying the trunk prun-
ing without fine-tuning after the GBN-based sparsity training.
“Fine-Tuning?” indicates whether the pruned network per-
formed fine-tuning or not. The “-” in the results of NISP [50] de-
notes “Not provided in the reference article.” In all the compari-
son result tables, we present the baseline accuracy results of the
comparative studies without modification because the network
baseline accuracy presented in each study varies owing to dif-
ferent environments (e.g., experimental setting and implemen-
tation language). Accordingly, to perform a fair comparison, we
compare the performance in terms of the trade-off between
relative accuracy drop (Drop (%)) and FLOPs reduction (Pruned
FLOPs (%)), rather than absolute accuracy (i.e., Pruned Acc.
(%)).

The proposed pruned ResNet-56 with 50% FLOPs reduction
enhances the Top-1 accuracy by 0.01% over the baseline and
shows better performance than all the existing studies, including
the SOTA channel pruning methods that require time-consuming

fine-tuning. Moreover, the pruned ResNet-56 with trunk prun-
ing shows a higher FLOPs reduction as well as a lower accuracy
drop compared with Variational [29], without fine-tuning. As
mentioned in Section II-C, Variational [29] reformulates the BN
to remove additional fine-tuning. However, because this refor-
mulation is not an affine function of the existing BN, the flow
and value of gradients are changed significantly and cannot en-
sure optimal performance. Meanwhile, the proposed method can
achieve a better performance because it can remove fine-tuning
without modifying the affine function of the existing BN. For
ResNet-164, we reduce 6.51% more FLOPs with a 0.02% lower
accuracy drop than C-SGD [27]. This is because the proposed
method can automatically identify the optimal structure (i.e., op-
timal layer width) by using sparsity training. However, C-SGD
also removes the channels of important layers by using uniform
pruning (i.e., removing the same portion for all the layers), which
causes performance degradation. In other words, the two meth-
ods may be similar in that fine-tuning is unnecessary, but the
basic rationale is different in terms of approaches to solving this
problem. It should also be noted that the pruned ResNet-164 of
C-SGD [27] requires three times more training (1,800 epochs
(total of 600-600-600) with a batch size of 64). However, we use
only one-shot pruning. It is significantly more efficient in terms
of training time. The proposed pruned VGG-19 shows better
accuracy in reducing the FLOPs similar to SCP [31]. Further-
more, it achieves an accuracy improvement of 0.16% compared
with the baseline, although it prunes over 70% of the FLOPs. It
should be noted that when pruning an overparameterized model
using a high-performance sparsity training method, the gener-
alization of the model can be improved. Consequently, we can

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

5596 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

generate a sparse model with high accuracy. Since modern neu-
ral networks are highly overparameterized, these networks are
highly vulnerable to overfitting to the training data. Pruning can
solve the problem of overparameterization by reducing the com-
plexity of the model by removing unnecessary parameters. As
a result, a pruned model can become less sensitive to the noise
in the training data and learn more general patterns, leading to
improved generalization performance [43], [51]. To conclude,
performing the proposed trunk pruning after the sparsity train-
ing enables a high FLOPSs reduction and high accuracy even
when the existing fine-tuning process is not performed.

Table III shows the results of the performance comparison
using ResNet-56 on the CIFAR-100 dataset. ResNet-56 with
trunk pruning also shows the smallest accuracy drop with sim-
ilar FLOPs reduction compared to other comparison studies.
The results of these CIFAR-100 datasets demonstrate that the
proposed method is an efficient pruning method on various
datasets.

