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Abstract

Background: Early detection of mild cognitive impairment (MCI), a transitional stage between normal aging and Alzheimer
disease, is crucial for preventing the progression of dementia. Virtual reality (VR) biomarkers have proven to be effective in
capturing behaviors associated with subtle deficits in instrumental activities of daily living, such as challenges in using a
food-ordering kiosk, for early detection of MCI. On the other hand, magnetic resonance imaging (MRI) biomarkers have
demonstrated their efficacy in quantifying observable structural brain changes that can aid in early MCI detection. Nevertheless,
the relationship between VR-derived and MRI biomarkers remains an open question. In this context, we explored the integration
of VR-derived and MRI biomarkers to enhance early MCI detection through a multimodal learning approach.

Objective: We aimed to evaluate and compare the efficacy of VR-derived and MRI biomarkers in the classification of MCI
while also examining the strengths and weaknesses of each approach. Furthermore, we focused on improving early MCI detection
by leveraging multimodal learning to integrate VR-derived and MRI biomarkers.

Methods: The study encompassed a total of 54 participants, comprising 22 (41%) healthy controls and 32 (59%) patients with
MCI. Participants completed a virtual kiosk test to collect 4 VR-derived biomarkers (hand movement speed, scanpath length,
time to completion, and the number of errors), and T1-weighted MRI scans were performed to collect 22 MRI biomarkers from
both hemispheres. Analyses of covariance were used to compare these biomarkers between healthy controls and patients with
MCI, with age considered as a covariate. Subsequently, the biomarkers that exhibited significant differences between the 2 groups
were used to train and validate a multimodal learning model aimed at early screening for patients with MCI among healthy
controls.

Results: The support vector machine (SVM) using only VR-derived biomarkers achieved a sensitivity of 87.5% and specificity
of 90%, whereas the MRI biomarkers showed a sensitivity of 90.9% and specificity of 71.4%. Moreover, a correlation analysis
revealed a significant association between MRI-observed brain atrophy and impaired performance in instrumental activities of
daily living in the VR environment. Notably, the integration of both VR-derived and MRI biomarkers into a multimodal SVM
model yielded superior results compared to unimodal SVM models, achieving higher accuracy (94.4%), sensitivity (100%),
specificity (90.9%), precision (87.5%), and F1-score (93.3%).
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Conclusions: The results indicate that VR-derived biomarkers, characterized by their high specificity, can be valuable as a
robust, early screening tool for MCI in a broader older adult population. On the other hand, MRI biomarkers, known for their
high sensitivity, excel at confirming the presence of MCI. Moreover, the multimodal learning approach introduced in our study
provides valuable insights into the improvement of early MCI detection by integrating a diverse set of biomarkers.

(J Med Internet Res 2024;26:e54538) doi: 10.2196/54538
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Introduction

Background
Mild cognitive impairment (MCI) represents a transitional stage
in cognitive decline, positioned between normal aging and
Alzheimer disease (AD). This stage is marked by challenges
such as memory loss and difficulties in executing complex daily
activities [1-3]. Once MCI deteriorates into AD, cognitive
function cannot be restored to normal levels [4,5], leading to a
significant reduction in the ability of patients with AD to
independently perform daily activities [6]. This makes MCI a
critical intervention point to potentially slow down cognitive
decline. Therefore, the early detection of MCI plays an essential
role, not only in preventing its progression to AD but also in
allowing for timely interventions aimed at restoring cognitive
function to levels associated with normal aging [7].

Conventionally, biomarkers such as neuropsychological tests
and magnetic resonance imaging (MRI) have been deployed
for early detection of MCI, facilitating the evaluation of
cognitive functions and the tracking of brain changes [8]. For
instance, neuropsychological tests aim to quantitatively assess
multiple cognitive domains, including memory, to identify
patients with MCI [9]. However, despite their widespread
clinical use, these tests face challenges related to reproducibility,
largely owing to elements such as response bias and the ceiling
effect [10]. In contrast, MRI scans identify MCI by examining
structural brain changes, particularly in memory-associated
regions such as the hippocampus and entorhinal cortex [11,12].
However, the use of MRI scans is restricted due to their limited
feasibility for regular and repeated assessments, given their
lengthy procedures and high costs [13,14]. Thus, there is an
increasing need for novel biomarkers that can effectively and
economically detect MCI by leveraging reproducible behavioral
characteristics observed in daily activities [15-18].

In recent studies, virtual reality (VR) technology has been used
to collect behavioral data related to instrumental activities of
daily living (IADLs), which are then analyzed using machine
learning techniques to enhance the early detection of MCI
[17-20]. As an example, Kim et al [21] devised the virtual kiosk
test, wherein participants interact within a virtual environment
to order food using a kiosk. Throughout this test, behavioral
data related to hand movements, eye movements, and
performance were collected. Using these behavioral data, the
machine learning model successfully distinguished patients with
MCI from healthy controls with an accuracy rate of 80.2%.
Although VR-derived biomarkers have shown promise in early
MCI detection, there is still an ongoing question regarding the

interpretation of these biomarkers in relation to measurable
structural brain changes observed through MRI, which is of
critical clinical significance.

