IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

5279

FP-AGL: Filter Pruning With Adaptive Gradient
Learning for Accelerating Deep Convolutional
Neural Networks

Nam Joon Kim, Student Member, IEEE, and Hyun Kim", Member, IEEE

Abstract—TFilter pruning is a technique that reduces
computational complexity, inference time, and memory footprint
by removing unnecessary filters in convolutional neural networks
(CNNs) with an acceptable drop in accuracy, consequently
accelerating the network. Unlike traditional filter pruning
methods utilizing zeroing-out filters, we propose two techniques to
achieve the effect of pruning more filters with less performance
degradation, inspired by the existing research on centripetal
stochastic gradient descent (C-SGD), wherein the filters are
removed only when the ones that need to be pruned have the
same value. First, to minimize the negative effect of centripetal
vectors that gradually make filters come closer to each other,
we redesign the vectors by considering the effect of each vector
on the loss-function using the Taylor-based method. Second,
we propose an adaptive gradient learning (AGL) technique
that updates weights while adaptively changing the gradients.
Through AGL, performance degradation can be mitigated because
some gradients maintain their original direction, and AGL also
minimizes the accuracy loss by perfectly converging the filters,
which require pruning, to a single point. Finally, we demonstrate
the superiority of the proposed method on various datasets and
networks. In particular, on the ILSVRC-2012 dataset, our method
removed 52.09% FLOPs with a negligible 0.15% top-1 accuracy
drop on ResNet-50. As a result, we achieve the most outstanding
performance compared to those reported in previous studies
in terms of the trade-off between accuracy and computational
complexity.

Index Terms—Adaptive gradient learning, convolutional neural
networks, filter pruning, light-weight technique, taylor expansion.

1. INTRODUCTION

N RECENT years, convolutional neural networks (CNNs)
have been used in various computer vision tasks, including
image classification [1]-[4], object detection [5]-[8], and

Manuscript received 21 January 2022; revised 12 May 2022 and 27 June
2022; accepted 4 July 2022. Date of publication 11 July 2022; date of current
version 30 October 2023. This work was supported in part by the Industrial
Fundamental Technology Development Program under Grant 20019367, in part
by the Development of Low Power Al Architecture for AloT, in part by the
Ministry of Trade, Industry & Energy of Korea, in part by the Basic Science
Research Program through the National Research Foundation of Korea, and in
part by the Ministry of Education under Grant NRF-2019R1A6A1A03032119.
The associate editor coordinating the review of this manuscript and approving
it for publication was Dr. Mai Xu. (Corresponding author: Hyun Kim.)

The authors are with the Department of Electrical and Information Engineer-
ing and the Research Center for Electrical and Information Technology, Seoul
National University of Science and Technology, Seoul 01811, Korea (e-mail:
rlarla2626 @seoultech.ac.kr; hyunkim @seoultech.ac.kr).

Digital Object Identifier 10.1109/TMM.2022.3189496

segmentation [9], [10], [55] owing to their remarkable develop-
ment through the efforts of several researchers. However, it is
extremely challenging to utilize deep CNNs on resource-limited
mobile devices or autonomous vehicles since the performance
improvement of these CNNs is generally achieved through
the use of deeper network structures with more hidden layers,
resulting in large model sizes, high computational costs, and
a heavy memory footprint [6], [11], [12]. In detail, in order to
utilize CNN-based applications in mobile devices, a model of
less than 600M Floating point operations per second (FLOPs)
and less than SW power consumption is required [54]. However,
itis reported that running a CNN with 1 billion connections (i.e.,
CNN that are not lightweight) at 20 frames per second (FPS) re-
quires 12.8W (= 20x1Gx640pJ) only for DRAM access [18].
Moreover, CNN-based object detection/segmentation models
for autonomous driving applications must guarantee real-time
operation of at least 30 FPS with high-resolution images in the
embedded platform for smooth and safe driving [5], and conse-
quently, there is a constant demand for reducing the network size.

To enable the utilization of CNNs in real-world applica-
tions in response to these demands, numerous studies related
to network compression and acceleration have been conducted
[13]-[39], [56]-[64]. Among them, pruning is a commonly used
and popular approach to reduce the model size of CNNss; in this
method, redundant weights or filters are removed while ensuring
an acceptable level of degradation in accuracy. Weight pruning
[16]-[21], [45], [56], in particular, can be used to achieve a very
high compression efficiency by removing redundant weights in
a filter. However, as it leads to unstructured sparsity in CNNs,
accelerating the inference phase of CNNs in a real GPU envi-
ronment without the use of special software/hardware support is
impossible. On the contrary, filter pruning [22]-[39], [57]-[60]
not only reduces computational costs significantly by remov-
ing the filters of the convolution layers, but also leads to an
actual acceleration of the inference phase in the GPU environ-
ment without special software/hardware support. In addition, it
has high scalability and compatibility that enables its easy ap-
plication to various CNN models, making it widely usable in a
variety of domains.

Due to the aforementioned advantages of filter pruning, many
filter pruning methods have been actively investigated, and
state-of-the-art (SOTA) methods have succeeded in significantly
reducing the model size of CNNs while maintaining a high ac-
curacy. There are various approaches to perform filter pruning,

1520-9210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7962-657X
mailto:rlarla2626@seoultech.ac.kr
mailto:hyunkim@seoultech.ac.kr

5280

which include the use of pre-defined architectures [22], [24],
[25], [28], [36] and automatically determined architectures [23],
[27], [35], [37], [40]-[43]. Among them, the automatically de-
termined architectures have the advantage that filters can be re-
moved globally so that the optimal structure of the network can
be found and the FLOPs can be significantly reduced. However,
it evades some problems that occur when pruning the networks
with complicated structures such as ResNet [1], which are often
used as the backbone in object detection or segmentation [9].
For example, Li et al. [22] and He et al. [25] pruned only the
first layer of each residual block. Ding et al. [28] proposed a
new optimization method called centripetal stochastic gradient
descent (C-SGD) for network slimming. Because C-SGD can
produce redundancy patterns without any heuristic knowledge,
it can solve the problem of constrained filter pruning of net-
works with complicated structures such as identity mapping [1]
or dense connection [3]. However, because the centripetal con-
straints of C-SGD [28], referred to as centripetal vectors in this
paper, are added not only to the convolution layer weights but
also to the parameters of batch normalization (BN) [44]. This
eventually acts as a penalty vector, and performance degradation
cannot be avoided. In addition, gradients modified to maintain
the distance between filters, referred to as averaged gradients
in this study, do not follow a normal gradient descent, thereby
making it difficult to reach the optimal minimum.

Inspired by C-SGD [28], we redesign the update rule of
C-SGD to achieve better performance of pruning in CNN-based
computer vision tasks. First, we consider the change in loss in-
duced by the converging of filters in the clusters to a single point
(i.e., the midpoint of filters) using Taylor expansion, and then
redesign the centripetal vector by reflecting the change in loss.
In addition, we propose an adaptive gradient learning (AGL)
technique to adaptively update the weights using the original
gradient and the average gradient to prevent the deformation
of the gradients obtained through back-propagation as much as
possible. Therefore, we optimize the loss-function with a nor-
mal gradient descent by partly utilizing the original gradient.
It should be noted that the proposed AGL not only mitigates
the performance degradation, but also accelerates the process
of converging the filters to a single point. Experiments on vari-
ous benchmark datasets (i.e., CIFAR-10, ILSVRC-2012, PAS-
CAL VOC, and SBD) and networks (i.e., image classification,
object detection, and segmentation) show that the proposed fil-
ter pruning method with AGL (FP-AGL) is superior to other
SOTA pruning methods and has high compatibility. In particular,
FP-AGL can reduce the FLOPs of ResNet-56 and ResNet-50 by
approximately 60% on the CIFAR-10 and the ILSVRC-2012,
respectively, with a negligible accuracy drop compared to the
baseline, thereby achieving a SOTA performance. The major
contributions of this paper are summarized as follows:

® In order to compensate for the problem that the existing

method [28] is not loss-aware by imposing centripetal vec-
tors on all convolution weights and BN parameters, we
propose the redesigned centripetal vector (RCV) that re-
designs the existing centripetal vector using Taylor expan-
sion, which can reflect the change in loss, and the RCV can
alleviate the performance degradation caused by pruning.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

e In order to compensate for the problem that the existing
method [28] has the weakness of deviating from the direc-
tion of normal gradient descent due to the exclusion of the
original gradient, we propose the AGL that maintains the
direction of original gradient descent as much as possible,
and the AGL can mitigate the performance degradation and
accelerate the process of filter convergence.

e Through experiments on various tasks and datasets, we
prove that the proposed FP-AGL, a combination of RCV
and AGL, has high scalability and compatibility for a va-
riety of applications.