D. Comparison Results on Various Networks With the
ILSVRC-2012 Dataset

We demonstrate the superiority of the proposed trunk prun-
ing on the ImageNet ILSVRC-2012 dataset using ResNet-50,
ResNet101, and MobileNet-V1 [2]. These are used frequently
in object detection and segmentation. As shown in Table IV,
the trunk pruning with the GBN [34] also achieves SOTA per-
formance on ResNet-50 and ResNet-101 in terms of FLOPs
reduction and accuracy drop, even in the challenging ImageNet
ILSVRC-2012 dataset. With ResNet-50, the proposed method
improves the accuracy over the baseline by 0.34%, although
it achieves a FLOPs reduction (i.e., 39.29%) similar to that of
Taylor-FO [28] and ResRep [56]. For Taylor-FO, the channel im-
portance evaluation method is similar to trunk pruning. However,
it performs an iterative process of pruning and fine-tuning. It
should be noted that this process is time-consuming and straight-
forwardly falls into a bad local minima owing to fine-tuning [27],
[31], [36], which causes significant performance degradation.
Furthermore, the proposed method with approximately 60%
FLOPs reduction mitigates the accuracy drop by 0.37% com-
pared to ResRep [56]. It is noteworthy that the proposed method
has better pruning performance than all existing methods that re-
quire fine-tuning. In addition, the pruned ResNet-101 is superior
to Rethinking [26] and Taylor-FO [28] in terms of the trade-off
between accuracy and FLOPs reduction. It should be noted that
the two “Ours” in ResNet-50 are the results of trunk pruning
using different sparsity strengths under an identical threshold.
Consequently, each “Ours” displays a different FLOPs reduc-
tion, although the threshold is identical.

Next, Table V shows the results of the pruned MobileNet-V1.
The “-” in the results of NetAdapt [62] denotes “Not provided in
the reference article”. MobileNet-V1 [2] is known to be gener-
ally difficult to be pruned because it uses depthwise convolution,
unlike existing networks. The experimental results show that the
proposed trunk pruning achieves a reasonable level of accuracy
drop without fine-tuning and better performance than the ex-
isting method [62] with fine-tuning. Meanwhile, MobileNet-V1

pruned by conventional pruning does not preserve accuracy, and
additional fine-tuning is essential.

E. Verification of Compatibility With Various Activation
Functions Including Negative Values

a) Trunk vs. Conventional: In this subsection, we demonstrate
the effectiveness of trunk pruning using the activation functions
with negative values (Mish [41], Swish [42], and LeakyReLU).
The effect of a change in the activation function on the proposed
method is a change in the shift parameters included in the feature
maps generated from the filter to be removed, and the proposed
method is a method of preserving these shift parameters. There-
fore, it should be noted that in the process of implementing
new activation functions such as Mish, Swish, and Leaky acti-
vation functions, we can simply replace the existing ReLU with
these new activation functions without any additional process.
Because the number of negative constant channels dominates
among all the constant channels, as shown in Fig. 2, if the ac-
tivation functions with negative values (such as Mish, Swish,
and Leaky) are used, the loss of all the constant channels is
transferred to the next layer in the conventional pruning meth-
ods. This causes a severe accuracy drop in the pruned network
without fine-tuning. However, as shown in Table VI, the trunk
pruning almost perfectly complements the performance degra-
dation caused by the activation functions with negative values.
It is noteworthy that this tendency appears much more clearly
in ResNet-50 because ResNet-50 is a much larger model than
ResNet-56.

b) Comparison with Other Pruning Methods: We compare the
performance by applying the Mish and Swish activation func-
tions to the C-SGD [27] and AOFP [63], which are not limited
to ReLU. Table VII shows the results for the pruned ResNet-56.
“Training Epochs” refers to the number of training epochs. For
example, 300 + 150 + 150 in AOFP corresponds to baseline +
training for pruning + fine-tuning epochs. We also measure the
training time for each method. All training processes are per-
formed fairly using one Geforce RTX 2080, and all experimen-
tal results are measured including all training times of baseline,
pruning, and fine-tuning. The experimental results demonstrate
that the proposed method with Mish activation achieves better
performance in terms of the trade-off between FLOPs reduc-
tion and accuracy drop compared with the other two methods.
It also shows an advantage in terms of training time. In particu-
lar, in the results of the Mish activation function, trunk pruning
mitigates an accuracy drop of 0.22% compared with C-SGD
while reducing 1.5 hours of training time. Even for the swish
activation function, trunk pruning achieves a significantly large
accuracy improvement (i.e., 1.01%) compared with C-SGD for
an equal training time (i.e., 6 hours). These results show that the
proposed method has better compatibility with various activa-
tion functions due to the basic rationale difference between the
proposed method and C-SGD. It is noteworthy that other chan-
nel pruning studies also evaluated the efficiency of the proposed
method based on the results for training time in the GPU rather
than training epoch [64]. Moreover, the proposed method using
Swish activation shows a performance similar to that of C-SGD

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5597

TABLE VIII
TRANSFER LEARNING RESULTS WITH THE YOLOV3 ON PASCAL VOC 2007

The bold values represent the key results of our experiments.

