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ABSTRACT The advanced design of an analog mixed-signal circuit is not simple enough to meet the
requirements of the performance matrix as well as robust operations under process-voltage-temperature
(PVT) changes. Even commercial products demand stringent specifications while maintaining the system’s
performance. The main objectives of this study are to increase the efficiency of the design optimization
process by configuring the design process in multiple regression modeling stages, to characterize our target
circuit into a regression model including PVT variations, and to enable a search for co-optimum design
points while simultaneously checking performance sensitivity. We used an artificial neural network (ANN)
to develop a regression model and divided the ANN modeling process into coarse and fine simulation steps.
In addition, we applied a variational autoencoder (VAE) structure to the ANN model to reduce the training
error due to an insufficient input sample. According to the proposed algorithm, the AMS circuit designer
can quickly search for the co-optimum point, which results in the best performance, while the least sensitive
operation as the design process uses a regression model instead of launching heavy SPICE simulations.
In this study, a voltage-controlled oscillator (VCO) is selected to prove the proposed algorithm. Under
various design conditions (CMOS 180 nm, 65 nm, and 45 nm processes), we proceed with the proposed
design flow to obtain the best performance score that can be evaluated by a figure-of-merit (FoM). As a
result, the proposed regression model-based design flow achieves twice accurate results in comparison to
that of the conventional single-step design flow.

INDEX TERMS Analog circuit design automation, variational-autoencoder, regression model, artificial-
neural-network, voltage-controlled-oscillator.

I. INTRODUCTION
With advancements in semiconductor processing technology,
high-performance digital processing can be applied for rea-
sons such as significant power loss reduction, high operating
frequency, and area reduction. The finer the process, the lower
the supply voltage that can be applied, and the shorter the
minimum length of the transistor. And power consumption is
reduced by the square of the supply voltage, and the area is
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reduced by shortening the transistor length. Also, in the case
of digital circuits, the performance of transistors improves as
the processing unit decreases. Therefore, as the process tech-
nology has developed to a few nanometers, the performance
of digital circuits has improved significantly. In addition, even
if the process is different, the logic structure of the digital
circuit has the same structure, and because the digital circuit
has binary inputs and outputs, it is robust against noise. For
this reason, if only a standard cell is made, various circuits
can be easily implemented because there are few variables to
be adjusted.
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Digital circuit design has standardized design automation
with a programming language. Because the circuit is gener-
ated by matching it with the programming language, even
if the processing unit is different, it can be expressed at the
same logic level. This has the advantage of easy migration of
the circuits to another process. Design automation is made
possible by the synthesis step that converts the HDL code
into a digital logic circuit, and the place and route steps that
design the layout using algorithms such as the Kernighan-Lin
algorithm or Fiduccia-Mattheyses algorithm. Based on this
design flow, many design automation algorithms have been
implemented for digital circuit design [1].

The characteristics and performance of Metal-Oxide-
Silicon Field-Effect-Transistor (MOSFET) vary depending
on the process technology node. In addition, the mismatch
between transistors becomes more severe as the process pro-
gresses to a smaller length of the MOSFET [2]. Accord-
ingly, when designing an analog circuit, correction circuits
that compensate for this mismatch are added. In the case
of the latest process, the correction circuit is almost indis-
pensable owing to a severe mismatch. Because of various
other problems, analog design flow is redesigned based on
the designer’s experience [1]. This is because in the heuristic
design method, even experienced designers may not recog-
nize or misplace optimization points. In addition, analog cir-
cuit design hasmany variables to consider compared to digital
circuit design, so there are many difficulties in developing the
automated design of analog circuits. Although research on
the automation of analog circuit design is in progress, much
more computer processing time is required than digital design
time.