The integration of behavioral characteristics measured through
VR-derived biomarkers with the brain’s structural characteristics
obtained from MRI biomarkers is gaining increasing attention.
For example, Castegnaro et al [22] examined object location
memory using VR performance data and found that individuals
with damage to the hippocampus and entorhinal cortex
demonstrated poorer performance, suggesting a correlation
between impaired performance and damage to these brain
regions. Similarly, Howett et al [23] conducted a VR navigation
task and observed that participants with entorhinal cortex
damage exhibited inferior performance in the task. Although
these studies established significant positive correlations
between performance assessed using VR-derived biomarkers
and atrophy in the hippocampus and entorhinal cortex identified
using MRI biomarkers, the results were confined to correlation
analysis. To address this limitation, Cavedoni et al [19]
emphasized the importance of further exploring the multimodal
integration of VR-derived and MRI biomarkers, as it would not
only establish the clinical validity of VR but also provide
valuable behavioral and structural information about MCI.
Consistent with these objectives, this study aimed to leverage
a multimodal learning approach by integrating VR-derived and
MRI biomarkers to enhance clinical feasibility and enable early
and accurate detection of MCI.

Objectives
This study had 2 objectives. First, the study compared the MCI
classification performance of VR-derived and MRI biomarkers
with that of neuropsychological tests, which are considered the
gold standard for MCI classification. This comparative analysis
aimed to provide a deeper understanding of the advantages and
limitations of each approach, namely VR, MRI, and
neuropsychological tests. Second, the study introduced and
validated a multimodal learning model that effectively improves
the early detection of MCI by integrating the unique attributes
of VR-derived and MRI biomarkers. This integrated approach
harnesses the strengths of both modalities for more accurate
and reliable MCI detection. The findings of this study proposed
a novel clinical application approach that incorporates
VR-derived and MRI biomarkers sequentially, offering a
promising framework for clinicians to enhance their diagnostic
capabilities in evaluating MCI.
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Methods

Ethical Considerations
This study received ethics approval from the institutional review
board of Hanyang University Hospital, Republic of Korea, in
accordance with the principles outlined in the Declaration of
Helsinki (HYUH-2021-08-020-004). Before conducting the
experiment, we ensured that all participants received a
comprehensive explanation of the study, and we obtained written
informed consent from each individual. In addition, all
participants provided consent for the use of their de-identified
data for scientific research purposes, and only such data were
used in the subsequent analysis. As a token of appreciation for
their participation, participants were offered compensation in
the form of detailed reports summarizing the results from
neuropsychological tests, VR tasks, and MRI.

Participants
This study involved a total of 54 participants recruited from
Hanyang University Hospitals in Seoul and Guri between
January 2022 and July 2023. The 54 participants included 27
(50%) individuals from Seoul (n=11, 41% healthy controls and
n=16, 59% patients with MCI) and 27 (50%) individuals from
Guri (n=11, 41% healthy controls and n=16, 59% patients with
MCI). Participants were randomly recruited from both a
volunteer pool and outpatient clinics at the hospitals. The 2
neurologists reached a consensus on the diagnosis of MCI based
on the cutoff score of the Seoul Neuropsychological Screening
Battery–Core (SNSB-C), a gold-standard neuropsychological
assessment tool specifically standardized for the Korean
population [24]. The study only included participants who were
capable of interacting with the VR environment and who
possessed normal sensory perception, specifically in response
to visual and auditory stimuli. We excluded individuals with a
history of dementia, neurodegenerative disorders, or psychiatric
conditions or those who had undergone brain surgeries. It is
important to note that one volunteer (1/27, 4%) from Guri was
excluded from recruitment due to a history of brain surgery for
hydrocephalus. None of the patients with MCI included in the
study were diagnosed with dementia.

Neuropsychological Tests
This study used the SNSB-C, a neuropsychological test
specifically designed and standardized for the Korean
population. The SNSB-C serves as a reliable and clinically
validated alternative to the Mini‐Mental State Examination
for evaluating cognitive functions [24,25]. It assesses five
distinct cognitive domains through separate assessments,
including the following: (1) attention—measured using the Digit
Span Test–Backward, (2) language function—evaluated using
the Short Form of the Korean-Boston Naming Test, (3)
visuospatial function—assessed using the Rey Complex Figure
Test (RCFT), (4) memory—measured using the Seoul Verbal
Learning Test–Elderly’s Version–Delayed Recall, and (5) frontal
and executive function—evaluated using the Digit Symbol

Coding. A professional psychological evaluator with 15 years
of experience conducted all the SNSB-C evaluations in this
study.

VR-Derived Biomarkers
This study used the virtual kiosk test, previously developed in
our research [26], as a source of VR-derived biomarkers.
VR-derived biomarkers consist of features used to assess
cognitive impairment by analyzing behavioral data, including
hand and eye movements, collected from VR environments
[17]. The virtual kiosk test aims to detect early indications of
MCI by assessing behavioral data collected while participants
undertake a cognitively complex IADL task, specifically
ordering menu items at a virtual kiosk. The experimental setup,
as shown in Figure 1, was arranged in a room containing a laptop
equipped with an Intel i7-12700H processor, 16 GB of RAM,
and an NVIDIA GeForce RTX 3080 graphics card to execute
Unity and VIVEPORT software, which is necessary to run the
VR program. To facilitate a fully immersive VR experience,
participants wore a head-mounted display with integrated
eye-tracking capabilities (HTC VIVE Pro Eye) and used a hand
controller in their dominant hand to select and order menu items
from the virtual kiosk. Overall, 2 base stations tracked
participants’ movements during the test. The behavioral data
recorded during this task, encompassing hand and eye
movements and performance data, can provide insightful
VR-derived biomarkers. For safety, participants remained seated
throughout the test.