TABLE IX
COMPARISON OF ACCURACY AND FLOPS REDUCTION ACCORDING TO

VARIOUS THRESHOLDS

in the same training epochs and is more efficient in terms of
training time.

F. Scalability of the Proposed Method to the Object Detection
Task

We also test the scalability of the proposed trunk pruning
on the object detection task by using transfer learning. The
experiments are conducted using the YOLOv3 [8] (Backbone:
DarkNet-53) on the PASCAL VOC dataset with 20 classes. It is
a representative one-stage object detection model. We prune all
the layers except the first layer of DarkNet-53 on the ImageNet
ILSVRC-12 dataset [40]. As shown in Table VIII, we present
the mAP@0.5 and frames per second (FPS) of YOLOv3 before
and after backbone pruning. The pruned YOLOv3 using the pro-
posed method achieves a significant FPS improvement (28.8%,
measured by the Geforce RTX 2080 Ti GPU-server) with a small
mAP drop.

G. Ablation Studies

Table IX presents a performance comparison experiment ac-
cording to various thresholds using ResNet-56, ResNet-164,
and VGG-19 on CIFAR-10 and ResNet-50 with three activa-
tion functions on ImageNet as an ablation study. Specifically,
we present the Top-1 accuracy and FLOPs reduction accord-
ing to various thresholds. In general, a high FLOPs reduction
is achieved at a high threshold, although a large accuracy drop
may occur accordingly. However, the effect of FLOPs reduc-
tion (which increases as the threshold increases) is relatively
smaller than the accuracy drop. That is, although the difference

TABLE X
ABLATION STUDY RELATED TO THE NUMBER OF FILTERS

Fig. 3. Top-1 accuracy (%) for various FLOPs reduction using ResNet-56 on
the CIFAR-10 dataset.

in FLOPs reduction is not noteworthy, a threshold of 0.1 has a
significant negative impact on the performance, whereas thresh-
olds of 0.001 and 0.01 have negligible effects on the accuracy.
However, in the case of VGG19, an additional 1.58% drop oc-
curs with the same FLOPs reduction at 0.01 compared to 0.001.
Therefore, we empirically use the threshold of 0.001 based on
these results to focus on the Top-1 accuracy drop. This also im-
plies that it is reasonable to approximate a sufficiently small
scaling factor to zero.

In addition, we present the number of filters in Table X to ver-
ify the influence of the trunk filter. In ResNet-56, ResNet-164,
and VGG-19 on CIFAR-10, the proposed method removes 497,
2037, and 4651 filters out of a total of 2128, 6160, and 5504
filters, respectively. It additionally uses 6 (=0.28% of the total
number of filters, 1.21% of the number of removed filters), 14
(=0.23% of the total number of filters, 0.69% of the number of
removed filters), and 9 (=0.16% of the total number of filters,
0.19% of the number of removed filters) trunks, respectively. It
can be observed that the number of trunk filters is significantly
smaller compared with the total number of filters and number of
removed filters. Consequently, the negative effect of the FLOPs
reduction owing to the additional trunk filters is negligible. In
addition, ResNet-50 on ImageNet has a smaller ratio of addi-
tional trunk filters to total filters than ResNet-56/164 regardless
of the activation function. This means that the negative effect
of FLOPs reduction due to the additional trunk filter is more
negligible in ResNet-50.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

5598 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Lastly, to show the accuracy change of trunk pruning accord-
ing to different pruning rates, Fig. 3 shows top-1 accuracy ac-
cording to various pruning rates (i.e., FLOPs reduction) of about
19% to 67% on the CIFAR-10 dataset using ResNet-56 as an ab-
lation study. The top-1 accuracy of pruned ResNet-56 decreases
linearly as the pruning rate increases. Additionally, even when
the pruning rate increases, especially at a high pruning rate of
67%, the accuracy of 92.46% is maintained, showing relatively
little performance degradation. Additionally, at pruning rates
between 19% and 50%, the accuracy is higher than the base-
line accuracy. This shows that the proposed trunk pruning has a
network regularization effect.

