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Alzheimer’s disease (AD) causes a rapid deterioration in cognitive and physical

functions, including problem-solving, memory, language, and daily activities.

Mild cognitive impairment (MCI) is considered a risk factor for AD, and

early diagnosis and treatment of MCI may help slow the progression of AD.

Electroencephalography (EEG) analysis has become an increasingly popular tool

for developing biomarkers for MCI and AD diagnosis. Compared with healthy

elderly, patients with AD showed very clear di�erences in EEG patterns, but it is

inconclusive forMCI. This study aimed to investigate the resting-state EEG features

of individuals with MCI (n = 12) and cognitively healthy controls (HC) (n = 13)

with their eyes closed. EEG data were analyzed using spectral power, complexity,

functional connectivity, and graph analysis. The results revealed no significant

di�erence in EEG spectral power between the HC and MCI groups. However,

we observed significant changes in brain complexity and networks in individuals

with MCI compared with HC. Patients with MCI exhibited lower complexity in the

middle temporal lobe, lower global e�ciency in theta and alpha bands, higher

local e�ciency in the beta band, lower nodal e�ciency in the frontal theta

band, and less small-world network topology compared to the HC group. These

observed di�erences may be related to underlying neuropathological alterations

associated with MCI progression. The findings highlight the potential of network

analysis as a promising tool for the diagnosis of MCI.

KEYWORDS

mild cognitive impairment, EEG, spectral power, complexity, functional connectivity,

graph analysis

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and is a progressive

neurodegenerative disorder (1–3). Currently, over 47 million people worldwide are affected

by dementia, this number is expected to increase to approximately 131.5 million by

2050 (4). AD is considered to be caused by the accumulation of beta-amyloid plaques

and neurofibrillary tangles in the brain, leading to neuronal dysfunction, and the rapid

deterioration of cognitive and physical functions, such as problem-solving, memory,
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language, and daily activities (5–7). The disease primarily affects

older adults, with its prevalence sharply increasing with age, and

poses a significant burden on affected individuals, their families,

and healthcare systems (8, 9). The pathophysiological process of

AD often initiates many years prior to the emergence of clinical

symptoms. However, symptoms often do not manifest in the early

stages and gradually worsen over time (10, 11). AD is commonly

divided into three stages based on symptoms: mild, moderate,

and severe (12). As the disease progresses through these stages,

patients experience a gradual loss of cognitive functions with

synaptic loss and neuronal dysfunction leading to irreversible brain

damage in the severe stage. Although a definitive cure for AD

is yet to be found, several treatments can slow its progression

in the early stages (13). Therefore, early detection of AD is

of paramount importance, as it enables timely intervention and

management, potentially improving patients’ quality of life (14, 15).

Mild cognitive impairment (MCI) is a condition characterized by

a noticeable decline in cognitive abilities that goes beyond typical

age-related changes but does not meet the criteria for dementia

owing to its less severe nature (7, 16, 17). Patients with MCI often

have an increased risk of developing AD, and thus detecting MCI is

crucial to help delay or even prevent its progression to AD (17–19).

To achieve this, it is essential to identify reliable biomarkers that can

accurately characterize the early stages of AD or MCI compared to

normal aging.

Magnetic resonance imaging (MRI) and positron emission

tomography are widely used imaging techniques for diagnosing

MCI and AD. These methods provide detailed information about

the brain’s anatomical and network features; however, their usage

is restricted owing to the high cost of facilities and the need for

specialized expertise. Therefore, electroencephalography (EEG) has

increasingly been used to identify biomarkers for MCI diagnosis.

EEG is a non-invasive and cost-effective technique that measures

postsynaptic potentials of cortical neurons firing synchronously in

the brain (20–23). Its relatively safe and quick application makes

it particularly suitable for conducting repeated measurements in

high-risk older individuals. Several studies have validated the

feasibility and reliability of resting-state EEG (rsEEG) in identifying

cognitive impairments caused by AD or MCI (24). Various

analytical methods, such as spectral properties, synchronization

patterns, and network structures have been utilized to uncover EEG

biomarkers associated with MCI.

EEG spectral power captures the amplitude of oscillations in

each frequency band and can be used as a potential biomarker to

differentiate AD from normal aging (25–28). In spectral analysis,

it has been predominantly observed that the dementia stages of

AD are associated with slowing oscillations caused by increasing

low-frequency and decreasing high-frequency band power (24).

However, other studies found no or minimal differences between

the MCI and healthy control (HC) groups (29–31), suggesting

that the neurophysiological changes underlying MCI may not

always be apparent in spectral power owing to the complex

and heterogeneous conditions of MCI. Therefore, it is important

to combine multiple biomarkers such as complexity measures,

functional connectivity, and graph-based network analyses, to

enhance MCI detection. Entropy analysis is a method used to

quantify the complexity of the EEG signals (32–34). Multiscale

entropy extends the entropy technique to multiple time scales

when the time scale of relevance in a time series, such as EEG,

is unknown. It has widely been used to identify AD and MCI

patterns and has shown that complexity decreases as AD progresses

(35, 36). However, power spectral density (PSD) and entropy-based

complexity analyses are limited to assessing a single EEG channel

and do not reflect the relationships between channels.