The virtual kiosk test, depicted in Figure 2, followed six steps,
not including “Start” and “End” stages: (1) selecting a place to
eat, (2) choosing a burger item, (3) selecting a side item, (4)
choosing a drink item, (5) selecting a payment method, and (6)
entering a 4-digit payment password. Before the test, participants
received the following instructions verbally: “The place to eat
is a restaurant. Please use the kiosk to order a shrimp burger,
cheese sticks, and a Coca-Cola. Use a credit card as the payment
method, and the card payment password is 6289.”

Then, the behavioral data collected during the test were
converted into 4 VR-derived biomarkers: hand movement speed,
scanpath length, time to completion, and the number of errors
(Figure 3). Hand movement speed, the first VR-derived
biomarker, was determined by dividing the total distance of
hand movements by the total test time, which correlates with
cognitive abilities such as recognition and processing speed
[21,27-29]. Scanpath length, the second VR-derived biomarker,
reflects the distance traveled by participants’ gaze during the
test, indicating overall cognitive ability [30], information
processing efficiency [31], and comprehension level [32]. Time
to completion [33], the third VR-derived biomarker, represents
the duration required for participants to complete all 6 steps of
the test. The number of errors [26], the final VR-derived
biomarker, records the total number of incorrect actions during
the test, such as incorrect choices for place to eat, burger, drink,
side item, or payment method or incorrect password entry.
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Figure 1. Experimental setup for the virtual kiosk test. The virtual kiosk test is operated via a laptop. Participants sit and wear a head-mounted display
and interact with the virtual environment using a hand controller. Their hand movements, eye movements, and performance data are tracked via base
stations.

Figure 2. The 6 sequential steps of the virtual kiosk test. In step 1, participants selected a place to eat. In step 2, they chose a burger item. Step 3
involved selecting a side item, and in step 4, participants chose a drink item. Step 5 required them to select a payment method, and finally, in step 6,
they entered the payment password.
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Figure 3. Extraction of 4 virtual reality (VR)–derived biomarkers from behavioral data in the virtual kiosk test. Hand movement speed is calculated
using the hand movement data collected from the virtual kiosk test. Scanpath length is derived from the eye movement data. The time to completion
and the number of errors are calculated based on the performance data.

MRI Biomarkers
MRI scans were performed at Hanyang University Hospital in
both Guri and Seoul locations using a Philips Ingenia CX 3T
scanner. The scans used the 3D T1-weighted
magnetization-prepared rapid gradient echo technique, with
specific protocols set for each hospital. The hospital at Guri
adhered to the following parameters: echo time/repetition
time=2.9 ms/6.3 ms, flip angle=9°, field of view=256×256 mm,

with 211 slices and voxel size of 1×1×1 mm3. The hospital at
Seoul followed a slightly different protocol: echo time/repetition
time=4.1 ms/6.9 ms, flip angle=8°, field of view=300×299 mm,

with 170 slices and voxel size of 0.8×0.8×1 mm3.

We used AQUA 3.0 software (Neurophet Inc) to process the
acquired T1-weighted MRIs, a method that aids in precise
identification and outlining of the region of interest in the brain
as depicted in Figure 4 [34,35]. The AQUA 3.0 software uses
the Split-Attention U-Net deep learning architecture, which
combines elements from ResNeSt and U-Net++. The
architecture of Split-Attention U-Net demonstrates robustness
to neuroanatomical variability through its encoder and decoder
structure, skip pathways, and split-attention module. It also
improves segmentation accuracy, particularly for small

subcortical regions, by using EvoNorm-based convolution layers
and 3D ResNeSt blocks. This methodological approach provides
valuable information about brain volume from MRIs, which
can be used as MRI biomarkers for neuroimaging analysis.
Furthermore, the software accounts for cerebral hemispheric
asymmetry by separately analyzing the left and right
hemispheres, thus enabling a more holistic evaluation.

In this study, we selected specific MRI biomarkers associated
with brain regions known to exhibit early atrophy in AD and
play crucial roles in various cognitive functions [12,36]. The
chosen MRI biomarkers, as described in Table 1, encompass
cerebral white matter [37]; cerebral gray matter [38]; ventricles
[39]; amygdala [40]; hippocampus [41,42]; entorhinal cortex
[41,43]; parahippocampal gyrus [43]; fusiform gyrus [44]; and
the superior, middle, and inferior temporal gyri [45]. These MRI
biomarkers were derived from both hemispheres, resulting in
a total of 22 MRI biomarkers used in this study. Furthermore,
we incorporated intracranial volume (ICV), a measure
encapsulating total white matter, gray matter, and cerebrospinal
fluid [46], to account for overall brain size. Then, we normalized
all the MRI biomarkers to the ICV to mitigate differences in
brain volume due to factors such as age, sex, and head
circumference [14].

Figure 4. Extraction of 22 magnetic resonance imaging (MRI) biomarkers from both hemispheres of the brain using the Split-Attention U-Net
architecture. Following multilabel segmentation of the region of interest in the brain, each brain region’s volume is quantified as an MRI biomarker.
Each hemisphere has 11 biomarkers including the cerebral white matter; cerebral gray matter; ventricles; amygdala; hippocampus; entorhinal cortex;
parahippocampal gyrus; fusiform gyrus; and superior, middle, and inferior temporal gyrus.
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Table 1. The 11 magnetic resonance imaging biomarkers for each hemisphere (ie, a total of 22 magnetic resonance imaging biomarkers from both
hemispheres) and their descriptions.

DescriptionBiomarkers

Cerebral white matter is associated with brain functions such as learning, memory, and transmitting
neural information between brain regions.

Cerebral white matter

Cerebral gray matter is associated with cognitive functions, encompassing information processing,
decision-making, and sensory perception.