V. CONCLUSION

This article proposes trunk pruning to eliminate the time-
consuming fine-tuning process in channel pruning based on
sparsity training. The proposed trunk pruning incorporates the
information of the kernels to be pruned in the next layer into
one kernel (the trunk), considering the effect of the batch nor-
malization shift parameter remaining after the sparsity training.
Thereby, the pruned network can reproduce the output of the
unpruned network after the sparsity training. This results in the
elimination of the fine-tuning process. In addition, trunk pruning
is highly compatible with various sparsity training methods and
can also be applied to activation functions with negative values.
It is feasible to achieve optimal performance by combining this
method with sparsity training and several activation functions.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[2] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2017, pp. 4700–4708.

[4] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[5] C.-Y. Wang et al., “CSPNet: A new backbone that can enhance learning
capability of CNN,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2020, pp. 390–391.

[6] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE Int. Conf.
Comput. Vis., 2019, pp. 1314–1324.

[7] J. Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian YOLOv3: An accurate
and fast object detector using localization uncertainty for autonomous
driving,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 502–511.

[8] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[9] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1440–1448.

[10] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4: Scal-
ing cross stage partial network,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2021, pp. 13029–13038.

[11] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 10781–10790.

[12] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: Real-time
instance segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2019,
pp. 9157–9166.

[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[14] J. Choi, D. Chun, H.-J. Lee, and H. Kim, “Uncertainty-based object de-
tector for autonomous driving embedded platforms,” in Proc. IEEE 2nd
Int. Conf. Artif. Intell. Circuits Syst., 2020, pp. 16–20.

[15] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate mem-
ory architecture for a reduction of refresh power consumption in deep
learning applications,” in Proc. IEEE Int. Symp. Circuits Syst., 2018,
pp. 1–5.

[16] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object de-
tection,” IEEE Trans. Very Large Scale Integration Syst., vol. 27, no. 8,
pp. 1861–1873, Aug. 2019.

[17] J. Wang et al., “SmsNet: A new deep convolutional neural network model
for adversarial example detection,” IEEE Trans. Multimedia, vol. 24,
pp. 230–244, 2022.

[18] S. Kim and H. Kim, “Zero-centered fixed-point quantization with iterative
retraining for deep convolutional neural network-based object detectors,”
IEEE Access, vol. 9, pp. 20828–20839, 2021.

[19] D. T. Nguyen, H. Kim, and H.-J. Lee, “Layer-specific optimization for
mixed data flow with mixed precision in FPGA design for CNN-based
object detectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 6,
pp. 2450–2464, Jun. 2021.

[20] H.-J. Kang, “Accelerator-aware pruning for convolutional neural net-
works,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 7,
pp. 2093–2103, Jul. 2020.

[21] Z. Wang, W. Hong, Y.-P. Tan, and J. Yuan, “Pruning 3D filters for accel-
erating 3D convNets,” IEEE Trans. Multimedia, vol. 22, pp. 2126–2137,
2020.

[22] Y. Xu, W. Dai, Y. Qi, J. Zou, and H. Xiong, “Iterative deep neural network
quantization with Lipschitz constraint,” IEEE Trans. Multimedia, vol. 22,
pp. 1874–1888, 2020.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convNets,” in Proc. 5th Int. Conf. Learn. Representations,
2017.

[24] Z. Liu et al., “Learning efficient convolutional networks through network
slimming,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2736–2744.

[25] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4340–4349.

[26] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers,” in Proc.
6th Int. Conf. Learn. Representations, 2018.

[27] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal SGD for pruning very
deep convolutional networks with complicated structure,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4943–4953.

[28] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 11264–11272.

[29] C. Zhao et al., “Variational convolutional neural network pruning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2780–2789.

[30] Y. He et al., “Learning filter pruning criteria for deep convolutional neural
networks acceleration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 2009–2018.

[31] M. Kang and B. Han, “Operation-aware soft channel pruning using differ-
entiable masks,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5122–5131.

[32] J. Guo, W. Zhang, W. Ouyang, and D. Xu, “Model compression using
progressive channel pruning,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 3, pp. 1114–1124, Mar. 2021.

[33] N. J. Kim and H. Kim, “FP-AGL: Filter pruning with adaptive gradient
learning for accelerating deep convolutional neural networks,” IEEE Trans.
Multimedia, vol. 25, pp. 5279–5290, 2023.

[34] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global
filter pruning method for accelerating deep convolutional neural net-
works,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 2133–2144.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[36] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” in Proc. Int. Conf. Learn. Representations,
2019.