The purpose of this research is to reduce the time required
to automate the optimization design with Analog and Mixed-
Signal (AMS) circuits and to obtain more accurate results.
We implemented an algorithm for automatic circuit design
utilizing the zoom-in algorithm proposed by Hyun and Nam
[3], along with a regression model and a variational autoen-
coder structure. The proposed algorithm is applied to the
automated design of a voltage-controlled oscillator (VCO)
that consists of a ring oscillator circuit. It is designed to verify
the range of design parameters that the designer may not
recognize. If the amount of data is increased based on the
proposed algorithm, high accuracy can be obtained. However,
we aim to design automation with less computer processing
time than that in previous studies. To realize this, we train
a regression model using the zoom-in algorithm. And we
implement to reduce the error of the regressionmodel through
a variational autoencoder (VAE) structure. Moreover, a ver-
ification step is added to robustly design process-voltage-
temperature (PVT) variations.

In this paper, Section II describes the structure of the
regression model and key optimization algorithms. In Sec-
tion III, the design optimization flow is explained in detail,
and in Section IV, the simulation setup is illustrated for this
work. In Section V and Section VI, we present the simulation
results and conclusions, respectively.

FIGURE 1. ANN regression model structure.

II. METHOD
In analog circuit design automation, reducing computer pro-
cessing time is an important task. if it is much slower
than the designer’s direct optimization design time without
design automation, there is no advantage to design automa-
tion. Therefore, to reduce the computer processing time,
the machine learning model structure and algorithms are
developed.

A. ANN REGRESSION MODEL STRUCTURE
In this study, a regression model trained using simulation data
finds an optimization point. The simulation data consist of
the results concerning specific points discretely partitioned
within the entire range. A parametric search through SPICE
simulation shows detailed performance results over the entire
range. However, the design time will increase infinitely.
To address the issue of time constraints, we utilize a regres-
sion model that interpolates simulation results at desired
design points. Furthermore, considering the limited availabil-
ity of training data for the regressionmodel, anArtificial Neu-
ral Network (ANN) model is deemed more appropriate than a
deep learningmodel like a Recurrent Neural Network (RNN),
Convolutional Neural Network (CNN), or Deep Neural Net-
work (DNN) [4]. The process of training the ANN regression
model is optimized using the MSE-type loss function and the
Adam optimizer, as defined in Algorithm 1.

Fig. 1 illustrates the structure of the ANN regression
model. It consists of three layers: an input layer, a hid-
den layer, and an output layer. The input layer represents
the design parameters, while the output layer represents the
desired design specifications. The hidden layer refers to
the layer excluding the input and output layers. The size of
the hidden layer depends on the dataset size. If the dataset
size significantly differs from the ANNmodel size, it can lead
to accuracy issues like overfitting or underfitting. To address
this, it is advisable to adjust the size of the ANN model
proportionally to the dataset size, ensuring better accuracy.
Additionally, due to varying weights for each input-output
relationship, we partitioned the hidden layer connected to
the input and output of the ANN regression model. This
partitioning helps avoid biased learning towards a specific
design parameter and provides separate training guidelines
for input and output components.
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Algorithm 1 Training ANN Regression Model
1: Input: P = {p1, p2, . . . , pN }

▷ Dataset containing N design parameters
2: Output: R = {r1, r2, . . . , rM }

▷ Dataset containingM performances
3:

4: Initialize weights and data standardization
5: for epoch in 1, 2, . . . , e do
6: compute the loss function L = 1

26
b
i=1(yi − ti)

2

7: for mini-batch in 1, 2, . . . do
8: optimize weights by Adam optimizer
9: end for

10: b is a mini-batch size
11: yi is a prediction of output
12: ti is a validation of output
13: end for

B. ZOOM-IN ALGORITHM
When designing a circuit, designers optimize it through
numerous trials and errors. Additionally, without utiliz-
ing a machine learning-based learning model, a significant
amount of data covering the global range is required to
find the optimal point. To enhance the design optimiza-
tion process, our proposed zoom-in algorithm in this study
achieves greater precision and efficiency compared to previ-
ous research efforts.While previous studies have explored the
use of regression models for analog circuit design automa-
tion [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], the original zoom-in algorithm presented in [3] had
a limitation in the accuracy of the regression model during
the initial step due to a smaller amount of data compared
to single-step approaches. To address this limitation, our
study focuses on improving accuracy by incorporating the
variational autoencoder (VAE) structure and refining the ver-
ification step within the algorithm.