Cerebral gray matter

Ventricles are associated with cerebrospinal fluid circulation, maintaining optimal conditions for
cognitive processes in the brain.

Ventricles

The amygdala is associated with emotional processing, and the modulation of memory consolidation.Amygdala

The hippocampus is associated with memory formation, spatial memory, and emotional processing.Hippocampus

The entorhinal cortex is associated with functioning as a key network for spatial memory and the
perception of time.

Entorhinal cortex

The parahippocampal gyrus is associated with cognitive processes such as spatial and episodic
memory.

Parahippocampal gyrus

The fusiform gyrus is associated with high-level vision and multisensory perception such as object
and word recognition.

Fusiform gyrus

The superior temporal gyrus is associated with the analysis of audio-visual social information such
as verbal and nonverbal communication.

Superior temporal gyrus

The middle temporal gyrus is associated with language-related tasks and integration of audio-visual
emotional processing.

Middle temporal gyrus

The inferior temporal gyrus is associated with object recognition, such as recognizing objects based
on prior experiences.

Inferior temporal gyrus

Procedures
Participants initially underwent an assessment using the
SNSB-C, administered by a professional psychological evaluator
with 15 years of experience. MCI diagnosis was subsequently
performed by 2 experienced neurologists with 18 years and 22
years of clinical expertise, adhering to the criteria established
by Albert et al [47], which considered the results of the SNSB-C.
Then, participants completed both the virtual kiosk test and
T1-weighted MRI scans in counterbalanced order. The virtual
kiosk test was administered by the same neurologists responsible
for the MCI diagnosis, whereas T1-weighted MRI scans were
conducted by a radiologist with 16 years of experience. To
ensure participants’ comfort and familiarity with the VR setup,
they underwent 2 practice sessions before the virtual kiosk test,
allowing them to get accustomed to the VR equipment and
virtual environment. Throughout the experiment, measures were
in place allowing participants to take breaks or halt the
procedure if they experienced discomfort or dizziness due to
either the VR environment or MRI scans. It is important to note
that all participants completed the entire experiment successfully
in an average time of 54.32 (SD 4.27) minutes, without requiring
any breaks.

Analysis
We conducted statistical analysis using SPSS Statistics (version
27; IBM Corp). First, we compared of the study participants,
encompassing aspects such as sex, age, and education level,
were examined using a chi-square test and independent sample
t tests to identify any statistically significant differences between
the healthy control group and patients with MCI group, using

a χ2 test for a categorical variable (ie, sex) and independent

sample 2-tailed t tests for continuous variables. Second, we
performed analyses of covariance (ANCOVA) to assess the
differences in neuropsychological characteristics, VR-derived
biomarkers, and MRI biomarkers between the healthy controls
and patients with MCI, while considering age as a covariate in
this analysis. This allowed us to discern distinct features within
each biomarker. In addition, we examined the relationship
between VR-derived and MRI biomarkers by conducting a
Pearson correlation analysis. Notably, as our data exhibited a
normal distribution and homoscedasticity, all analyses were
conducted using parametric tests.

Multimodal Learning
This study used multimodal learning using Python 3, with the
ultimate objective of amalgamating statistically significant
VR-derived and MRI biomarkers to bolster early MCI detection.
The support vector machine (SVM) algorithm, with a track
record of extensive use and demonstrated effectiveness in
analogous tasks [4,48-50], was chosen as the machine learning
model for this study. Hyperparameters for the SVM algorithm
were identified through grid search, resulting in the choice of
the radial basis function kernel with the regularization parameter
(cost) set at 1 and kernel coefficient (γ) set at 0.1. For external
validation and to prevent overfitting, we used a train and test
split with a ratio of 7:3, where 70% (38/54) of the participants
were assigned to the train subcohort and the remaining 30%
(16/54) of the participants were allocated to the test subcohort.
During the biomarker integration process, the comparative
performance of models using individual VR-derived and MRI
biomarkers was examined, revealing the unique characteristics
of each modality. The performance evaluation of these models
was conducted using several metrics, including accuracy,
sensitivity, specificity, precision, and F1-score. In addition, the
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area under the receiver operating characteristic curve (AUC)
was used to evaluate the performance of the binary classifier
(healthy controls vs patients with MCI) in our models.

Results

Demographic and Neuropsychological Characteristics
The demographic characteristics of the study participants,
encompassing aspects such as sex, age, and education level,
were examined using a chi-square test and independent sample
t tests to identify any statistically significant differences between
the healthy control group and patients with MCI group. As per
the results outlined in Table 2, no significant differences were
found in terms of demographic characteristics between the 2

groups. Subsequently, neuropsychological characteristics were
assessed using ANCOVA, with age as a covariate. The results
showed a distinct contrast between the healthy control group
and patients with MCI group. Patients with MCI exhibited
significant impairment across all 5 evaluated cognitive

functions—attention (F1,51=24.181; P<.001; ηp
2=0.322),

language function (F1,51=14.993; P<.001; ηp
2=0.227),

visuospatial function (F1,51=19.115; P<.001; ηp
2=0.273),

memory (F1,51=32.542; P<.001; ηp
2=0.390), and frontal and

executive function (F1,51=20.584; P<.001; ηp
2=0.288)—when

compared to the healthy control group, thus underscoring a
marked cognitive decline in individuals with MCI.

Table 2. Comparison of basic demographic characteristics and neuropsychological test results between healthy controls and patients with mild cognitive
impairment (MCI).