The MCI group has exhibited both structural and functional

alterations, indicating that disruptions in the brain network may

begin during the MCI stage (37, 38). Consequently, examining

the features of brain networks in MCI could be essential for the

early diagnosis of AD. Various approaches have been employed to

study brain network changes in MCI and AD compared to those

in normal aging. Previous studies have shown that patients with

AD exhibit altered functional connections between brain regions

during the resting state compared to HCs (39–41). Several studies

have investigated functional connectivity changes associated with

phase synchronization between individuals with MCI and HCs,

highlighting abnormal connectivity between brain regions as a key

characteristic for identifyingMCI conditions (42–46). For instance,

the phase lag index (PLI) of EEG functional connectivity in the

MCI group showed a considerable decline in synchronization in

the delta and theta bands between the frontal and temporal regions

(44), while another study reported reduced PLI synchronization in

the alpha and beta bands (45). Recently, the weighted PLI (wPLI),

which is insensitive to the effects of volume conduction, was applied

to functional connectivity analysis but failed to detect significant

variations in the MCI group (47). Although EEG functional

connectivity has been actively investigated in patients with MCI

and AD, there is a lack of consensus. Therefore, the effectiveness

of wPLI as an insensitive method for volume conduction of EEG in

detecting functional abnormalities in MCI during the resting state

remains to be explored.

Graph theory, along with functional connectivity, offers a

powerful framework for a better understanding of the structure

of brain networks through mathematical models. This enables the

analysis of brain network topology, where nodes represent brain

regions and links indicate the interactions between these regions

(48, 49). The graph model can provide information on the brain’s

network efficiency, centrality, or small-world properties, thereby

enabling the detection of changes in the brain network associated

with MCI conditions. Previous studies have shown that AD is

correlated with the loss of a small-world network, which reflects

the balance between local segregation and global integration within

a network (45, 50–53). However, findings on network topology

in patients with MCI are inconclusive. Some studies found no

significant changes in the MCI network topology compared with

the healthy group, while others reported decreased or increased

small-worldness (54–56). These inconsistencies may arise from

methodological issues, such as thresholding, or variations in

connectivity measures and epoch length, which makes comparing

networks of different sizes and edge densities challenging and leads

to contradictory outcomes (57).

This study aimed to compare the effectiveness of MCI

diagnosis by investigating differences in PSD, complexity,

functional connectivity, and graph analysis between individuals

with MCI and HCs. An overview of the EEG analysis process is
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FIGURE 1

An overview of the entire EEG analytic process.

shown in Figure 1. Specifically, wPLI, which is invulnerable

to volume conduction, was used across all channels of

interest for EEG signals in different bands. The wPLI-based

connectivity was investigated for intra- and inter-brain regions:

frontal, temporal-parietal, and occipital. Subsequently, brain

graph metrics were established using conventional graph

measures, considering different thresholds. It is anticipated

that conducting graph analysis with variable thresholding will

provide further insight into the discriminative features of

MCI under resting conditions. These findings demonstrate the

potential use of graph theory analysis in the early diagnosis

of AD.
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2. Materials and methods

2.1. Participants

This study recruited 25 individuals, from the outpatient

memory clinic of the Department of Neurology at Hanyang

University Hospital in Seoul and Guri, Korea. Twelve patients

were diagnosed with MCI by two neurologists using Petersen’s

criteria (58). The exclusion criteria included psychiatric disorders

that could affect cognition, such as major depressive disorder, a

history of alcohol or substance abuse, a history of head trauma,

and physical illness that could affect cognitive function. We also

excluded patients with structural brain lesions detected by MRI.

All participants underwent the Clinical Dementia Rating (CDR)

and the Korean Mini-Mental State Examination (K-MMSE). K-

MMSE was licensed for use and CDR Sum of Boxes (CDR-SB)

scores were obtained for comparisons. We provide a summary of

participants’ demographic data in Table 1. As shown in Table 1,

there was a significant difference in K-MMSE scores between

the two groups, while there were no significant differences in

terms of sex, education, age, and CDR-SB. Although our data

revealed differences in K-MMSE scores between the MCI and HC

groups, the scores of the two groups are within the normal range.

Furthermore, the K-MMSE is insufficient to differentiate between

MCI and normal aging groups accurately due to its limitations in

detecting subtle cognitive impairments (59). Informed consent was

obtained from each participant according to the recommendations

of the Helsinki Declaration. The Institutional Review Board (IRB)

of Hanyang University Hospital approved this study (2021-08-

020/2021-10-022).

2.2. EEG recording

All participants underwent routine EEG examinations

using a 32-channel EEG recording system (COMET-Plus, Grass

Technologies Inc., West Warwick, RI, USA). The EEG recordings

were performed during daytime hours (9 AM–5 PM) on weekdays

for approximately 30 min. The participants were examined in a

supine position with eyes closed in a sound-attenuated room. We

used 19 electrodes placed according to the international 10–20

system (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, T5, T6, P3, P4, O1,

O2, Cz, Fz, and Pz) with ear references (A1 and A2). The contact

impedance of each electrode was maintained below 10 k�. rsEEG

data were recorded at a sampling frequency of 200 Hz and filtered

with a lowpass filter of 70 Hz.

We applied a bandpass filter from 0.1 to 50 Hz to the rsEEG

data. The continuously filtered data from each channel were

then divided into 2-s epochs. We visually examined the EEG

data and manually rejected epochs with considerable artifacts.

For further analysis, we selected 50 artifact-free segments from

each participant’s channel for a total recording period of 100 s

per channel. Estimating the spectral properties from multiple 2-

s epochs and subsequently taking the average can improve the

frequency resolution of the spectrum while mitigating the effects

of noise (60). EEG data preprocessing was conducted using MNE-

Python (version 1.4.2) (61).

TABLE 1 Demographic and neuropsychological data of healthy controls

(HCs) and individuals with mild cognitive impairment (MCI).