The rest of the paper is organized as follows. Section II
describes studies related to weighted pruning and filter prun-
ing. Section III provides a detailed description of the proposed
FP-AGL. The experimental results are presented in Section VI,
and finally, Section VII concludes the paper.

II. RELATED WORKS
A. Weight Pruning

Weight pruning can achieve a high compression ratio by re-
moving the weights of filters through heuristics or optimization
processes. Cun et al. [45] remove redundant weights after deter-
mining the importance of weights based on the Hessian matrix
of the loss-function, and Han et al. [20] propose a dense-sparse-
dense training framework that restores connections after pruning
for the regularization of deep neural networks. The lottery ticket
hypothesis [17] finds the winning tickets with faster convergence
speed and higher accuracy than those of the baseline network.
Morcos et al. [21] conduct experiments to verify that winning
tickets are able to generally work well in various architectures,
optimizers, and datasets, and showed through numerous exper-
iments that winning tickets can achieve good performance even
in large datasets such as ImageNet [46]. Ding et al. [56] propose
an asymmetric convolution block using 1-D asymmetric convo-
lution to enhance the representational power of standard square
convolution. Ding et al [19] also propose momentum-SGD that
changes the gradient flow for lossless pruning and end-to-end
training, and it is possible to find better winning tickets than the
lottery ticket hypothesis [17] through momentum-SGD. How-
ever, these weight pruning methods have a disadvantage in that,
it is impossible to accelerate the inference phase without dedi-
cated hardware or software owing to irregular sparsity.

B. Filter Pruning

Studies on filter pruning have been being actively conducted
in recent years. This is because this technique can compensate
for the disadvantages of weight pruning through the accelera-
tion of the actual inference phase without any dedicated hard-
ware or software support. Li et al. [22] remove filters based on
the [;-norm of the filter after analyzing the sensitivity of each
layer from the pre-trained network. Ding et al. [57] propose an
auto-balanced regularization method that uses /-2 regularization
to penalize insignificant filters and stimulate important filters
to become more and more important. After that, they repeat
the pruning-retrain process until the desired compression ratio

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

KIM AND KIM: FP-AGL: FILTER PRUNING WITH ADAPTIVE GRADIENT LEARNING FOR ACCELERATING

is satisfied. Li et al. [59] propose the hinge filter pruning and
decomposition through group sparsity. Aflalo e al. [60] pro-
pose a novel pruning method that simultaneously optimizes the
accuracy and FLOPs and distills knowledge from the inner lay-
ers of the unpruned network. Liu et al. [23] and Ye et al. [26]
obtain structured sparsity by imposing sparsity-induced regu-
larization on the scaling factor in the batch normalization layers
[44] during the training phase and then remove filters below a
predefined threshold during the pruning phase. He et al. [24]
select filters for every epoch based on the /5-norm, and the se-
lected filters are then removed in a soft manner. He er al. [25]
also softly prune the filters using the geometric median rather
than the norm-based criterion for filter importance. Ding et al.
[58] propose a data-dependent soft pruning method based on
long short-term memory (LSTM) for learning hierarchical char-
acteristics to select an appropriate layer for pruning. In contrast
to the existing deterministic methods, Zhao ef al. [30] prune
redundant channels after evaluating the distribution of channel
saliency using the Bayes’ rule. Gao et al. [27] add tiny auxiliary
connections to the convolution layer to skip insignificant con-
volution operations during the inference phase, and these con-
nections reduce computations while maintaining the network
capacity. Molchanov et al. [29] use the Taylor expansion to
evaluate the importance of filters, remove the least important
filters, and fine-tune the network to achieve a comparable ac-
curacy. However, most of the abovementioned studies have not
completely addressed the problem of constrained filter prun-
ing in networks with complicated structures such as those with
residual connections [1]. C-SGD [28] uses a new optimization
method to perfectly prune a network with a complicated struc-
ture. During training, C-SGD makes some filters identical to one
another and then prunes the redundant ones. This method easily
resolves the constrained filter pruning problem because filters
that need to be pruned are determined without any heuristic
knowledge.

C. Centripetal Stochastic Gradient Descent

In this section, we review the pruning technique of C-SGD
[28] in detail; the FP-AGL proposed in this paper is inspired
from this technique. First, the associated symbols and notations
are described. We first assume a loss function, (D, W), and con-
sider a classification task involving cross-entropy. In L(D,W), D
denotes the training set and W denotes the trainable parameters
of the CNNGs. The trainable parameters include the weights of
the convolutional layer as well as the scaling factors and bias of
the batch normalization [44].

C-SGD [28] aims to aggregate the filters belonging to each
cluster into a single point and eventually make them identical.
After the training is complete, only one filter per cluster is left in
the pruning phase and the remaining ones are removed. Through
this process, the problem of constrained filter pruning in net-
works with complicated structures, such as identity mapping [1]
and dense connection [3], can be effectively solved. Specifically,
as described in the following equation, the goal of C-SGD is to
make the values of the two filters Fy and F; identical, where i

5281

is the current iteration.
lim ||F§” = FY|| = 0 (1)
1—00

To satisfy (1), the following equations make the two filters F'y
and F'; gradually closer to one another.

2 \or0 " ar0) %2

(2)
, , 1(oL oL Lo '
Fl(H_l) - Fl(z) = (- + z> +e— F()(l) _ Fl(l)
2\or" or") 2 ()
(3)

The second terms in (2) and (3) are used to maintain the
difference between the two filters, and the third terms, in-
cluding ¢, gradually narrow the distance between these fil-
ters. We define these two terms again as the averaged gradi-
ent and the centripetal vector, respectively. Parameter ¢ is the
centripetal strength [28], and parameter 7 is the learning rate.
%(%{)ﬁ.) + %?i)) is the averaged gradient of Fy and F; and
constrains the distance between the two filters so that the dis-
tance between them does not increase. However, because these
gradients deviate from the direction of the normal gradient de-
scent, a wider space must be searched through additional iter-
ations to reach the optimal local minima. In this manner, the
centripetal vector gradually narrows the distance between the
two filters and eventually converges to a single point. However,
because the movement of these filters follows the approach of
Ly-regularization, when the difference between the two filters
is large, the filters come close to each other quickly, but when
the difference between the two values is small, the filters come
close to each other slowly. Therefore, the distance between the
filters can never be zero, which renders perfect pruning impossi-
ble [41]. In addition, because many redundant-induced penalties
(i.e., centripetal vectors) are added to the scaling factors and bi-
ases of the batch normalization layers [44] as well as the weights
of the convolution layers, performance degradation is inevitable.
In Section III, we present the FP-AGL technique that effectively
addresses the aforementioned problems of C-SGD [28].