P valueGroupCharacteristics

Patients with MCI (n=32)Healthy controls (n=22)

Basic demographic characteristics

.1514 (44)14 (64)Sex (female), n (%)

.0773.47 (8.39)69.86 (6.72)Age (y), mean (SD)

.069.47 (5.12)12.09 (4.46)Educational level (years), mean (SD)

Neuropsychological tests, mean (SD)

<.001b3.00 (0.88)4.27 (0.83)DST–Ba (number of correct answers)

<.001b10.78 (2)12.91 (1.44)S-K–BNTc (number of correct answers)

<.001b26.95 (5.93)33.34 (2.31)RCFTd (score)

<.001b2.50 (2.55)6.82 (2.63)SVLT-E–DRe (number of correct answers)

<.001b37.97 (17.24)60.95 (15.83)DSCf (number of correct answers)

aDST–B: Digit Span Test–Backward.
bAnalyses of covariance, with age as a covariate.
cS-K–BNT: Short Form of the Korean-Boston Naming Test.
dRCFT: Rey Complex Figure Test.
eSVLT-E–DR: Seoul Verbal Learning Test–Elderly’s version–Delayed Recall.
fDSC: Digital Symbol Coding.

Differences in VR-Derived Biomarkers Between
Healthy Controls and Patients With MCI
As illustrated in Table 3, significant differences were observed
in VR-derived biomarkers between the healthy controls and
patients with MCI when assessed through ANCOVA, with age
as a covariate. Specifically, patients with MCI demonstrated

slower hand movement speed (F1,51=13.426; P=.001; ηp
2=0),

longer scanpath length (F1,51=7.108; P=.01; ηp
2=0.122),

prolonged time to completion (F1,51=9.447; P=.003; ηp
2=0.156),

and a greater number of errors (F1,51=9.438; P=.003; ηp
2=0.156)

during the execution of the virtual kiosk test, as compared to
healthy controls.
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Table 3. Comparison of virtual reality (VR)–derived biomarkers between healthy controls and patients with mild cognitive impairment (MCI).

P valueaGroup, mean (SD)VR-derived biomarkers

Patients with MCI (n=32)Healthy controls (n=22)

Hand movement features

.0010.17 (0.06)0.23 (0.06)Hand movement speed (m/s)

Eye movement feature

.0160.36 (54.58)23.66 (14.29)Scanpath length (m)

Performance features

.003105.39 (86.35)39.48 (18.96)Time to completion (s)

.0034 (2.81)1.73 (1.61)Number of errors

aAnalyses of covariance, with age as a covariate.

Differences in MRI Biomarkers Between Healthy
Controls and Patients With MCI
ANCOVA was performed with age as a covariate to scrutinize
the discrepancies in ICV and the proportion of ICV between
the healthy control group and the patients with MCI group. As
presented in Table 4, although patients with MCI exhibited
higher ICV compared to healthy controls, this difference was
not statistically significant. While higher ICV is typically
associated with age and sex effects [51-53], our statistical
analysis did not identify significant variations in age and sex
between healthy controls and patients with MCI. This suggests
that factors other than age and sex may be contributing to the

observed higher ICV among our patients with MCI. However,
patients with MCI demonstrated notable atrophy in the
proportion of ICV. Specifically, significant differences were
discerned in the left entorhinal cortex (F1,51=7.821; P=.007;

ηp
2=0.133), right entorhinal cortex (F1,51=11.103; P=.002;

ηp
2=0.179), left hippocampus (F1,51=11.926; P=.001;

ηp
2=0.190), right hippocampus (F1,51=8.244; P=.006;

ηp
2=0.139), left amygdala (F1,51=7.979; P=.007; ηp

2=0.135),

and right amygdala (F1,51=6.618; P=.01; ηp
2=0.115). Refer to

Multimedia Appendix 1 for detailed raw volumes of MRI
biomarkers comparing healthy controls and patients with MCI.
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Table 4. Comparison of magnetic resonance imaging (MRI) biomarkers between healthy controls and patients with mild cognitive impairment (MCI).

P valueaGroup, mean (SD)MRI biomarkers

Patients with MCI (n=32)Healthy controls (n=22)

Raw volume (cc)

.561511.49 (128.89)1490.96 (127.40)ICVb

The proportion of ICV (%)

.6214.06 (0.91)14.40 (0.73)Left cerebral white matter

.4814.13 (0.93)14.51 (0.70)Right cerebral white matter

.1314.98 (0.91)15.52 (1.01)Left cerebral gray matter

.0614.77 (1.01)15.46 (1.10)Right cerebral gray matter

.481.57 (0.84)1.28 (0.70)Left ventricles

.521.41 (0.76)1.16 (0.80)Right ventricles

.0070.10 (0.01)0.11 (0.01)Left amygdala

.0020.11 (0.01)0.12 (0.01)Right amygdala

.0010.21 (0.03)0.24 (0.02)Left hippocampus

.0060.22 (0.03)0.24 (0.02)Right hippocampus

.0070.13 (0.02)0.15 (0.02)Left entorhinal cortex

.010.11 (0.02)0.13 (0.01)Right entorhinal cortex

.230.12 (0.02)0.13 (0.02)Left parahippocampal gyrus

.260.12 (0.02)0.12 (0.02)Right parahippocampal gyrus

.390.58 (0.06)0.60 (0.06)Left fusiform gyrus

.780.57 (0.06)0.57 (0.07)Right fusiform gyrus

.170.69 (0.06)0.72 (0.07)Left superior temporal gyrus

.640.67 (0.06)0.69 (0.06)Right superior temporal gyrus

.110.66 (0.08)0.72 (0.08)Left middle temporal gyrus

.090.65 (0.08)0.69 (0.08)Right middle temporal gyrus

.370.74 (0.06)0.76 (0.06)Left inferior temporal gyrus

.060.68 (0.06)0.72 (0.08)Right inferior temporal gyrus

aAnalyses of covariance, with age as a covariate.
bICV: intracranial volume.