Parameter HC (n = 13) MCI (n = 12) p-value

Age (y) 73 (71–77) 72.5 (65/78) 0.70

Sex (male/female) 8/5 (62%/38%) 5/7 (42%/58%) 0.32

Education (y) 16 (9–16) 12 (3.75/15.25) 0.18

K-MMSE 28.46 (0.97) 26.33 (2.84) 0.02

CDR-SB 0.5 (0.5–1) 1 (0.5/1.5) 0.21

Independent Student’s t-test for normally distributed data [mean (SD)]; Wilcoxon rank-sum

test for non-normally distributed data [median (IQR)]; χ2 test for categorical data (%).

IQR, interquartile range; SD, standard deviation.

2.3. Spectral power analysis

PSD is a signal processing tool to analyze time-series data,

such as EEG signals. It quantifies the power or energy present in

a signal at various frequencies. This is useful for understanding the

dominant frequencies of a signal, which can reflect the underlying

physiological or physical processes. In this study, we calculated

the PSD using the multitaper method. PSD was divided into

five frequency bands: delta (0.1–4Hz), theta (4–8Hz), alpha (8–

12Hz), beta (12–30Hz), and gamma (30–45Hz). To identify

the topographic distribution of specific bands, we first obtained

the mean power spectra of the group-averaged spectrograms

across the entire 100-s epoch for each electrode. Subsequently,

we averaged the mean power spectra for each EEG frequency

band. Topographical power distributions were computed using the

topomap function inMNE-Python by performing 2D interpolation

of the electrode montage.

2.4. Complexity

2.4.1. Multiscale entropy
To quantify the degree of irregularity or complexity in the

EEG time-series data across multiple time scales, we employed

the widely used multiscale entropy method (62). This involves

computing different types of entropy measures on increasingly

coarse-grained versions of the original signal. To obtain multiple

time scales, the original EEG time-series data [x1, x2, . . . , xN] were

coarse-grained using a scale factor τ . Coarse graining is a process

where the data is averaged over non-overlapping windows of a

certain length determined by the scale factor τ . Each element of

the coarse-grained time series yj was obtained using the following

equation:

yj =
1

τ

jτ
∑

i=(j−1)τ+1

xi(1 ≤ j ≤
N

τ
). (1)

Subsequently, we calculated sample and permutation entropies

for each time series. The entropies can assess the complexity of EEG

signals at different time scales, providing a more comprehensive

view of the underlying brain activities. We utilized the NeuroKit2

Python package to compute the multiscale entropies of EEG

data (63).
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2.4.2. Sample entropy
Sample entropy (SE) is an advanced version of approximate

entropy that provides a more robust measure for computing the

predictability or regularity of a nonlinear time series (64). To

calculate the SE for yj, we derived a sequence of vectors of lengthm,

vm(n) = [yn, yn+1, ..., y(n+m−1)]. We then defined SE as the negative

natural logarithm of the conditional probability that two similar

sequences of consecutive data points within a time series of length

m will remain similar at the next point within a specified tolerance

level r. It is important to note that self-matching at the previous

point was excluded. For a fixed embedding dimensionm > 0, fixed

time lag, L = 1 and tolerance 0 < r < 1, the SE for the time series

was defined as:

SE(r,m,N) = −log
Cm+1(r)

Cm(r)
(2)

Cm(r) represents an estimate of the probability of two

sequences matching for m data points, and Cm+1(r) corresponds

to an estimate of the probability of a sequence matching for

m + 1 data points. These probabilities, Cm(r) and Cm+1(r), are

determined using a relative frequency-based methodology from

the provided data. We used a tolerance level of r = 0.25 for

the maximum distance and m = 1 for the length of data

sequences denoted by Cm. This was used to avoid exponentially

increasing the computational cost and improve the efficiency of

SE calculation.

2.4.3. Permutation entropy
Permutation entropy (PE) is a measure of the disorder in a

time series and is computed by counting the number of unique

permutations of the time series within a sliding window of length

m (65). The PE quantifies the complexity or irregularity of the

time series, with higher values indicating greater disorder. To

calculate PE of a coarse-grained time series, represented by yj, we

constructed a series of vectors of length m denoted by vm(n) =

[yn, yn+1, . . ., y(n+m−1)]. The vectors vm(n) were then sorted in

ascending order to obtain m! possible order patterns, referred to

as motifs. The frequency of each motif denoted as f (π) and the

relative frequency p(π) = f (π)/(N − m + 1) were computed,

where N is the total number of samples and τ is the length of the

time series.

For a fixed embedding dimension m > 2 and fixed time-lag

L = 1, the PE for the time series was defined as:

H(m) = −

m!
∑

i=1

pi(π) log2(π) (3)

The maximum value of H(m) is log2(m!), indicating that all

the motifs have an equal probability. The smallest value of H(m) is

zero, suggesting a highly regular time series that repeats with only

a few basic motifs. In this study, we used an embedding dimension

m = 3.

To analyze the complexity, we used two entropy methods,

SE and PE, based on multiscale entropy. By selecting scale

factors, we captured various levels of complexity and explored

the differences in complexity patterns between the HC and MCI

groups. Specifically, we divided the data into low scales (1-15) and

high scales (16-30) according to the scale factor.

2.5. Functional connectivity

To compute functional connectivity, we employed wPLI,

an advancement stemming from the PLI (66). The advantage

of wPLI lies in the weighting of each phase difference based

on the magnitude of the lag. Consequently, phase mismatches

near zero have only a minimal influence on wPLI calculations.