[37] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one
network and specialize it for efficient deployment,” in Proc. 8th Int. Conf.
Learn. Representations, 2020.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[39] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON,
Canada, 2009.

[40] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: TRUNK PRUNING: HIGHLY COMPATIBLE CHANNEL PRUNING FOR CNNs WITHOUT FINE-TUNING 5599

[41] D. Misra, “Mish: A self regularized non-monotonic neural activation func-
tion,” in Proc. 31st Brit. Mach. Vis. Conf., 2020.

[42] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation func-
tions,” 2017, arXiv:1710.05941.

[43] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Proc.
2nd Int. Conf. Neural Inf. Process. Syst., 1990, pp. 598–605.

[44] S. Han et al., “DSD: Dense-sparse-dense training for deep neural net-
works,” in Proc. 5th Int. Conf. Learn. Representations, 2017.

[45] X. Ding et al., “Global sparse momentum SGD for pruning very deep
neural networks,” in Proc. 33rd Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 6382–6394.

[46] T. Zhuang et al., “Neuron-level structured pruning using polarization
regularizer,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst., 2020,
pp. 9865–9877.

[47] Z. Liu et al., “Metapruning: Meta learning for automatic neural net-
work channel pruning,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 3296–3305.

[48] M. Lin et al., “Channel pruning via automatic structure search,” in Proc.
29th Int. Conf. Int. Joint Conf. Artif. Intell., 2021, pp. 673–679.

[49] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing reg-
ularization,” in Proc. Int. Conf. Learn. Representations, 2021.

[50] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 9194–9203.

[51] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. 7th Int. Conf. Learn. Representations,
2019.

[52] X. Ning et al., “DSA: More efficient budgeted pruning via differentiable
sparsity allocation,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 592–607.

[53] H. Peng, J. Wu, S. Chen, and J. Huang, “Collaborative channel pruning for
deep networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 5113–5122.

[54] M. Lin et al., “HRank: Filter pruning using high-rank feature map,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1529–1538.

[55] Y. He, P. Liu, L. Zhu, and Y. Yang, “Filter pruning by switching to neigh-
boring CNNs with good attributes,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 10, pp. 8044–8056, Oct. 2023.

[56] X. Ding et al., “ResRep: Lossless CNN pruning via decoupling remem-
bering and forgetting,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 4510–4520.

[57] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proc. 27th Int. Joint
Conf. Artif. Intell., 2018, pp. 2234–2240.

[58] Z. Wang et al., “QSFM: Model pruning based on quantified similarity
between feature maps for AI on edge,” IEEE Internet Things J., vol. 9,
no. 23, pp. 24506–24515, Dec. 2022.

[59] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 304–320.

[60] M. Lin et al., “Network pruning using adaptive exemplar filters,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 7357–7366,
Dec. 2022.

[61] J. Liu et al., “Discrimination-aware network pruning for deep model
compression,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 8,
pp. 4035–4051, Aug. 2022.

[62] T.-J. Yang et al., “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 285–300.

[63] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle
filter pruning for destructive CNN width optimization,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 1607–1616. [Online]. Available: https://github.
com/DingXiaoH/AOFP

[64] B. Li, B. Wu, J. Su, and G. Wang, “Eagleeye: Fast sub-net evaluation for
efficient neural network pruning,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 639–654.

Nam Joon Kim (Graduate Student Member, IEEE)
received the B.S. degree in electrical and information
engineering from the Seoul National University of
Science and Technology, Seoul, Korea, in 2019. He
is currently an M.S. Student in electrical and informa-
tion engineering with the Seoul National University
of Science and Technology. His research focuses on
the areas of network pruning, quantization, and effi-
cient network design for deep neural networks.

Hyun Kim (Senior Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in electrical engineering and
computer science from Seoul National University,
Seoul, Korea, in 2009, 2011 and 2015, respectively.
From 2015 to 2018, he was with the BK21 Creative
Research Engineer Development for IT, Seoul Na-
tional University, as a BK Assistant Professor. In
2018, he was with the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, where he is cur-
rently an Associate Professor. His research interests

include the areas of algorithm, computer architecture, memory, and SoC design
for low-complexity multimedia applications and deep neural networks.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on April 12,2024 at 03:13:20 UTC from IEEE Xplore. Restrictions apply.

https://github.com/DingXiaoH/AOFP
https://github.com/DingXiaoH/AOFP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