Correlation Between VR-Derived and MRI Biomarkers
We conducted a Pearson correlation analysis to explore the
relationships among statistically significant biomarkers,
including VR-derived biomarkers (hand movement speed,
scanpath length, time to completion, and the number of errors)
and MRI biomarkers from the amygdala, hippocampus, and
entorhinal cortex. The aim was to uncover any significant
associations among these biomarkers and elucidate their
potential implications within the context of this study. The
analysis revealed several significant correlations. Hand
movement speed correlated with the right amygdala (r=0.31;
P=.02), left hippocampus (r=0.40; P=.003), right hippocampus
(r=0.43; P=.002), left entorhinal cortex (r=0.32; P=.02), and

right entorhinal cortex (r=0.35; P=.009). Scanpath length
correlated significantly with the left hippocampus (r=−0.28;
P=.04). Meanwhile, time to completion showed significant
correlations with the left amygdala (r=−0.31; P=.02), left
hippocampus (r=−0.38; P=.005), right hippocampus (r=−0.28;
P=.04), left entorhinal cortex (r=−0.29; P=.04), and right
entorhinal cortex (r=−0.29; P=.04). Furthermore, the number
of errors demonstrated significant correlations with the left
amygdala (r=−0.34; P=.01), right amygdala (r=−0.38; P=.005),
left hippocampus (r=−0.39; P=.003), right hippocampus
(r=−0.38; P=.005), left entorhinal cortex (r=−0.29; P=.03), and
right entorhinal cortex (r=−0.34; P=.01). Notably, the left
hippocampus exhibited significant correlations with all 4
VR-derived biomarkers (Figure 5).
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Figure 5. Significant correlations between 4 virtual reality–derived biomarkers (hand movement speed, scanpath length, time to completion, and the
number of errors) and the magnetic resonance imaging biomarker, specifically, the left hippocampus. HC: healthy controls; MCI: mild cognitive
impairment.

Multimodal Learning Performance Using Both
VR-Derived and MRI Biomarkers
The comparative performance of multimodal learning is
presented in Table 5 and Figure 6. Initially, the SVM model
trained with SNSB-C data (RCFT and SVLT-E–DR), considered
as a gold standard for MCI classification, exhibited strong
performance, achieving an accuracy of 94.4%, a sensitivity of
100%, a specificity of 85.7%, a precision of 91.7%, an F1-score
of 95.7%, and an AUC of 0.93. The results shown in Table 5
indicate that combining SNSB-C results with either VR-derived
or MRI biomarkers improves MCI classification performance
compared to using VR or MRI alone. The best-performing SVM
model using only VR-derived biomarkers, including hand
movement speed, scanpath length, and the number of errors,
achieved an accuracy of 88.9%, a sensitivity of 87.5%, a
specificity of 90%, a precision of 87.5%, an F1-score of 87.5%,
and an AUC of 0.84 (refer to Multimedia Appendix 2 for more
details). In the unimodal SVM model relying solely on MRI

biomarkers, the combination of the left hippocampus and left
entorhinal cortex led to the best performance, with an accuracy
of 83.3%, a sensitivity of 90.9%, a specificity of 71.4%, a
precision of 83.3%, an F1-score of 87%, and an AUC of 0.79
(refer to Multimedia Appendix 3 for more details). Remarkably,
the highest performance was achieved when both VR-derived
and MRI biomarkers—specifically, hand movement speed,
scanpath length, the number of errors, left entorhinal cortex,
and left hippocampus—were integrated. This multimodal
approach yielded an accuracy of 94.4%, a sensitivity of 100%,
a specificity of 90.9%, a precision of 87.5%, an F1-score of
93.3%, and an AUC of 0.89, with the corresponding code
accessible on GitHub [54]. These results suggest that a combined
approach using both VR-derived and MRI biomarkers offers
the most promising outcomes, closely resembling the gold
standard represented by SNSB-C. In addition, the use of
VR-derived biomarkers alone showed promising results, whereas
the performance while using MRI biomarkers alone was
relatively lower.

Table 5. Comparative performance of the multimodal learning approach using Seoul Neuropsychological Screening Battery–Core (SNSB-C), virtual
reality (VR)–derived biomarkers, and magnetic resonance imaging (MRI) biomarkers used in the support vector machine model.

F1-score, %Precision, %Specificity, %Sensitivity, %Accuracy, %Biomarker data

95.791.785.710094.4SNSB-C

9610010092.394.4SNSB-C+VR

9692.383.310094.4SNSB-C+MRI

93.387.590.910094.4VR+MRI

87.587.59087.588.9VR

8783.371.490.983.3MRI
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Figure 6. Comparison of receiver operating characteristic curves and the area under the receiver operating characteristic curve (AUC). The best
classification performance was obtained when the support vector machine was trained using a combination of virtual reality (VR)–derived biomarkers
(hand movement speed, scanpath length, and the number of errors) and magnetic resonance imaging (MRI) biomarkers (left entorhinal cortex and left
hippocampus). The gold-standard Seoul Neuropsychological Screening Battery–Core (SNSB-C; Rey Complex Figure Test and Seoul Verbal Learning
Test–Elderly’s Version–Delayed Recall) was omitted from this comparison.