Therefore, wPLI is highly sensitive for accurately detecting phase

interactions of spatially close signals and is more robust to volume

conduction compared to PLI, coherence, and virtual coherence.

This method reduces the probability of detecting false positive

connections and enhances the sensitivity in identifying phase

synchronization when faced with volumetric conductive noise

sources with near-zero phase delays. The phase lead and lag

between two interacting time series were estimated using wPLI

as follows:

wPLIxy =
n−1

∑n
t=1 |imag(Sxyt)|sgn(imag(Sxyt))

n−1
∑n

t=1 |imag(Sxyt)|
(4)

where sgn denotes the sign function and Sxyt represents the

cross-spectrum of time series x and y at time t. Only the imaginary

part of the cross-spectrum is returned by the imag function. The

cross-spectrum is weighted by wPLI according to the magnitude of

the imaginary components to reduce the effect of small noise on the

“real” cross-spectrum signal around the real axis.

In this study, to calculate wPLI, we used five frequency bands:

delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-

30 Hz), and gamma (30-45 Hz). For each frequency band, we

calculated the wPLI values for all pairwise combinations of the

19 pre-obtained EEG channels. This yielded a square 19 × 19

weighted adjacency matrix containing the wPLI values for all

the channel pairs. Subsequently, we calculated the mean of all

pairwise wPLI values to generate a wPLI value representing whole-

brain synchronization for each epoch. In addition, we divided

the brain into frontal (Fp1, Fp2, F3, F4, F7, F8, and Fz), central

(C3, C4, T3, T4, and Cz), and parieto-occipital (P3, P4, O1, O2,

T5, T6, and Pz) regions to facilitate comparison of the average

wPLI values associated with the connections between these brain

regions. All functional connectivity analyses were conducted using

MNE-Python functions (61).

2.6. Graph analysis

2.6.1. Graph theory approach
A graph, which is a mathematical structure composed of

nodes and edges, is used to represent a brain network (67).

The nodes represent brain regions, and the edges represent the

connections between these regions. We used an undirected binary

graph representation, designating all connections as either 1 or 0,

without considering the directionality of the edges. A graphical

representation of the functional brain network was constructed

based on the wPLI, which measures functional connectivity. We
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chose the wPLI because of its robustness to volume conduction.

Considering the phase lag between neural oscillations, the wPLI

provides a reliable estimation of functional connectivity that is less

affected by indirect connections. Moreover, when the number of

nodes is small, the wPLI has been shown to outperform the other

connectivity measures, making it a good choice for our study (66).

The sparsity threshold (S) plays an important role in analyzing

functional connectivity between brain regions. It is determined by

dividing the total number of edges in a graph by the maximum

possible number of edges that is given by n(n − 1)/2 for a graph

with n nodes. In this case, the maximum possible number of edges

was 19×18
2 = 171. The sparsity threshold determines the number

of edges in the graph. For example, if S = 0.1, only 10% of all

edges are retained, whereas the rest are considered unconnected.

This procedure enabled the identification of significant brain

connections.

As there is no standardized method for selecting a single

sparsity threshold, we repeatedly changed the threshold of the inter-

region correlation matrix by 1% over a sparsity range (10% ≤

S ≤ 80%). To achieve this, we selected a sparsity threshold

and transformed our data into a binary matrix by selecting

the top N strongest connections, where N = threshold× 171.

By focusing on strong connections, we were able to analyze

meaningful connections within the brain networks (68). Following

this thresholding procedure, we computed both global and local

network efficiency, nodal efficiency, and small-world properties

using the NetworkX Python package (69).

2.6.2. Network e�ciency
To investigate the integrated information, we calculated the

global efficiency. Network integration is the ability to combine

information from different brain regions and transmit it through

the network. We first obtained the connectivity matrix for each

individual, and then applied a sparsity threshold to obtain a

corresponding binary adjacency matrix. From each adjacency

matrix, we constructed a graph and computed both global

and local efficiencies. Global efficiency measures how efficiently

the information can be transferred across the entire graph by

measuring the average inverse of the shortest path length from

one node to all the other nodes in the graph (70). Although global

efficiency and characteristic path length are linearly correlated (71),

global efficiency has the advantage that it considers all the shortest

paths equally and not the few longest shortest paths, which can

provide a more balanced measure of network integration (49).

Specifically, given a graph G, the global efficiency, Eglob(G), is

Eglob(G) =
1

N(N − 1)

∑

i6=j∈G

1

d(i, j)
(5)

where N is the number of nodes in the graph, and d(i, j) is the

shortest path length between nodes i and j. In addition, d(i, j) of

unconnected nodes is set to infinity to force the inverse to zero

when calculating global efficiency or characteristic path length.

In contrast, local efficiency refers to the efficiency of

information flow over subgraphs of a graph. It calculates the

efficiency of the local subgraph surrounding each node in a graph

and provides an average measure of efficiency across all nodes in

the graph (70). The local efficiency of a graph G, Eloc(G), is defined

as:

Eloc(G) =
1

N

∑

i∈G

Eglob(Gi) (6)

where Gi denotes a subgraph, and i denotes nodes in the graph.

2.6.3. Nodal e�ciency
Nodal efficiency is a measure closely related to global efficiency

and is computed for each individual node in the graph. It

reflects the efficiency of communication between a given node

and its immediate neighbors. Nodal efficiency can be defined

mathematically as follows: Let G be a graph with N nodes, and let

Gi be a subgraph consisting of the neighbors of node i and its edges.