III. PROPOSED METHOD
A. Overview of the Proposed FP-AGL

The overall operational flow of the proposed FP-AGL is pre-
sented in Fig. 1. We utilize the RCV in Fig. 1(a) and AGL in
Fig. 1(b) to collect the two filters, Filterg (i.e., green boxes in
Fig. 1(c)) and Filter; (i.e., orange boxes in Fig. 1(c)), into a sin-
gle point. Detailed descriptions of the proposed RCV and AGL
techniques are presented in Sections III-B and III-C, respec-
tively. As shown in Fig. 1(c), the difference between Filtery and
Filter; is gradually converged to O through RCV-based FP-AGL
training to create redundancy in Filter, to minimize the loss due
to pruning, and the process of convergence to a single point can
be accelerated by performing normal training for the remaining
filters through AGL. Fig. 1(d) shows that after FP-AGL training
is completed, there is almost no difference between Filtery and

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

5282

"\, ——> Original gradient

: Av d gradi
Filtex’l‘o E [:_' t] I_T_l mln) [;l . veraged gradient
P)

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

: """ > Redesigned centripetal vector _ E D § } B ﬁ m

:) i EDE Pruning : EDDD - D
F“‘e‘;’l@@DDDDD I!IIIEI llllll!El!l

i i = = L] i [] L]

FP-AGL Training !!_ H !!!
F 1lte1*2 OEEI @ (e)
mmullllll

: Normal Training | 4o T

"""""" ©
Pruning

..

Fig. 1. Operation flow

Filter; (i.e., green boxes and orange boxes are well overlapped).
Because these two filters depicted in Fig. 1(d) have almost the
same values, a compact network in Fig. 1(f) can be created with-
out any loss of accuracy by pruning the redundant filter, Filter,
with green boxes, as shown in Fig. 1(e). It should be noted that
although the proposed method is described assuming two fil-
ters for each cluster to help the reader understand, the proposed
method can be applied by grouping all filters by two filters (i.e.,
in pairs for all filters) even if there are more filters in the cluster.

B. Redesigning Centripetal Vector

As described in Section II-C, the centripetal vectors that cause
the convolutional layer filters to come close together in the clus-
ter are added based on the number of weights of the filters to be
pruned [28]. Because this becomes a redundant-induced penalty
that distorts the original gradients to optimize the loss function,
performance degradation is inevitable. To address this problem,
similar to the methods described in [19], [29], [42], and [47],
we use the first-order Taylor expansion, which can approximate
the change in loss when specific filters are removed from the
network (e.g., pruning filters). Although the second-order Tay-
lor expansion can approximate the loss more accurately than the
first-order, it has been reported that the performance of first-order
and second-order Taylor expansion is comparable in measuring
loss change [29]. Therefore, the proposed FP-AGL performs
model pruning using first-order Taylor expansion considering
the trade-off between accuracy and computational amount. It
should be noted that it is very difficult to use the second-order in

of the proposed FP-AGL.

the training process of a large model due to the huge amount of
computation of the Hessian matrix and memory constraints. The
pruning method using this first-order Taylor expansion evaluates
the importance I,,, of weights as follows:

OL(D.W)

I, =
Ow,,

“

m

where 2EL2-W) 4nd w,, are the gradient and weight, respec-

tively. Thelgavantage of using this Taylor-based method is that
it is possible to easily evaluate the importance of weights with
a simple equation using only the weight and gradient.

The process of redesigning the centripetal vector using this
first-order Taylor expansion is as follows: first, if there are two
weights, wg and wi, in each filter, a centripetal vector must
be determined, where the weights converge to a single point
without any performance loss. The network loss when wg and
wy converge to w* using the Taylor expansion can be expressed
as follows:

OL (D, W

L(D, Wy su) = L(D, W) — % (wo —w*) (5)
OL (D, W

L(D, Wy, u)=L(D,W) - % (wy —w*) (6)

where we ignore the higher-order term because it is computa-
tionally expensive. Notably, C-SGD [28], which imposes the
centripetal vectors for all the weights without considering the
change in loss, is not loss-aware, whereas our method defines
the change in loss when wy and w; converge to w* as Iy and

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from IEEE Xplore. Restrictions apply.

KIM AND KIM: FP-AGL: FILTER PRUNING WITH ADAPTIVE GRADIENT LEARNING FOR ACCELERATING

I, which denote the importance of wg and w1, respectively, and
this importance becomes a criterion for redesigning the weight
updates for optimizing the centripetal vectors. Iy and /; can be
obtained as follows:

Iy = ‘L(Da W) —L (Dvwwo—)w‘”
_|OLDW)
- 8w0 (’LUO w) (7)
I = ‘L(D,W) - L(D7Ww1~>w*)|
Cjoow)
=" o0 (wr —w") (8)

In (7) and (8), the gradients related to the loss function (i.e.,
aLéi;W) d 6L(32’1W)) can be easily computed during the pro-
cess of back-propagation. In addition, because w* is the mid-
point between wo and wy (i.e., w* = 22F%) [, and I; can be

simplified as follows:

_|OL(D, W) (wo —w;
-Em () e
oL (D, W) wy — Wy
- ()]

In (9) and (10), since |“95**| and |*“*5*2| are equal, only
need to compare the absolute values of the gradients (i.e.,
|%w;m| and |6L#}W)|) to evaluate the importance of the
two weights. Existing studles in [42] and [47] estimated the im-
portance as in (4) with high complexity due to the product of
weights and gradients, but our method efficiently eliminates this
computation overhead because we only compare the absolute
values of gradients for evaluating the importance.

For convenience of expression, we use “mask”, which has a
binary value € {01} that determines whether or not to remove
the centripetal vector. Masks, mgy and my , are determined by
comparing the absolute values of the two gradients and can be
expressed as follows:

.| on(p,w) OL(D,W)
S if |2 < |25 (11)
0 otherwise
.| on(p,w) OL(D,W)
my =40 Zf‘ Jw, ‘>‘ o (12)
0 otherwise

A mask value of 1 means that the corresponding centripetal
vector is maintained. It should be noted that mg and m, always
have different values.

Finally, we redesign the update rule of the centripetal vectors
as follows:
@+, @ L (0L 0L wy — wo
(_ J— — —_— R [
o™) g (i + g) e (5
(13)
(i+1) (4) 1 oL oL Wy — W1
(_ f— — [R— [) e —
wy wy 5 <8w0 + Bur +mie 3
(14)

5283

Algorithm 1: FP-AGL Algorithm

Input: Training dataset D, pretrained model M , training
iteration T', averaged gradient g,,q

Output: The compact model M’
1: fori + 1to7 do

2 if [wier — wih)] < [wf” — w(”| then
3: w(()iH) — w(v nai@)

4: wgiﬂ) — wgi) — nai@)

5: else

6: Gavg = %(aa%w + 5. (n)

7. if| 8(P <)

8: (()“rl) — w(()) — NGavg + Moe(H52)
9: wi™ = i = ngan

10: else

11: w(()iﬂ) — w(()i) — NYavg

12: wgzﬂ) — wg)
13: end if
14: end if
15: end for
16: Prune model M to M’

— NGavg + mlg(u)

In (13) and (14), the second terms on the right side are the
averaged gradients that constrain the distance between weights
to be constant. The third terms on the right side are the RCVs,
which contain the mask values defined in (11) and (12). By
using these binary masks with different values at all times, the
number of redundant-induced penalties (i.e., centripetal vectors)
for pruning is reduced to half compared to C-SGD [28], thereby
minimizing the performance loss. The application process of this
RCYV is well shown in the yellow arrows (i.e., averaged gradient)
and red arrows (i.e., RCV) in Fig. 1(c).