Discussion

Principal Findings
The primary objective of this study was to probe the
effectiveness of a multimodal learning approach, integrating
both VR-derived and MRI biomarkers, in augmenting early
MCI detection. The obtained results showed significant
differences in both VR-derived and MRI biomarkers when
comparing patients with MCI and healthy controls. Specifically,
patients with MCI displayed considerably slower hand
movement speed, lengthier scanpath length, prolonged time to
completion, and a greater number of errors in the virtual kiosk
test compared to their healthy counterparts. The MRI biomarkers
indicated noteworthy cerebral atrophy in the bilateral amygdala,
hippocampus, and entorhinal cortex among patients with MCI.
A remarkable observation was the superior performance of the
multimodal learning approach, which incorporated both
VR-derived and MRI biomarkers, in the prediction of MCI.
This integrated approach achieved an accuracy of 94.4%, a
sensitivity of 100%, a specificity of 90.9%, a precision of 87.5%,
an F1-score of 93.3%, and an AUC of 0.89. It outperformed
models based solely on either VR-derived or MRI biomarkers
and showed performance comparable to that of SNSB-C, the
gold standard assessment tool for MCI diagnosis in our study.
Importantly, the combination of VR-derived and MRI
biomarkers allowed for faster MCI detection, significantly
reducing the time required compared to neuropsychological

tests such as SNSB-C, which typically take approximately 2
hours [55]. These findings provide substantial evidence
highlighting the potential advantages of using a combination
of VR-derived and MRI biomarkers for enhancing the detection
of MCI.

Our findings from the multimodal learning approach
demonstrated the distinct advantages of VR-derived and MRI
biomarkers in identifying patients with MCI. VR-derived
biomarkers exhibited remarkable specificity of 90%, indicating
their effectiveness in accurately classifying healthy controls.
This finding aligns with previous studies demonstrating the high
specificity of VR-derived biomarkers obtained through IADL
tasks in VR, such as financial activities or public transportation
tasks [16] and shopping in virtual supermarkets [56,57]. On the
other hand, MRI biomarkers displayed superior sensitivity of
90.9%, showcasing their proficiency in correctly detecting
patients with MCI. Interestingly, our results showed relatively
higher sensitivity compared to recent MRI biomarker studies
reviewed by Lombardi et al [58]. Recent MRI studies focused
on optimizing a wide range of MRI features [59] and
investigated subfields within brain regions, such as the
hippocampal tail [60,61]. Meanwhile, our approach incorporated
recent techniques for MCI screening. First, we separately
measured the volumes of the left and right hemispheres to
account for hemisphere asymmetry, as suggested by Mabrouk
et al [62]. Subsequently, we used the hippocampus and
entorhinal cortex as MRI biomarkers, which are well recognized
for their sensitivity in MCI classification, based on the findings
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of Park et al [63]. Finally, to mitigate the potential influences
of individual characteristics on brain volume, we applied the
recently acclaimed ICV normalization technique [64,65]. We
believe that these approaches may have contributed to the
enhanced sensitivity in MCI detection compared to traditional
methodologies. However, despite their strengths, each modality
also has identifiable limitations. VR-derived biomarkers may
sporadically misclassify patients with MCI as healthy controls,
whereas MRI biomarkers might occasionally misidentify healthy
controls as patients with MCI. By fusing the strengths of both
VR-derived and MRI biomarkers, we managed to circumvent
these restrictions, thereby achieving impressive rates of
specificity (90.9%) and sensitivity (100%). These results
underscore the potential benefits of multimodal learning,
harnessing the complementarity of VR-derived and MRI
biomarkers to significantly improve the early detection of MCI.

The distinctive advantages of VR-derived and MRI biomarkers
suggest their potential use as sequential diagnostic tools in a
2-stage diagnostic process, as proposed by Galvin et al [66]:
the “detection” and “assessment and differentiation” phases. In
the detection phase, a swift screening tool can be used to identify
the risk of MCI among a wider population of older adults.
VR-derived biomarkers align well with the requirements for a
rapid screening tool in this phase, offering a brief testing
duration (<5 min) with high specificity. Thus, they are effective
in distinguishing healthy controls and identifying potential
patients with MCI who may require further evaluation. For MCI
care, these VR-derived biomarkers can be implemented in local
dementia care centers. When VR-derived biomarkers are used
to identify the risk of MCI among residents in these centers,
individuals can be referred to local hospitals for more specific
dementia assessments. Subsequently, during the assessment and
differentiation phase, individuals who are flagged as potential
MCI cases in the detection phase can undergo a more thorough
diagnostic process to confirm MCI. In this study, MRI
biomarkers prove to be an apt choice, given their high sensitivity
in diagnosing patients with MCI and their ability to offer clinical
evidence regarding changes in brain structure. For MCI care,
the results from MRI biomarkers can be used to accurately
diagnose patients with MCI and tailor treatment plans.
Furthermore, the integration of both VR-derived and MRI
biomarkers demonstrated the highest MCI classification
performance. Overall, integrating VR-derived biomarkers as a
rapid screening tool into the detection phase and MRI
biomarkers as a diagnostic tool into the assessment and
differentiation phase can significantly enhance the early
detection of and care process for MCI. This approach not only
reduces time and cost burdens on individuals but also provides
invaluable support to clinicians in making accurate MCI
diagnoses for the local older adult population.