The nodal efficiency Enodal of node i is then given by:

Enodal(i) =
1

N − 1

∑

j6=i

Eglob(Gi) (7)

where Eglob(Gi) is the global efficiency of subgraph Gi, and

the sum is taken over all nodes in the graph except for node i.

Intuitively, nodal efficiency captures how efficiently information

can be transmitted from a given node to the rest of the network

through its immediate neighbors. A node with high nodal efficiency

can communicate effectively with other nodes in the network,

whereas a node with low nodal efficiency may be relatively isolated

from the other nodes of the network (72, 73).

2.6.4. Small world
A small-world network is a mathematical graph in which most

nodes are not neighbors, but are indirectly interconnected through

shared neighbor nodes. This means that while a specific node may

be directly linked to many others, its neighbors are connected

with small characteristic path lengths (74). Consequently, small-

world networks exhibit an intriguing blend of the characteristics

observed in regular lattices and random graphs. Regular lattices are

highly clustered, meaning that nodes are tightly knit into groups

where each member shares multiple connections with others in

the group. However, random graphs have small characteristic

path lengths, indicating relatively few steps or hops between any

two nodes. Essentially, the small-world is a hybrid structure. To

quantify small-worldness, we typically use the network’s average

clustering coefficient (C) and average characteristic path length (L).

The average clustering coefficient quantifies how closely nodes in

a network tend to cluster together. It is defined as the ratio of

the number of connections between a node’s neighbors to the total

number of possible connections between them. More formally, the

clustering coefficient of node i in graph G is defined as:

Ci =
2ei

ki(ki − 1)
(8)

where ei represents the number of edges between neighbors of

node i, and ki is the number of neighbors of node i. The factor of

2 in the numerator accounts for the fact that each edge contributes

to the clustering coefficient of both of the nodes it connects. The

average characteristic path length counts the average number of

Frontiers in Psychiatry 06 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1231861
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kim et al. 10.3389/fpsyt.2023.1231861

steps needed to connect any two nodes in a network, considering

the shortest possible paths, which can be a measure of the average

distance between all possible pairs of nodes. The average clustering

coefficient C of a network is the average of the clustering coefficient

Ci for all nodes i in the network:

C =
1

N

∑

i∈G

Ci (9)

where N is the number of nodes in the network, and the sum

represents the sum of all nodes in the network. The characteristic

path length is the average shortest path length between all pairs of

nodes in the network:

L =
∑

i6=j∈G

d(i, j)

N × (N − 1)
(10)

where N is the number of nodes in the network and d(i, j) is

the shortest path length between nodes i and j. In addition, d(i, j) of

unconnected nodes is set to infinity to force the inverse to zero in

the calculation of global efficiency or characteristic path length. and
∑

represents the sum of all pairs of nodes. To measure the small-

worldness of the actual network we computed the small-world

coefficient σ using the formula:

σ =
C/Cr

L/Lr
(11)

where C and L are the average clustering coefficient and the

average shortest path length of G, respectively. Cr and Lr are the

average clustering coefficient and the average shortest path length,

respectively, across 100 equivalent random graphs created using

MNE-Python library. A graph is commonly classified as a small

world if σ > 1 (75).

2.7. Statistical analysis

We used different statistical tests to evaluate demographic and

clinical differences between the two groups, depending on the

nature of the data and its distribution. For continuous variables,

we first conducted the Shapiro-Wilk test to determine whether each

variable followed a normal distribution. If a variable was normally

distributed, an independent Student’s t-test was applied to assess

the difference between the two groups; otherwise, the Wilcoxon

rank-sum test was used. For categorical variables, the χ2 test was

implemented. Results for continuous data were represented either

as arithmetic means with standard deviations (SD) for normally

distributed data or medians with interquartile ranges (IQR) for

non-normally distributed data. Categorical data were reported as

frequencies (%).

We also performed statistical analyses on multiple EEG

measures: PSD, complexity, functional connectivity, network

efficiency, nodal efficiency, and small world. We used theWilcoxon

rank-sum test to compare the measures between the two groups

and determine if their distributions were significantly different.

Specifically, we calculated the rank test statistics for each measure

and obtained the corresponding p-values. A p-value of less than

0.05 was considered statistically significant.

We also adjusted the p-values for PSD, complexity, functional

connectivity, and nodal efficiency using a false discovery rate

(FDR) test to control for multiple comparisons excluding

network efficiency and small world. We used the Benjamini-

Hochberg method to control the FDR when conducting multiple

simultaneous hypothesis tests (76). For the analyses of PSD,

complexity, and nodal efficiency, the FDR approach was applied

separately within each frequency band across all nineteen

electrodes. The procedure involved ranking the p-values in

ascending order, and then computing the adjusted p-value for the

ith smallest p-value, p(i), using the formula,

pFDR (i) = min
{

N/i× p(i), pFDR (i− 1)
}

, (12)

where pFDR (0) is defined as 1, and N is the number of multiple

comparisons (N = 19; nineteen electrodes). In the functional

connectivity analysis, p-values were computed for 171 connections

within each frequency band, and then the FDR approach was

applied to the set of p-values from five frequency bands, separately

at each connection. This method helped control the expected

proportion of false discoveries (i.e., the erroneous rejection of null

hypotheses), thereby reducing the likelihood of false positives and

improving the overall validity of our results. We considered an

adjusted p-value (pFDR ) of 0.05 or lower after post-hoc correction

to be statistically significant.

Furthermore, we used a nonparametric bootstrapping method

to represent the uncertainty of data in complexity, network

efficiency, and small world. The bootstrapping procedure involved

resampling the dataset 1,000 times with replacement and

recalculating themean from each resample. From this bootstrapped

distribution, we constructed 95% confidence intervals, which are

represented by the error bars in the plots.