C. Adaptive Gradient Learning

The existing C-SGD [28] updates the weight using the sum
of the averaged gradient (to maintain the distance between the
weights) and the centripetal vector (to make the weights come
closer to one another). However, this weight update leads to
performance degradation as the normal gradient descent gets
deviated. In addition, as mentioned in Section II-C, because
centripetal vectors behave similar to Ly-regularization, the dif-
ference in the weight values cannot completely converge to
zero (i.e., can be close to some extent) due to the nature of
Ly-regularization. Therefore, several training iterations are re-
quired, thereby increasing the computational time (= 1% prob-
lem). In addition, if the convergence is not complete to a single
point, even if the model is fine-tuned after pruning, it may be
trapped into bad local minima (= 2" problem).

We therefore present the AGL method that can address the
two aforementioned problems simultaneously by updating the
weights in an adaptive manner, and the application process of
FP-AGL is summarized in Algorithm1. The proposed adaptive

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

5284

update rule is formulated as follows:

i (i+1 i+1 i i
(i+1) w(())_na (1) if ’MOESt)_ gest) <"LU((3) —’IU§)
R PO + +moe (520 el
o — 3 (z) w0 m 0e(Tg) ese
5
i+1 i+1 i
(i+1) (Z) -n Sw (1) Zf)wOest /- glst) < ’w(Z) wg’t)
w, =
o0 (524 52) e (252 el
(16)
where w(()?s_tl) and wggtl) are wg and wy of the (i+1)-th itera-

tion, respectively, predicted from the current (i.e., i-th) iteration.
It should be noted that we can predict the difference between the
weight values of the (i+1)-th iteration if we know the magni-
tude and direction of i-th gradients obtained through backward
propagation and the magnitude of i-th Weights (see Appendix A
for details). In case of w0 — w7 < jw(? — w!”]in (15)
and (16), the weights are updated with the original gradient (i.e.,
lines 2-3 in Algorithm 1). In other words, when the estimated
distance between wq and w in the (i4-1)-th training iteration is
less than that in the i-h training iteration, the distance between
the two weights can be reduced; this coincides with our objec-
tive of bringing the two weights closer to one another. Because
the weight update under these conditions uses the original gra-
dients, the loss-function can be optimized in the normal gradient
descent direction, thereby maintaining the performance of the
original model. However, if the distance between wg and w; in
the (i+1)-th training iteration is larger than that in the i-th train-
ing iteration (i.e., line 4 in Algorithm 1), the distance between
the two weights increases. In this case, the weights are updated
by using the RCVs proposed in Section III-B. As the proposed
AGL method maintains the original gradients by updating the
weights, it can reach the optimal local-minimum faster than the
case where the weights by are updated only using the averaged
gradient in C-SGD [28], thereby enabling faster and more accu-
rate filter pruning.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

CIFAR-10: The CIF AR-10 [48] dataset consists of 32 x 32
50000 training images and 10000 test images categorized into
10 classes. The baseline model is trained with a batch size of
64 for 300 epochs (/240000 training steps) using SGD from
scratch. The initial learning rate is set to 0.1, and is divided
by 10 at 50% and 75% of the total training steps. To improve
the convergence speed and training performance, a Nesterov
momentum of 0.9, and a weight decay of 10~* are used. Training
using the proposed FP-AGL is set with an initial learning rate
of 5 x 1072 and centripetal strength [28] of 5 x 10~*. The rest
of the hyper-parameter settings are same as the baseline.

ILSVRC-2012: The ImageNet ILSVRC-2012 [46] dataset
consists of 1.28 million training images and 50000 test images
categorized into 1000 classes. The baseline model is trained with

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

a batch size of 128 for 80 epochs (=800000 training steps) using
SGD from scratch. The initial learning rate is set to 0.1, and this
rate is divided by 10 at 50% and 75% of the total training steps.
To improve the convergence speed and training performance, a
Nesterov momentum of 0.9, and a weight decay of 10~ are used.
The hyper-parameter settings during training using the proposed
FP-AGL is same as that for CIFAR-10 [48].

B. Experimental Results on CIFAR-10

In Table I, we compare the performance of the proposed
method with those of other methods using ResNet-56 [1], a
representative network used for image classification tasks, on
the CIFAR-10 dataset [48]. In all the cases for which the re-
sults are presented, “Ours” is the result obtained by perform-
ing one-shot pruning without fine-tuning after FP-AGL training
with sufficient iteration. “Acc. (%)” and “Pruned Acc. (%)” re-
fer to top-1 Accuracy of the baseline model and pruned model,
respectively. “Drop (%)” and “Pruned FLOPs (%)” denote the
accuracy degradation and FLOPs reduction of the pruned model
as compared to the baseline, respectively. It should be noted
that we present the baseline accuracy results of the compara-
tive studies as they are because the ResNet baseline accuracy
presented in each study varies due to different environments of
each study (e.g., experimental setting, implementation language,
etc.). Accordingly, in order to perform a fair comparison, we
conduct the performance comparison in terms of trade-off be-
tween FLOPs reduction (Pruned FLOPs (%)) and relative accu-
racy drop (Drop (%)) rather than absolute accuracy (i.e., Pruned
Acc. (%)). ResNet-56 consists of three stages of residual blocks
(16-32-64), and each stage has 16, 32, and 64 filters. As pre-
sented in Table I, Ours(11-22-44) means that the number of
filters remaining in each stage of the pruned ResNet-56 using
FP-AGL s 11,22, and 44 after the pruning. This notation applies
equally to Ours(13-26-52) and Ours(10-20-40).

Experimental results show that our proposed ResNet-56
achieves better performance than that of the other pruning meth-
ods except for C-SGD [28]. In detail, Ours(13-26-52) is superior
to Variational [30], PF [22], and LEGR [34], which achieved
20%~30% of FLOPs reduction, in terms of the trade-off be-
tween FLOPs and accuracy. LEGR [34] achieved the SOTA per-
formance by enhancing the accuracy by 0.2% with 30% FLOPs
reduction, whereas Ours(13-26-52) enhanced the top-1 accu-
racy by 0.4% even over the baseline when pruning 33.72% of
the FLOPs. In addition, Ours(11-22-44), proposed to achieve
a 50% level of FLOPs reduction, enhances the top-1 accuracy
by 0.1% over the baseline even when pruning 52.49% FLOPs.
Compared to the performance of AMC [37], this can be consid-
ered to be an outstanding result showing a large margin of 1%
level (i.e., +0.1% vs. -0.9%) in an accuracy drop even though
Ours(11-22-44) further reduces FLOPs by 2.49% compared to
AMC [37]. When comparing the proposed FP-AGL with the ex-
isting SOTA studies with a pre-defined pruning ratio, SFP [24],
FPGM [25], and LFPC [36], Ours(11-22-44) has a lower ac-
curacy drop at similar levels of pruned FLOPs. These results