Our study’s findings highlight a notable correlation between
behavioral characteristics derived from VR-derived biomarkers
and observed alterations or damage in the brain, as identified
through MRI biomarkers. The correlation analysis unveiled a
positive relationship between VR-derived biomarkers and the
left hippocampus. This implies that participants with a larger
left hippocampus tended to exhibit faster hand movement speed,
shorter scanpath length, reduced time to completion, and fewer

errors during the virtual kiosk test. Considering the pivotal role
of the hippocampus in memory formation and learning, this
observation is congruent with previous studies [67,68]
suggesting that hippocampal damage may lead to cognitive
deficits and impact behaviors, including hand and eye
movements during everyday activities. Consequently,
individuals with hippocampal damage may display complex
hand and eye movements when performing tasks such as those
presented in the virtual kiosk test (as illustrated in Figure 7).
An intriguing finding is that eye movement features exhibited
significant correlations with MRI biomarkers (ie, the left
hippocampus) and SNSB-C measures (ie, S-K–BNT, RCFT,
and DSC), which aligns with recent studies emphasizing the
potential importance of eye movements in identifying MCI
during complex daily tasks [69,70]. Simultaneously, negative
correlation was observed between the number of errors and the
right amygdala, implying that participants with a smaller right
amygdala tended to make more errors during the virtual kiosk
test. The amygdala also plays a crucial role in memory,
consistent with the findings of earlier studies [71,72] linking
volume reduction to cognitive impairment. Consequently,
individuals with amygdala damage may be more prone to errors
during task performance. In this context, the use of VR-derived
biomarkers obtained from augmented reality or VR tests
involving daily activities represents a pioneering approach for
the early detection of MCI [73,74], bridging the gap between
the identification of behavioral abnormalities and the underlying
structural changes in the brain [75,76].

This study had certain limitations that should be acknowledged.
First, the MCI classification model in this study did not
encompass a diverse range of individuals with varying racial
characteristics [77] or include those with neurodegenerative
diseases such as Parkinson disease [78] and Lewy body diseases
[79], which could potentially impact cognitive impairment in
older adults. Future studies investigating these aspects may aid
in the development of screening tools for neurodegenerative
diseases among older adults, expanding the potential user pool
to include different racial groups. Second, while this study used
handcrafted features extracted from VR-derived biomarkers,
training deep learning models directly on the input data could
allow for a more comprehensive analysis of patterns and the
exploration of novel features. Finally, although SVM was used
as the multimodal learning approach based on previous studies
[4,48-50], alternative multimodal learning approaches should
be explored and compared to potentially improve classification
performance. For instance, Contrastive Language-Image
Pretraining [80] is one of the multimodal integration models
using text and images. Similarly, future multimodal research
with VR-derived and MRI biomarkers is necessary to delve
deeper into their relationship.

Despite the limitations acknowledged, our study makes a
noteworthy contribution to the field compared to previous
studies [21,23]. This is achieved by attaining superior MCI
detection performance through the integration of VR-derived
and MRI biomarkers via multimodal learning, surpassing the
performance using VR-derived or MRI biomarkers individually.
This consolidated approach garnered remarkable results, such
as an accuracy of 94.4%, a sensitivity of 100%, a specificity of
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90.9%, a precision of 87.5%, an F1-score of 93.3%, and an AUC
of 0.89. These findings underscore the synergistic benefits of
integrating VR-derived and MRI biomarkers. Moreover, our
correlation analysis between VR-derived and MRI biomarkers
illustrated how structural brain changes can translate into
behavioral modifications in daily life. Finally, we proposed an
innovative clinical application strategy, wherein VR-derived
biomarkers are used in the preliminary detection stage, followed
by MRI biomarkers in the assessment and differentiation stage.

With a high specificity (90%) being ideal for initial screening,
VR-derived biomarkers are perfect for the first stage, whereas
MRI biomarkers, with their high sensitivity (90.9%), are optimal
for the subsequent stage. This sequential approach could
potentially reduce the time and cost burden for individuals and
provide clinicians valuable assistance in making accurate
diagnoses. To summarize, our study demonstrated the
advantages of VR-derived and MRI biomarkers’ integration
using multimodal learning to enhance early MCI detection.

Figure 7. Comparison of hand movements, eye movements, and T1-weighted magnetic resonance imaging (MRI) between healthy controls and patients
with mild cognitive impairment (MCI). (A) 3D coordinates of hand movements (depicted in blue). (B) Participant focus points indicated by dots, with
red, blue, and purple representing the start, middle, and end of gaze, respectively—dot size corresponds to fixation duration. (C) Patients with MCI
exhibiting statistically significant atrophy in the amygdala, hippocampus, and entorhinal cortex compared to healthy controls.

Conclusions
This study determined the unique characteristics of VR-derived
and MRI biomarkers while highlighting the significance of
integrating both biomarkers for early detection of MCI. The
results imply that selecting the appropriate biomarker at different
stages is beneficial. Specifically, VR-derived biomarkers with
high specificity can be used as an early screening tool for MCI,
whereas MRI biomarkers with high sensitivity are more suitable
for confirming MCI. However, the most valid approach is
integrating both VR-derived and MRI biomarkers, as the SVM

trained using both biomarkers outperformed other models that
used a single biomarker. These compelling results provide strong
evidence for the potential of multimodal learning to enhance
overall diagnostic performance in the early detection of MCI.
Furthermore, our study contributes to understanding how
structural brain changes can manifest as behavior changes by
showing the relationship between VR-derived and MRI
biomarkers. Our study’s multimodal learning approach offers
valuable insights into enhancing early MCI detection by
integrating diverse biomarkers.
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