The proposed zoom-in algorithm is divided into a coarse
simulation in a wide sweep range and a fine simulation in
a narrow sweep range. A coarse simulation step does not
require high accuracy because it only needs to determine the
rough optimal points. The coarse simulation step properly
lists up to candidate groups based on the trend of change in the
result values. In contrast, the purpose of the fine simulation is
to perform precise optimization by equally performing each
predicted point within a small range. If the model is trained
with a large dataset without dividing the steps, the amount
of data required increases exponentially, and the processing
time can be infinitely long. Consequently, if the optimization
steps are divided, the time required to compute unnecessary
simulation results can be saved. Although the zoom-in algo-
rithm can be divided into multiple stages instead of 2 stages,
assuming the same amount of data, there is a high possibility
that it can be optimized to the local optima since the accuracy
of the first stage is lower than previously. Alternatively, it is
suitable for cases in which there are many parameters to be
considered or optimized over a wider range.

In this study, the zoom-in algorithm sets the number of
simulations of the narrow sweep range by 1/(N + 1) times
the total number of simulations for a wide sweep range. N is
the number of narrow sweep range (Narrow S.R) candidates.
That is, the size of the training dataset is set to be the same
for both fine and coarse simulation steps. Fig. 2 illustrates
the range settings for the coarse and fine simulation steps
in the zoom-in algorithm. After selecting the best candidate
group in the coarse simulation, the range is divided during the
fine simulation. With 2 design parameters and 5 candidates
for the fine simulation, both the fine and coarse simulations
involve a dataset size of (6×6), resulting in 216 data points for
optimizing the design parameters. In contrast, the single-step
approach would require a larger dataset size of (6 × 6) ×
(6 × 6) when assuming a 10 % fine simulation range. This
would amount to 1296 data points needed for optimization.
The zoom-in algorithm significantly reduces the dataset size,
leading to improved efficiency and computational savings.

The ranges of the fine simulations vary for each candidate,
as they are specified based on the error rate compared to the
results of the SPICE simulation and the regression model.
More specifically, the range of the fine simulation is selected
to be between 5 % and 15 % of the range of the coarse simu-
lation. This approach compensates for poorly trained regions
in the regression model, ensuring they are not discarded.

C. REFLECTING PVT VARIATION
The analog circuit designer selects the optimization point
with the best Figure-of-Merit (FoM) performance when
designing the circuit. However, as the process advances, the
mismatch between devices increases. Due to this, designing
an analog circuit is more difficult than before. Although pre-
diction techniques such asMonte Carlo have been created, the
Monte Carlo simulation takes significant time for processing
a detailed design [16]. To replace this, we predicted the value
by applying limited PVT variations through a regression
model and verification step.

Analog designers can be very good at optimizing designs;
however, they tend to rely on their experience. Even skilled
designers can select different design points for the same
circuit. In contrast, the regression model finds better points
that the designer does not consider. To be more specific, the
regression model searches points with similar performance
metrics. In each of the searched points, while the performance
metrics are similar, the variations in performance resulting
frommismatches differ. Therefore, it is necessary to optimize
the design values for various points and compare the PVT
variations. Fig. 3 shows an example of how the FoM can vary
by changing the design parameters. The result of point B is
larger than that of point A. In contrast, the same performance
as the reference point cannot always be obtained, since there
are mismatches between processes. Both points A and B are
given the same change in parameter values, but the amount
of change in the FoM is different. If the mismatch between
processes is considered, the designer will choose point A.
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FIGURE 2. Example of zoom-in algorithm about 2-axis design parameter.

Therefore, considering the PVT variations, optimization with
simulation results over a wide range can design a circuit with
better performance. Similarly, studies including corner sim-
ulation, layout generator, and Monte Carlo simulation have
been developed to consider PVT variations [10], [11], [12],
[13], [14]. These simulations to check PVT variations have
the disadvantage of requiring a significant computer process-
ing time. In this study, the PVT variations are considered
with less computer processing time. We directly derived the
results for each variance using the trained regression model,
and the method for restrictively applying the PVT variations
is described in detail in Section III.