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

KIM AND KIM: FP-AGL: FILTER PRUNING WITH ADAPTIVE GRADIENT LEARNING FOR ACCELERATING

5285

TABLE I
PERFORMANCE COMPARISON OF THE PRUNED RESNET-56 ON THE CIFAR-10 DATASET
Network Method Acc. (%) Pruned Acc. (%) Drop (%) FLI())rIL’I;If(g%)
Variational [30] 93.04 92.26 -0.78 20.49
PFEC [22] 93.04 93.06 +0.02 27.6
LEGR [34] 93.9 94.1 +0.2 30
__Ours(13-26-52) 93.59 ! 93.99 . 4 3372
GhostNet [64] 93.0 92.7 -0.3 49.6
AMC [37] 92.8 91.9 -0.9 50
Hrank [33] 93.26 93.17 -0.09 50
DMC [32] 93.62 93.69 +0.07 50
SCP [38] 93.69 93.23 -0.46 51.5
ResNet-56 Ours(11-22-44) 93.59 93.69 +0.1 52.49
FPGM [25] 93.59 93.49 -0.1 52.6
SFP [24] 93.59 93.35 -0.24 52.6
LFPC [36] 93.59 93.24 -0.35 52.9
Knapsack [60] 94.5 93.83 -0.69 53.8
ABCPruner [35] 93.26 93.23 -0.03 54.13
KSE [63] 93.03 92.88 -0.15 60
C-SGD [28] 93.39 93.44 +0.05 60.85
Ours(10-20-40) 93.59 93.49 -0.1 60.92
TABLE I
PERFORMANCE COMPARISON OF THE PRUNED RESNET ON THE IMAGENET ILSVRC-12 DATASET
Network Method Acc. (%) Pruned Acc. (%) Drop (%) FLE;‘;:E%%)
Taylor-FO [29] 73.31 72.83 -0.48 22.25
FPGM [25] 73.92 72.63 -1.29 41.1
ResNet-34 Ours 73.02 72.72 0.3 43.14
DMC [32] 73.30 72.57 -0.73 43.4
FPGM [25] 76.15 75.59 -0.56 42.2
Ours 75.92 75.8 -0.12 43.18
Hrank [33] 76.15 74.98 -1.17 43.77
C-SGD [28] 75.33 74.93 -0.4 46.24
GhostNet [64] 75.3 75.0 -0.3 46.34
LEGR [34] 76.1 75.3 -0.8 47
Hinge [59] 76.15 75.70 -0.45 50
Knapsack [60] 78.47 77.8 -0.67 50.21
ResNet-50 | Ours* 7592 75.77 a5 5209
FPGM [25] 76.15 74.83 -1.32 53.5
Ours 75.92 75.28 -0.64 54.91
C-SGD [28] 75.33 74.54 -0.79 55.76
ABCPruner [35] 76.01 73.52 -2.49 56.01
Ours 75.92 74.82 -1.1 60.23
LFPC [36] 76.15 74.46 -1.69 60.8
Hrank [33] 76.15 71.98 -4.17 62.1
Ours* 75.92 74.94 -0.98 62.15
Taylor-FO [29] 77.37 77.35 -0.02 39.74
ResNet-101 FPGM [25] 77.37 77.32 -0.05 42.2
Ours 77.16 77.40 +0.24 43.45

show that our method is the most efficient under similar net-
work sizes. Although Ours(10-20-40) causes an accuracy drop
of 0.15% more than C-SGD [28], we show the superior per-
formance of FP-AGL compared to C-SGD [28] in the various
experiments that follow (i.e., Tables I, IV, V, VI, VII, and VII).
In addition, it should be noted that the results of ‘Ours’ presented
in Table I are obtained by the one-shot pruning method, whereas
the result of C-SGD presented in [28] was obtained through the
iterative pruning method.

C. Experimental Results on ILSVRC-2012

We compared the proposed FP-AGL and previous studies on
the ILSVRC-2012 dataset [46] using ResNet-34, 50, and 101
[1], which are frequently used as backbones in object detection
and segmentation. As presented in Table II, our method shows
SOTA performance under various pruned FLOPs. Because the
existing studies on filter pruning can be divided into two cat-
egories: ones that adopt the iterative method and others that

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

5286

adopt the one-shot method, we evaluated our method using both
these schemes and have presented our results accordingly. To
be more specific, we used “Ours*” and “Ours” as the iterative
and one-shot pruning schemes, respectively. As in Table I, “Acc.
(%) and “Pruned Acc. (%)’ refer to the top-1 Accuracy of the
baseline model and pruned model, respectively, and “Drop (%)”
and “Pruned FLOPs (%) denote the accuracy degradation and
FLOPs reduction of the pruned model as compared to the base-
line, respectively. We compare the performance of our proposed
method (i.e., “Ours”) with that of Taylor-FO [29], FPGM [25],
and DMC [32] in ResNet-34. Among them, in comparison with
DMC [32], which has the most similar FLOPs reduction, the pro-
posed method mitigated the accuracy drop by 0.43%. Compared
to Taylor-FO [29], even though much more FLOPs of 20.89%
arereduced (i.e., 43.14% vs. 22.25%), the accuracy drop is rather
0.18% lower (i.e., -0.3% vs. -0.48%).

For ResNet-50, both of our FP-AGL schemes (i.e., “Ours” and
“Ours%”) show better performance in all the cases when com-
pared to the methods that pruned 40%—-50% of the FLOPs. In
particular, compared to C-SGD [28], which inspires our method
and showed the best performance among the existing studies, the
proposed method with the iterative scheme (i.e., “Ours*”) shows
a higher FLOP reduction (i.e., 52.09% vs. 43.18%) as well as
a lower accuracy drop (i.e., -0.15% vs. -0.4%). This shows that
the proposed method well compensates for the disadvantages of
C-SGD. C-SGD also reduced FLOPS by 55.76% with an ac-
curacy drop of 0.79%, but the proposed method with one-shot
pruning (i.e., “Ours”) can achieve a FLOPs reduction of 54.91%
with an accuracy drop of 0.64%, which in turn indicates that the
proposed FP-AGL can mitigate the accuracy drop better than
C-SGD in an almost similar FLOPs reduction. It should be noted
that C-SGD performed iteratively pruning through more epochs
to obtain 55.76% of FLOPs reduction, whereas the newly added
experimental result of FP-AGL (i.e., 54.91% of FLOPs reduc-
tion) is achieved with one-shot pruning. “Ours” with 60.23% of
FLOPs reduction also shows a 0.59% lower accuracy drop than
the SOTA one-shot pruning method, LFPC [36], in achieving a
similar level of FLOPs reduction (i.e., approximately 60%).

Even for ResNet-101, “Ours” improved the accuracy by
0.24% over the baseline, although the FLOPs reduction was
3.71% and 1.25% higher than those of Taylor-FO [29] and
FPGM [25], respectively. These results show that the proposed
FP-AGL is effective even when an aggressive one-shot pruning
scheme is being used. In addition, we confirm that the FP-AGL
has high scalability and compatibility, achieving generally good
performance on complicated networks such as ResNet-34, 50,
and 101.

D. Performance Analysis By Each Scheme (Ablation Study)

In order to analyze the impact of each algorithm of FP-AGL
(i.e., RCV and AGL), we verify the step-by-step performance on
the CIFAR-10 dataset [48] using ResNet-20, 32, 56, and 164 [1].
Table III shows the accuracy (i.e., Acc. (%)) for each algorithm
at the FLOPs reduction of approximately 60%. All results are
obtained by performing one-shot pruning without fine-tuning.
Experimental results show that each of RCV and AGL achieves

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

TABLE III
PERFORMANCE EVALUATION ACCORDING TO EACH PROPOSED SCHEME

. . Pruned
Network B3¢ pey AGL Ace.(%) ProP Diff gy opy)
(%) (%) (%) 0
(%)
89.14
(Scratch) 284 -
ResNet-20 9198 Vv 89.86 2.12 0.72 60.66
4 89.70 2.28 0.56
v v 90.11 1.87 0.97
90.75
(Scratch) 237 -
ResNet-32 93.12 v 91.41 1.71 0.66 60.76
v 91.61 1.51 0.86
v v 91.86 1.26 1.11
92.85
(Scratch) 0.74 -
ResNet-56 9359 v 9332 0.27 047 60.92
4 9345 0.14 0.6
v v 93.49 0.1 0.64
93.51
(Scratch) 077 -
ResNet-164 9428 v 93.72 0.56 0.21 60.89
4 9393 035 042
v v 94.11 0.17 0.6

ResNet-20 Block0_Convl ResNet-56 Block0_Convl

=y e
10t 56D 10! ©S6D.
S £
B) B % 100 o % %) w0 10
eocn epocn
ResNet-20 Block1_Convl ResNet-56 Blockl_Convl
E=rey —
10 —~— 10
= £ %
epoch epoch
@ ()
Fig.2. Comparison of the process of convergence to a single point in FP-AGL

and C-SGD on (a) ResNet-20 and (b) ResNet-56. The "diff" is the summation
of the differences between convolution layer filters in clusters.

the effect of mitigating a significant level of accuracy drop, and
the smallest accuracy drop can be achieved in the same FLOPs
reduction when using both AGL and RCV. Although the differ-
ence in performance when AGL and RCV+AGL is applied in
ResNet-56 is relatively small, AGL and RCV individually have a
significant effect on performance improvement in the remaining
networks except for ResNet-56 (i.e., ResNet-20, 32, and 164).
It can be seen that the proposed methods are dependent on the
network structure. These results show that even in the case of
one-shot pruning, each of the two proposed techniques helps to
reach the optimal local optima, and these two techniques are
well compatible to achieve optimal pruning performance.