3. Results

3.1. Power spectral properties

Topographic plots were computed for the delta (0.1–4 Hz),

theta (4-8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma

(30–45 Hz) frequency bands in the HC and MCI groups. In both

groups, delta oscillations were dominant in the frontal area (Fp1

and Fp2) (Figure 2A). Theta and alpha oscillations were prominent

in occipital regions (O1 andO2) in two groups (Figures 2B, C). Beta

and gamma activities remained negligible across all brain regions

(Figures 2D, E). However, no significant differences were found

between the HC and MCI groups in any of the frequency bands

and channels after FDR correction.

3.2. Complexity analysis

We computed multiscale SE and multiscale PE using scale

factors ranging from 0 to 30 for all channels. In the entropy analysis,

the averaged entropy values over all channels of the MCI and HC

groups were different at low-scale factors (0 to 15). The averaged

multiscale SE showed a significant difference at the scale factor

of 4 between the two groups, while the averaged multiscale PE
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FIGURE 2

Topographical EEG maps of group-averaged spectral power and statistics on group di�erences in the (A) delta, (B) theta, (C) alpha, (D) beta, and (E)

gamma bands from top to bottom row. The first and second columns are for the HC and MCI groups, respectively. The color scale is in decibels. The

third column demonstrates the statistical di�erences in spectral power between the HC and MCI groups (p < 0.05, FDR-corrected). The color

represents negative log p-values.

showed no significant difference (Figures 3A, B). In the topographic

plots, the multiscale SE with a scale of 4 showed that the HC

group had a higher complexity in the middle temporal lobe (C3

and C4) than in the other channels. However, the MCI group

exhibited a reduced complexity in the region. Consequently, in the

C4 channel, there was a statistically significant difference between

the two groups (p=0.0019, pFDR = 0.037) (Figure 3C). Regarding

the multiscale PE analysis with a scale factor of 4, similar patterns

were observed, where the HC group had a higher complexity in the

middle temporal lobe than the MCI group, however, no significant

difference was found between the HC and MCI groups across all

channels (Figure 3D).

3.3. Functional connectivity

We utilized the wPLI values computed from 171 different

electrode pairs for each frequency band: delta, theta, alpha,
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FIGURE 3

Complexity comparisons between the HC and MCI groups across varying scale factors from 1 to 15 using (A) multiscale sample entropy and (B)

multiscale permutation entropy. Error bars represent 95% confidence intervals. Topographical distributions of group-averaged entropy at scale of 4

and statistics on group di�erence for (C) multiscale sample entropy, and (D) multiscale permutation entropy. The first and second columns are for

the HC and MCI groups, respectively. The third column demonstrates the statistical di�erence in entropy between the HC and MCI groups (p < 0.05,

FDR-corrected). The asterisk and circle on the electrode in the topographical map represent statistical significance. The color represents negative log

p-values.

beta, and gamma. We compared these wPLI values to examine

any discrepancies between the HC and MCI groups. Significant

differences were observed in wPLI values between the MCI

and HC groups for all frequency bands except the alpha band

(Figure 4). With regard to the connectivity of the frontal and

centro-temporal lobes, the MCI group exhibited higher wPLI

values than the HC group in one pair within the delta and

beta frequency bands (Figures 4A, D) and two pairs in the

gamma frequency band (Figure 4E). For the theta and alpha

frequency bands, the connectivity in the frontal and centro-

temporal lobes showed no significant differences between the two

groups. However, the connectivity between the frontal and occipital

lobes showed significant differences between the two groups,

which was noticeable over three pairs in the delta frequency band

(Figure 4B) and two pairs in the theta frequency band (Figure 4B).

For the connection between the central and occipital lobes, the HC

group had lower wPLI values than the MCI group in two pairs

in the delta frequency band(Figure 4A) and in one pair within

the theta, beta, and gamma frequency bands (Figures 4B, D, E).

However, in the alpha frequency band, the differences between the

two groups were not statistically significant. Moreover, we analyzed

the differences in the average wPLI values across brain regions:

frontal (Fp1, Fp2, F3, F4, F7, F8, and Fz), central (C3, C4, Cz T3,

and T4), and parieto-occipital (P3, P4, O1, O2, T5, T6, and Pz).

All wPLI values were averaged over all intra- and inter-regional

pairs. In the delta frequency band, the MCI group demonstrated
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FIGURE 4

Functional connectivity comparisons between the HC and MCI groups using pairwise wPLI in the (A) delta, (B) theta, (C) alpha, (D) beta, and (E)

gamma bands. The first and second columns represent topographical connections in wPLI for the HC and MCI groups, respectively. The

color-coded lines represent wPLI values. The third column demonstrates the topographical changes in wPLI between the HC and MCI groups. The

color represents negative log p-values. The fourth column shows comparisons of wPLI distributions intra- and inter-regions: F-frontal (Fp1, Fp2, F3,

F4, F7, F8, and Fz), C-central (C3, C4, T3, T4, and Cz), and O-parieto-occipital (P3, P4, O1, O2, T5, T6, and Pz) regions. In a box plot, a box is drawn

from the first quartile to the third quartile. A horizontal line within the rectangle represents the median of all values. The asterisks represent statistical

significance (p < 0.05, FDR-corrected).

a significantly higher average wPLI value over the intra-channels in

the frontal lobe compared to those in the HC group (Figure 4A).