D. APPLYING VAE STRUCTURE
We selected candidates from a wide range using a zoom-
in algorithm. Although studies that have applied automated
design using an ANN-based regression model already exist,
the regression model may be trained partially incorrectly.
This is because it predicts values based on limited simulation
data. Therefore, to solve this problem, we predict values over
a wide range using an ANN-based regression model and
apply additional compensation methods. We created another
model that is trained by reversing the input and output. Fig. 4
shows the VAE structure and the structure of the proposed
method. In Fig. 4(a), the VAE is divided into the encoder and
decoder parts.

The VAE is a type of generative model like GAN (Genera-
tive Adversarial Networks (GAN) and diffusion models [17].
It is an advanced model of an autoencoder (AE) that creates
a meaningful latent space by making the input and output
equal and derives the latent space using an encoder and a
decoder. The desired output is decoded from this latent space
for data generation. The VAE aims to approximate the true
distribution of input data p(x). To this end, the VAE consists
of an encoder, a decoder, and a latent space. The encoder

is responsible for transforming the input into latent space.
The purpose of the encoder is to estimate the distribution of
the latent space vector z, that is, q(z|x). Find the parameters
of the mean (µ) and standard deviation (σ ) by selecting the
normal distribution that best represents q(z|x). In contrast to
an encoder, a decoder is responsible for transforming a latent
space into an input. The goal of the decoder is to estimate
q(z|x) given the latent space vector z as the input. Because
it generates data x again according to a given vector z, the
decoder serves as a generative model. Latent space refers to
any hidden vector. Unlike autoencoders, a VAE samples noise
and creates a latent space to generate data. The VAE finds θ

that maximizes pθ (x) using a maximum likelihood estima-
tion (MLE) approach. Equation (1a)–(1d) are the process for
maximizing the log-likelihood through the MLE approach.

log pθ (x) =
∫
qφ(z|x) log pθ (x)dz (1a)

=

∫
qφ(z|x) log

pθ (x|z)p(z)
pθ (z|x)

dz (1b)

=

∫
qφ(z|x) log

pθ (x|z)p(z)
pθ (z|x)

qφ(z|x)
qφ(z|x)

dz (1c)

=

∫
qφ(z|x) log pθ (x)dz− KL(qφ(z|x)||p(z))

+ KL(qφ(z|x)||p(z|x)) (1d)

≥

∫
qφ(z|x) log pθ (x)dz− KL(qφ(z|x)||p(z))

(1e)

In (1b), Bayes’ rule is applied in (1a), and (1c) is multiplied
by the same q equation for the denominator and numerator
in (1b). In (1d), Kullback–Leibler (KL) divergence in (1c)
is applied. The first term in (1d) is equal to the negative
cross-entropy between p(x|z) and q(z|x). The second term
is equal to the KL divergence between q(z|x) and p(z). The
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FIGURE 3. Apply PVT variation using results of ANN regression model.

last term cannot be computed because p(z|x) is unknown.
However, because KL divergence is always positive, the last
expression can be expressed as an inequality, as in (1e).
The right-hand side of inequality (1e) is referred to as evi-
dence lower bound (ELBO). By maximizing this ELBO, the
log-likelihood can also be maximized. After learning the
encoder and decoder while maximizing the aforementioned
ELBO, the desired data can be generated using the learned
decoder.

Subsequently, to the employment of all the above-
mentioned terms, our model finds other points with similar
results to the design optimization point. Therefore, based
on this concept, we trained 2 models to predict inputs as
well as the traditional model to predict outputs, as shown in
Fig. 4(b). Using this model, we add validation of the preex-
isting results. And we find new design parameter candidates
that are obtained using the preexisting results. In other words,
we also added candidates by adding random noise to find the
parameters in other locations with similar results.

III. DESIGN FLOW
Fig. 5 shows the overall automation design flow used in this
study. This section details each step in the design automation
flow.