In order to prove that the proposed AGL enables fast con-
vergence of filters to a single point, we compare the process in
which the filters converge to a single point in both the FP-AGL
and C-SGD methods. As can be seen in Fig. 2, which shows
the convergence process of filters in the blockO_convl and
blcokl_convl layers of ResNet-20 and ResNet-56 on Cifar-10
dataset, the use of the proposed AGL makes the convergence

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

KIM AND KIM: FP-AGL: FILTER PRUNING WITH ADAPTIVE GRADIENT LEARNING FOR ACCELERATING

5287

TABLE IV
PERFORMANCE COMPARISON IN OTHER ACTIVATION FUNCTIONS EXCEPT RELU

o Pruned
? 9 9
Network / Dataset Method Activation FT? Acc. (%) Drop (%) FLOPs (%)
Baseline Mish - 92.42 - -
Slimming [23] Mish v 90.76 -1.66 32.93
ResNet20 / CIFAR-10 C-SGD [28] Mish X 91.26 -1.16 34.15
. _FP-AGL _____ Mish X 9169 - 073 415
Baseline Leaky - 77.17 - -
Slimming [23] Leaky v 70.63 -6.54 32.04
DarkNet53 / IMAGENET C-SGD [28] Leaky x 76.54 -0.63 33.89
FP-AGL Leaky X 76.87 -0.3 33.89
TABLE V

speed of filters approximately 5.3 times and 8.3 times faster
than C-SGD, respectively.

E. Compatibility With Other Activation Functions

Since ReLU makes negative values zero, it automatically
induces sparsity in activations. For this reason, most of the filter
pruning methods were targeted only for networks using ReLU
(e.g., VGG, ResNet, and DenseNet) [38], [49]-[51]. However,
recently, networks that use activation functions other than ReL.U
(i.e., Leaky ReLU or Mish [52]) are increasing, and these activa-
tion functions cannot maintain the advantage of sparsity. There-
fore, it is very important to verify the performance of pruning
in various activation functions other than ReLU. In Table IV,
we compare and verify the performance of the proposed tech-
nique and previous studies, Slimming [23] and C-SGD [28], in
ResNet-20 [1] and DarkNet-53 [7], which use Mish and Leaky
ReLU as activation functions, respectively. The value of the
penalty factor of previous studies is set to 5x 1072, It should
be noted that all C-SGD [28] results presented hereafter are the
results of one-shot pruning after training C-SGD using evenly
clustering in the same training setting (i.e., training epochs, opti-
mizer, learning rate, etc.) as the proposed FP-AGL. In Table IV,
“FT” denotes whether the pruned network is fine-tuned or not.
FP-AGL shows higher accuracy than Slimming [23] and C-SGD
[28] in similar FLOPs reduction. The large accuracy drops of
Slimming [23] in various activation functions occur because
L1-regularization is applied only to the scaling factor of batch
normalization, and pruning is not complete due to the remaining
bias (# 0). On the other hand, C-SGD [28] and FP-AGL, which
make the filters equal by considering the bias, have better per-
formance than Slimming [23] and do not require fine-tuning. In
addition, as described in Section III, FP-AGL can reach better
local minima by using both of RCV that reduces the number
of penalty vectors by half and AGL that updates weights while
maintaining the original gradient as much as possible. As a re-
sult, FP-AGL can achieve better performance than C-SGD [28]
for various activation functions.

F. Performance Evaluation on Lightweight Networks

In Table V, we conduct additional experiments on MobileNet-
V1 [2] and MobileNet-V2 [66], which are difficult to prune
because they are already sufficiently lightweight. We compare
the top-1 accuracy drop under the same FLOPs constraint as

PERFORMANCE COMPARISON WITH C-SGD [28] USING MOBILENET-V1 AND
MOBILENET-V2 ON THE CIFAR-10 DATASET

N . Method iase szed Scc. Pruned
etwor etho cc. cc. Top
(%) (%) (%) FLOPs | (%)
C-SGD [28] 88.55 -1.89 60.2
MobileNet FP-AGL 90 44 99.12 -1.32 60.2
-Vl C-SGD [28] ’ 89.49 -0.95 43.0
e FP-AGL 89.88 -0.56 430
C-SGD [28] 91.68 -1.45 59.3
MobileNet FP-AGL 9313 92.16 -0.97 59.3
-V2 C-SGD [28] ' 92.55 -0.58 423
FP-AGL 92.94 -0.19 42.3

the previous experiments. Experimental results in Table V show
that the proposed FP-AGL achieves significantly less accuracy
drop than C-SGD [28] in various FLOPs reduction ratios. It can
also be observed that the difference in accuracy drop between
the two methods (i.e., FP-AGL and C-SGD) increases as the
FLOPs reduction ratio increases. As a result, these experimen-
tal results show that the proposed method is a more effective
pruning method even at the extreme FLOPs reduction ratio.

In addition, to measure the accuracy of C-SGD and FP-AGL
at various centripetal strengths (i.e., 0.1, 0.15,0.2,0.25, and 0.3)
for a more even comparison, we conduct additional experiments
using MobileNet-V1 with a FLOPs reduction of 60.2% on the
Cifar-10 dataset. As can be seen in Fig. 3, the proposed method
achieves better accuracy than C-SGD on all centripetal strengths
of C-SGD. These experimental results show that the proposed
method has the additional advantage of reducing significant
training cost because it does not require any hyper-parameter set-
ting, unlike C-SGD, which requires multiple training processes
to find the optimal hyper-parameter (i.e., centripetal strength).

G. Scalability With Object Detection and Semantic
Segmentation

We also tested the scalability of the proposed FP-AGL with
object detection and semantic segmentation tasks by using trans-
fer learning. The experiment for object detection is performed
on the PASCAL VOC dataset [53] with 20 classes, and YOLOv3
[7], a representative one-stage object detection model. Con-
cretely speaking, as YOLOv3 uses Darknet-53 as the backbone,

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

5288

0,
so0]| 89-12%

88.8

88.6

Top-1 Accuracy(%)
°3
@
H

88.2
88.0
87.8 —8— C-SGD
=== ours
87.6 T T T T T T T T T
0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300

Centripetal Strength

Fig. 3. Top-1 accuracy (%) of MobileNet-V1 on the CIFAR-10 dataset
according to various centripetal strengths.

TABLE VI
TRANSFER LEARNING RESULTS WITH YOLOV3 oN PASCAL VOC 2007

Network Size F]igl;l;f(lgz) mA(I(’)%O.S FPS
Unpruned
(Backbone: Original - 79.68 75
DarkNet-53)
Pruned FP-AGL
(Backbone: Pruned | 416 42.87 79.49 112
DarkNet-53)
Pruned C-SGD [28]
(Backbone: Pruned 42.87 78.9 112
DarkNet-53)

we prune all layers except the first layer of this Darknet-53 on Im-
ageNet [46] using the proposed FP-AGL and C-SGD [28]. The
hyper parameter settings of the training are the same as those
described in Section IV-A. The pruned DarkNet-53 with the pro-
posed FP-AGL and C-SGD shows 0.3% and 0.75% lower accu-
racy, respectively, as compared to the baseline, on the 42.87%
of FLOPs reduction. Next, we train YOLOv3 with these pruned
DarkNet-53 networks on the PASCAL VOC 200742012 train-
ing set. As presented in Table VI, the proposed method achieves
a 24% of FPS improvement with only a 0.19% drop in mean av-
erage precision (mAP) on the VOC metric (IoU = .5) compared
to the baseline (i.e., ‘Unpruned’), and consequently achieves
better performance than C-SGD by 0.59% of mAP.