In the theta band, the HC group showed significantly lower values

compared to values of the MCI group within the centro-temporal

and occipital lobes, as well as between the central and occipital lobes

(Figure 4B). However, in the alpha, beta, and gamma bands, wPLI

values did not show any significant differences (Figures 4C–E).

3.4. Graph analysis

3.4.1. Network e�ciency
To calculate the global efficiency, we performed the analysis

by setting the sparsity threshold from 10% to 70% (Figure 5A).

Although no statistically significant differences were observed

between the beta and delta bands, the HC group exhibited
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FIGURE 5

Network e�ciency comparisons according to varying thresholds from 0.1 to 0.3 for (A) global e�ciency and from 0.4 to 0.7 for (B) local e�ciency

between the HC and MCI groups. The five columns represent network e�ciencies in the delta, theta, alpha, beta, and gamma bands, respectively.

The asterisks represent statistical significance (p < 0.05, FDR-corrected). Error bars represent 95% confidence intervals.

significantly higher global efficiency compared to the MCI group in

the alpha, theta, and gamma bands. In the theta band, we observed

a significant difference in the global efficiency between the two

groups when the sparsity threshold was varied from 12% to 25%.

In the alpha band, higher global efficiency values were observed in

the HC group than in the MCI group when the sparsity threshold

was in the range of 18% to 20%. Moreover, a notable difference was

observed in the gamma band, with sparsity thresholds ranging from

10% to 11%.

We also analyzed local efficiency using sparsity thresholds

ranging from 10% to 70% (Figure 5B). We observed a clear

difference in the gamma band between the HC and MCI groups

when the sparsity threshold ranged from 42% to 70%. In the

remaining frequency bands, there were no statistically significant

differences in local efficiency between the HC and MCI groups. In

contrast to the results obtained for global efficiency, the MCI group

tended to have a higher local efficiency than the HC group.

3.4.2. Nodal e�ciency
Nodal efficiency was analyzed by setting the sparsity threshold

from 10% to 70%. Significant differences were observed between

the HC and MCI groups in the theta band. Specifically, at sparsity

thresholds of 13% to 16% and 20% to 22%, the HC group showed

higher nodal efficiency in the frontal regions Fz and Fp2, than the

MCI group. The 20% threshold had the most significant difference

between the groups (Figure 6). The analysis showed that there was

a difference between the HC and MCI groups only in the theta

band, and no significant differences were found in the rest of the

frequency domains.

Specifically, at sparsity thresholds of 13% to 16% and 20% to

22%, the HC group showed higher node efficiency in the frontal

region, Fz (p = 0.004, pFDR = 0.039) and Fp2 (p = 0.002,

pFDR = 0.039), than theMCI group, with the threshold of 20% being

the most statistically significant.

3.4.3. Small world
In each frequency band, we examined small-world networks

using high sparsity thresholds ranging between 75% and 85%.

These thresholds were selected to ensure that the graph was not

excessively disconnected, allowing for the effective examination of

small-world networks. The difference between the MCI and HC

groups was statistically significant for small-world networks within

a sparsity threshold of 76% to 80% in the beta band. Consequently,

the MCI group exhibited lower small-worldness in the beta band

(Figure 7). However, the rest of the frequency bands did not show

any distinct characteristics.

4. Discussion

This study aimed to compare EEG features between cognitively

healthy controls and age-matched individuals with MCI at rest

with their eyes closed. The two groups were compared in terms

of spectral power, complexity, functional connectivity, and graph

theory-based measures. Our findings indicated that the power

spectrum analysis did not yield any significant differences between

the HC and MCI groups. However, when analyzing the multiscale

SE, we observed that the MCI group exhibited lower complexity.

In addition, the MCI group demonstrated higher wPLI values

than the HC group. Further examination using graph theory

analysis revealed that the MCI group predominantly displayed

lower global efficiency in the theta band and higher local efficiency
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FIGURE 6

Topographical distributions of group-averaged nodal e�ciency and statistics on group di�erence in the (A) delta, (B) theta, (C) alpha, (D) beta, and (E)

gamma bands from top to bottom row. The first and second columns are nodal e�ciencies for the HC and MCI groups, respectively. The third

column demonstrates the statistical di�erences in nodal e�ciency between the HC and MCI groups and the circled channels represent statistical

significance (p < 0.05, FDR-corrected). The circle on the electrode represents statistical significance. The color represents negative log p-values.

in the gamma band relative to the HC group. Moreover, nodal

efficiency was reduced in the frontal region of the MCI group.

Finally, in the small-world analysis, the MCI group exhibited a

lower small-world coefficient when compared to the HC group.

One of the main challenges in functional connectivity analysis is

the lack of a definite method for setting an optimal threshold

value. The thresholding procedure aims to remove weak edges to

eliminate spurious connections; however, the network structure can

vary significantly based on the chosen threshold. Consequently,

exploring a wide range of threshold values, as in our study, is crucial

for ensuring a comprehensive analysis.

In the power spectral analysis, no significant differences were

found between the HC and MCI groups in any frequency band

(delta, theta, alpha, beta, or gamma). This suggests that there

were no significant differences in the overall power of the EEG

signals between the two groups. These results are consistent with

those of the recent studies suggesting that PSD had a limited

ability to distinguish between HC and MCI groups (30, 77).
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FIGURE 7

Statistical comparisons of the small-world property (sigma) between the HC and MCI groups in a sparsity threshold range of 0.7–0.85 in the (A) delta,

(B) theta, (C) alpha, (D) beta, and (E) gamma bands. The asterisks represent statistical significance (p < 0.05, FDR-corrected). Error bars represent 95%

confidence intervals.