In a similar way to the object detection model, semantic seg-
mentation models are constructed by combining the FCN mod-
ule [55], which consists only of a convolution layer without a
fully connected layer, with Darknet-53 as a backbone, and we
perform fine-tuning on all combined models (i.e., ‘Unpruned’,
‘Pruned FP-AGL’, and ‘Pruned C-SGD’ models). As the train-
ing setting, all of the original model and the pruned models on
the SBD dataset [65] use a fixed learning rate of 1.0e~'° for 30
epochs. As shown in Table VII, the pruned segmentation model
with the proposed FP-AGL achieves an accuracy improvement
of 0.18% compared to the baseline in mean intersection over

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

TABLE VII
TRANSFER LEARNING RESULTS WITH THE SEMANTIC SEGMENTATION TASK ON
THE SBD DATASET

Network Fliaglggfgz) mloU (%) FPS
Unpruned
(Backbone: Original - 54.12 27
DarkNet-53)
Pruned FP-AGL
(Backbone: Pruned 42.87 54.3 36
DarkNet-53)
Pruned C-SGD [28]
(Backbone: Pruned 42.87 53.9 36
DarkNet-53)
TABLE VIII

COMPARISON OF SCRATCH TRAINING PERFORMANCE OF THREE METHODS
(NORMAL SGD, C-SGD, AND FP-AGL) ON THE CIFAR-10 DATASET

Model Normal SGD (%) C-SGD (%) FP-AGL (%)

Res-20 (10-20-40) 80.14 89.48 89.75

Res-32 (10-20-40) 90.75 91.19 91.34
VGG * 1/8 81.85 82.51 82.75

union (mIOU), which represents the accuracy of segmentation,
and outperforms the pruned model with C-SGD by 0.4% of
mlIOU. In addition, the pruned segmentation model can improve
FPS by 33.3% through pruning.

Considering that the real-time object detection model
YOLOV3 and semantic segmentation model are quite vulnerable
to light-weighting techniques such as quantization and prun-
ing, these results demonstrate the superiority of the proposed
FP-AGL.

H. Scratch Training Performance

We conduct additional experiments to verify the scratch train-
ing performance of FP-AGL on the ResNet and VGG networks,
and the results are presented in Table VIIIL. In Table VIII, Res
(10-20-40) denotes the remaining structure after pruning and
scratch training of the original ResNet structure (16-32-64) (i.e.,
each stage has 16, 32, and 64 filters) by each method. VGG
1/8 indicates that the original width of VGG is slimmed by 1/8.
Experimental settings are the same as those presented in Sec-
tion IV-A, and one-shot pruning is used for clear performance
comparison. Experimental results show that FP-AGL achieves
the highest accuracy in all networks, and consequently, it can
be seen that the proposed FP-AGL is a more efficient training
method than normal SGD and C-SGD [28] even in scratch train-
ing.

V. CONCLUSION

Although various studies on filter pruning are being con-
ducted, the development of superior filter pruning methods in
terms of the trade-off between performance and network com-
plexity remains a key issue because deeper CNNs are continu-
ously being proposed in accordance with the trend of constantly

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

KIM AND KIM: FP-AGL: FILTER PRUNING WITH ADAPTIVE GRADIENT LEARNING FOR ACCELERATING

pursuing better performance. In this paper, based on the anal-
ysis of the problems of the existing C-SGD, we proposed the
FP-AGL to effectively reduce the model size without perfor-
mance degradation of CNNs. The proposed method redesigns
the centripetal vector in a loss-aware manner using Taylor expan-
sion, and adaptively applies the centripetal vectors to minimize
the distortion of the original gradients and to enable fast conver-
gence of weights to a single point. Experiments using various
benchmark datasets and networks demonstrated that the pro-
posed FP-AGL is the most efficient pruning method achieving a
performance better than those of the SOTA methods. In conclu-
sion, the proposed FP-AGL is expected to provide great support
when utilizing CNNs in mobile platforms, thereby accelerating
the commercialization of deep learning algorithms.

APPENDIX A

This appendix presents the method to predict the difference
between the weight values of the (i+1)-th iteration by using
the magnitude and direction of i-th gradients obtained through
backward propagation and the magnitude of i-th weights.

|w(()i,t}) wﬁttl)| is always smaller than |w(()i) wgi)\ when
Case (D): (w] <w1))and S 2 <0and - o Q >0
Case (2: (wol <w!’) and aa%"" <0 and
w
| oL ‘ oL !
Bwél) 8w§1)
Case ®: (w” <w!”) and 2% >0 and % >0 and
’LUO wl

oL oL

32%5] <12
Case @: (w)) >u;1)and oL @ > 0 and f?ﬁ)
wy

Case (5): (w(z) sz)) and 88L> < 0 and % < 0 and
wy
|- < \7|
8w
(z) (#) oL oL
Case (6): (wy’ > w;"”) and Pl >0 and Pl >0 and
| oL ‘ oL
owl? ow'?
. (i+1) 1)
Otherwise, [w{f}) — w{"" ! is always greater than of equal
to \w(i) — w(i)| when
0 1
Case (7): (w(()i < w,y)y and 8(1) > 0 and 8(1) <0
Case ®: W’ < w!”) and L. <0 and
| oL | ‘ oL |
awél) E)wy)
Case (9): (wO < wl)) and L. >0 and s >0 and
Wo
| <z>|>‘ <L>
Case @: (w)) >w1)and . @ < 0and a?i)
Case ()): (wO >w1) and (7) <0 and (7) <0 and
oL oL
|aw(§” | > ‘3 ;
Case (2: (w(()l >w1)) and (7) >0 and (7) >0 and
| oL ‘ oL
ow’? ow®

5289

Please note that all notations in the Appendix are the same as
those presented in the manuscript.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

[2] A.G.Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[3] G.Huang,Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 4700-4708.

[4] X.Zhang, X.Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848-6856.

[5] J.Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian YOLOv3: An accurate
and fast object detector using localization uncertainty for autonomous
driving,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 502-511.

[6] J. Choi, D. Chun, H.-J. Lee, and H. Kim, “Uncertainty-Based object de-
tector for autonomous driving embedded platforms,” in Proc. 2nd IEEE
Int. Conf. Artif. Intell. Circuits Syst., 2020, pp. 16-20.

[7]1 J. Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,”
2018, arXiv:1804.02767.

[8] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp- 10781-10790.

[9] D. Bolya, C. Zhou, F. Xiao, and Y. Lee, “YOLACT: Real-time instance
segmentation,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 9157—
9166.

[10] K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask R-CNN,”
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961-2969.

[11] D.T.Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate mem-
ory architecture for a reduction of refresh power consumption in deep
learning applications,” in Proc. IEEE Int. Symp. Circuits Syst., 2018,
pp. 1-5.

[12] D.T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object de-
tection,” IEEE Trans. Very Large Scale Integration Syst., vol. 27, no. 8,
pp. 1861-1873, Aug. 2019.

[13] Y. Xu, W. Dai, Y. Qi, J. Zou, and H. Xiong, “Iterative deep neural network
quantization with Lipschitz constraint,” IEEE Trans. Multimedia, vol. 22,
no. 7, pp. 1874-1888, Jul. 2020.

[14] Z.Wang, W.Hong, Y. Tan, and J. Yuan, “Pruning 3D filters for accelerating
3D ConvNets,” IEEE Trans. Multimedia, vol. 22, no. 8, pp. 2126-2137,
Aug. 2020.

[15] S.Kim and H. Kim, “Zero-Centered fixed-point quantization with iterative
retraining for deep convolutional neural network-based object detectors,”
IEEE Access, vol. 9, pp. 20828-20839, 2021.

[16] B.Hassibi, D. G. Stork, and G. Wolf, “Optimal brain surgeon: Extensions
and performance comparisons,” in Proc. Adv. Neural Inf. Process. Syst.,
1993, pp. 263-270.

[17] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. 7th Int. Conf. Learn. Representations,
2019.

[18] S.Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in Proc. 4th Int. Conf. Learn. Representations, 2016.

[19] X. Ding et al., “Global sparse momentum SGD for pruning very deep
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 6379—
6391.

[20] S. Han et al., “DSD: Dense-sparse-dense training for deep neural net-
works,” in Proc. 5th Int. Conf. Learn. Representations, 2017.

[21] A. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them all:
Generalizing lottery ticket initializations across datasets and optimizers,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 4933-4943.

[22] H.Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient convnets,” in Proc. 5th Int. Conf. Learn. Representations,
2017.

[23] Z. Liu et al., “Learning efficient convolution networks through network
slimming,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2736-2744.

[24] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proc. 27th Int. Joint
Conf. Artif. Intell., 2018, pp. 2234-2240.

in Proc.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

5290

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric
median for deep convolutional neural networks acceleration,” in Proc.
IEEE/CVF Conf. comput. Vis. Pattern Recognit., 2019, pp. 4340-4349.
J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers,” in Proc.
6th Int. Conf. Learn. Representations, 2018.

X. Gao, Y. Zhao, L. Dudziak, R. Mullins, and C. Xu, “Dynamic channel
pruning: Feature boosting and suppression,” in Proc. 7th Int. Conf. Learn.
Representations, 2019.

X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal SGD for pruning
very deep convolutional networks with complicated structure,” in Proc.
1IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4943—4953.
P. Molchanov, A. Mallya, S. Tyree, 1. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 11264-11272.

C.Zhao et al., “Variational convolutional neural network pruning,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2780-2789.
I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” J. Mach. Learn. Res.,
vol. 23, no. 3, pp. 1139-1147, 2013.

S. Gao, F. Huang, J. Pei, and H. Huang, “Discrete model compression
with resource constraint for deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 1899-1908.

M. Lin et al., “HRank: Filter pruning using high-rank feature map,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1529-1538.
T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards efficient
model compression via learned global ranking,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 1518-1528.

M. Lin et al., “Channel pruning via automatic structure search,” in Proc.
29th Int. Joint Conf. Artif. Intell., 2020, pp. 673—-679.

Y. He et al., “Learning filter pruning criteria for deep convolutional neural
networks acceleration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 2009-2018.

Y. He et al., “AMC: AutoML for model compression and acceleration on
mobile devices,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 784-800.
M. Kang and B. Han, “Operation-Aware soft channel pruning using differ-
entiable masks,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5122-5131.
N. Kim and H. Kim, “Mask-Soft filter pruning for lightweight CNN infer-
ence,” in Proc. IEEE 17th Int. SoC Des. Conf., 2020, pp. 316-317.

Z. Liu et al., “MetaPruning: Meta learning for automatic neural network
channel pruning,” in Proc. IEEE/CVF Conf. comput. Vis. Pattern Recognit.,
2019, pp. 3296-3305.

X. Ding et al., “Lossless CNN channel pruning via gradient resetting and
convolutional Re-parameterization,” in Proc. IEEE Int. Conf. Comput. Vis.,
2021, pp. 4510-4520.

J. Shi, J. Xu, K. Tasaka, and Z. Chen, “SASL: Saliency-adaptive sparsity
learning for neural network acceleration,” IEEE Trans. Circuits Syst. Video
Technol., vol. 31, no. 5, pp. 2008-2019, May 2021.

X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle
filter pruning for destructive CNN width optimization,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 1607-1616.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., pp. 448-456, 2015.

Y. L. Cun,J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Proc.
Adv. Neural Inf. Process. Syst., 1989, pp. 598-605.

O.Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.

Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 2130-2141.

A. Krizhevsky, and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., Univ. Toronto, Toronto, ON, Canada, 2009.
C.-Y. Wang et al., “CSPNet: A new backbone that can enhance learning
capability of CNN,” in Proc. IEEE Conf. comput. Vis. Pattern Recognit.
Workshops, 2020, pp. 1571-1580.

H. Hu, R. Peng, Y. W. Tai, and C. K. Tang, “Network trimming: A
data-driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv:1607.03250.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” in Proc. 5th Int.
Conf. Learn. Representations, 2017.

D. Misra, “Mish: A self regularized non-monotonic activation function,”
in Proc. 31st British Mach. Vis. Conf., 2020.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The PASCAL visual object classes challenge results,” Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303-338, Jun. 2007.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one
network and specialize it for efficient deployment,” in Proc. 8th Int. Conf.
Learn. Representations, 2020.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. IEEE Conf. comput. Vis. Pattern Recog-
nit., 2015, pp. 3431-3440.

X. Ding, Y. Guo, G. Ding, and J. Han, “ACNet: Strengthening the kernel
skeletons for powerful CNN via asymmetric convolution blocks,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1911-1920.

X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning for
efficient convolutional neural networks,” in Proc. AAAI Conf. Artif. Intell.,
2018, vol. 32, pp. 6797-6804.

G. Ding, S. Zhang, Z. Jia, J. Zhong, and J. Han, “Where to prune: Using
LSTM to guide data-dependent soft pruning,” IEEE Trans. Image Process.,
vol. 30, pp. 293-304, 2021.

Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte, “Group sparsity:
The hinge between filter pruning and decomposition for network com-
pression,” in Proc. IEEE Conf. comput. Vis. Pattern Recognit., 2020,
pp. 8018-8027.

Y. Aflalo, A. Noy, M. Lin, I. Friedman, and L. Zelnik, “Knapsack pruning
with inner distillation,” 2020, arXiv:2002.08258.

W. Ahmed, A. Zunino, P. Morerio, and V. Murino, “Compact cnn struc-
ture learning by knowledge distillation,” in Proc. IEEE Int. Conf. Pattern
Recognit., 2021, pp. 6554-6561.

X.Chen, J.Zhu,]J.Jiang, and C.-Y. Tsui, “Tight compression: Compressing
CNN through fine-grained pruning and weight permutation for efficient
implementation,” IEEE Trans. Comput.-Aided Design Integrated Circuits
Syst., to be published, doi: 10.1109/TCAD.2022.3178047.

Y. Li et al., “Exploiting kernel sparsity and entropy for interpretable CNN
compression,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp- 2800-2809.

K. Han et al., “GhostNet: More features from cheap operations,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1580-1589.

B. Hariharan, P. Arbeldez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 991-998.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. -C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510-4520.

Nam Joon Kim (Student Member, IEEE) received
the B.S. and M.S. degrees in electrical and informa-
tion engineering from the Seoul National University
of Science and Technology, Seoul, Korea, in 2019 and
2021, respectively, where he is currently working to-
ward the Ph.D. degree in electrical and information
engineering. His research interests include network
pruning, quantization, and efficient network design
for deep neural networks.

Hyun Kim (Member, IEEE) received the B.S., M.S.
and Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
Korea, in 2009, 2011, and 2015, respectively. From
2015 to 2018, he was with the BK21 Creative Re-
search Engineer Development for IT, Seoul National
University, as a BK Assistant Professor. In 2018, he
joined the Department of Electrical and Information
Engineering, Seoul National University of Science
and Technology, where he is currently an Assistant
Professor. His research interests include algorithm,

computer architecture, memory system design, and digital system (SoC) design
for low-complexity multimedia applications and deep neural networks.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on November 02,2023 at 03:48:46 UTC from |IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TCAD.2022.3178047

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