However, some prior findings have revealed that MCI can be

characterized by lower alpha and beta power as well as stronger

delta and theta power (26). This contradiction may be because the

neurophysiological changes associated with MCI may not always

be apparent in spectral power, suggesting that the power spectral

analysis is relatively insensitive to network changes resulting from

MCI progression.

The multiscale SE analysis revealed that the MCI group had

significantly lower complexity in the middle temporal lobe (C4)

compared to the HC group at a scale factor of 4. This result is

consistent with previous findings of reduced complexity at lower

scales with the progression of AD (35). This finding indicated that

the HC group exhibitedmore organized and efficient neural activity

in this region, and it declined due to the progression of MCI.

However, the multiscale PE analysis did not reveal a statistically

significant difference between the two groups, despite the observed

decrease in complexity with AD progression (78). The Multiscale

SE may be more sensitive to the changes in complexity by MCI

compared with the multiscale PE method that was effective for

AD discrimination. We explored the effect of varying scale factors

and found a significant difference at a scale factor of 4, indicating

that scale factors should be carefully considered in multiscale

complexity analysis.

Regarding functional connectivity, there were significant

differences in wPLI values between the HC and MCI groups

within the delta, theta, beta, and gamma bands. These distinctions

are likely attributable to the robustness of the wPLI to volume

conduction and its ability to provide a reliable estimation that is

less influenced by indirect connections. Specifically, in the delta

band, most connections between channels increased because of

MCI. This result is similar to those of previous studies reporting

increased functional connectivity in patients with MCI than in

HCs in the delta frequency range (30, 42). The MCI group showed

higher wPLI values between the frontal and centro-temporal lobes

in the delta, beta, and gamma bands; between the frontal and

occipital lobes in the delta and theta bands, and between the

central and occipital lobes in all bands except the alpha band.

Moreover, for the averaged wPLI values across intra- and inter-

regions, the MCI group had higher wPLI values within the frontal

lobe in the delta band, within central and occipital lobes, and

between central and occipital lobes in the theta band. In our

study, there was no significant difference in alpha connections

even though alpha oscillations are associated with cognitive

and perceptual processes, including memory and attention. This

may reflect a compensatory mechanism in the early stages of

cognitive decline owing to disrupted functional connectivity in

brain regions, as some neurons lose their functionality, others

may increase their connections to compensate for this subtle

loss. This process is known as neuroplasticity that the brain

can reorganize itself by forming new neural connections and

pathways.

From a network efficiency perspective in graph theory, our

study revealed that global efficiency was significantly higher in the

HC group than in the MCI group in the theta band in the range

of thresholds from 0.13 to 0.26. Some previous studies have also

shown decreased global efficiency in patients with MCI compared

to HC in the theta band (50, 79). Moreover, in the alpha band, we

noticed a decline in global efficiency in the MCI group, specifically

over the threshold range of 0.19 and 0.21. However, no significant

difference in functional connectivity was found between the two

groups. In addition, as in previous studies (80), we observed an

increase in local efficiency within the MCI group compared with

the HC group. In contrast, observed global efficiency was dominant

in the gamma band across a threshold range of 0.42 and 0.7. This

finding suggests a deterioration in global efficiency accompanied

by an increase in local efficiency during the progression from

HC to MCI. Furthermore, the nodal efficiency analysis revealed

that the prefrontal region (Fz and Fp2) indicated a statistically

significant decrease in the theta band for the MCI group compared

to the HC group. These results suggest that there might be regional

differences in information processing efficiency between the two

groups. Future studies should investigate the role of these regions

inMCI pathophysiology.We also examined small-world properties

in brain networks and found that the MCI group had a lower

small-world coefficient (σ ) in the beta band compared to the HC

group. Lower small-worldness could potentially suggest alterations

or disruptions in the balance between local specialization and

global integration, which could have implications for information

processing in the brain, therefore, the small-world property may be

a potential biomarker for MCI detection.

However, this study has several limitations. First, the relatively

small sample size of the participants in each group (n = 13

for HC and n = 12 for MCI) might have limited the statistical

power of the results of this study. Low statistical power reduces
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the chance of detecting a true effect and increases the likelihood

of more false-positive results (81). Therefore, the findings may not

be generalizable to large populations. Future studies with larger

cohorts would be necessary to validate the relationship between

EEG features and MCI. Second, we only investigated EEG patterns

during the resting state. However, previous research has shown that

the EEG characteristics before and after memory tasks can be more

discriminative between theHC andMCI groups (31, 82). Therefore,

further studies should record EEG activity before and after the

tasks for a better understanding of the relationship between EEG

patterns and MCI. Finally, this study was cross-sectional, and

the participants were assessed only at a single point in time.

Longitudinal studies are necessary to provide additional insight

into how these EEG features change along with the progression of

AD dementia fromMCI.

5. Conclusion

Our study aimed to identify the changes in network properties

such as complexity, functional connectivity, global efficiency, nodal

efficiency, and small-world, that could characterize MCI through

the analysis of rsEEG data. By employing the wPLI combined

with variable thresholding, we were able to shed light on the

functional network and graph structure alterations associated

with MCI. Our findings suggest that alterations in functional

connectivity and graph theory-based measures, particularly in

the theta band associated with memory and attention processes,

may serve as important clinical biomarkers for detecting and

monitoring cognitive decline in individuals with MCI. However,

the findings of this study should be interpreted with caution due

to the small sample size. Future studies with larger cohorts and

longitudinal designs are necessary to confirm these findings and

gain a deeper understanding of the relationship between EEG

patterns and MCI.
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