A. COARSE SIMULATION (WIDE RANGE SEARCHING)
First, we need to determine how to divide each design param-
eter. Each design parameter is divided over a wide range.
A representative dividing method randomly or uniformly
divides the sections. In this study, each design parameter is
evenly divided over a wide sweep range based on the set
value. This is because, if the simulation results are small,
random division can be a problem. A method that randomly
divides the range about small simulations can be biased to
one side and split. This is because in that case, the simulation
results are not linear, and the accuracy of the regressionmodel
for the opposite side can be very small. On the other hand,
we just need to obtain a rough location for the largest FoM

FIGURE 4. (a) General VAE structure (b) The VAE structure employed in
this work.

with small simulations. By employing uniform division, the
evenly distributed data across the entire range reduces the
occurrence of poorly trained regions. Therefore, a uniform
division with small simulations is the most reasonable way to
train a regression model.

B. TRAINING VAE STRUCTURE REGRESSION MODEL
As mentioned in Section II-C, we should not simply find
the point with the highest performance specification but
also find a point that is robust against a process mismatch.
We employed the VAE structure to validate the predicted
results or to find a new point. The purpose of adding ran-
dom noise is to find other points that have similar results.
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FIGURE 5. Overall automation design flow.

In this study, a regression model of a VAE structure, such as
that shown in Fig. 4 is trained using the coarse simulation
results. The trained model predicted all outcomes within a
wide sweep range. And the 10 best-performing candidates
are selected by comparing the predicted results through the
encoder. In this process, the results around the candidate point
are initialized each time a candidate group is selected such
that the sweep range between the candidates does not overlap.
Thereafter, we take 10 candidates as input to the decoder
part and add only decoder outputs that do not overlap with
existing candidates. And random noise is added to each of
the 10 candidates and fed into the model. Similarly, only
candidates that do not overlap with the existing candidate
group are added.

C. VERIFICATION STEP (I)
Using the VAE structure, we obtained a maximum of 40 can-
didates from the existing 10 candidates. Because 40 candi-
dates is a large number to train into each regression model,
the best-performing point must be predicted and reselected
through this step. First, we computed only the top 10 candi-
dates with the best FoM performance out of 40 candidates.
Then, for the remaining 10 candidates, simulations are con-
ducted under Slow-Slow (SS) and Fast-Fast (FF) transistor
conditions. According to the simulations, the final 5 candi-
dates with the smallest performance variation are selected.

Finally, regarding the final 5 candidates, the simulation and
prediction results are compared, and the narrow sweep range
is adjusted in proportion to the error rate in the range of 5 to
15 % of the wide sweep range. A detailed description of this
step is presented in Algorithm 2.

D. FINE SIMULATION (NARROW RANGE SEARCHING)
First, we shortened the design time by running 10 SPICE
programs simultaneously and proceeding with fine simula-
tions. The same amount of dataset is extracted as a coarse
simulation. And the process of extracting the overall sim-
ulation results is handled in the same manner as for the
coarse simulation. Similarly, when the range is evenly divided
at the fine simulation, a much more accurate prediction
is possible than at the coarse simulation. As the distance
of input parameters between each result is smaller than
before.

E. TRAINING REGRESSION MODELS WITH FINE
SIMULATION
The regression models are trained to interpolate each narrow
sweep range. The structure of the regression models is the
same as that of the encoder in the VAE structure. The narrow
sweep range is a very small area compared to the wide sweep
range, and the number of simulation data points is the same.
That is to say, the accuracy of the predicted results derived
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Algorithm 2 Verification Step (I) Algorithm (Section III-C)
1: Input: I = {i1, i2, . . . , iN }
▷ N candidates of fine simulation step

2: Output: O = {o1, o2, . . . , oM }
▷ M selected ranges of fine simulation step

3:

4: Step 1: FoM comparision
5: ii = ⟨pi,1, pi,2, . . . , pi,U ⟩
▷ pi,j : The jth design parameter or performance of ii
▷ U : The number of design parameters and
performances

6: H = {h1, h2, . . . , hK }
▷ hn : ii with the nth best FoM
▷ K : The number of selected candidates at step 1

7: procedure
8: for j← 1 to N do
9: Compute pi,j from SPICE with TT condition
10: Calculate FoMj
11: end for
12: H ← select(pi,j,FoMj,K )

▷ select: A function that selects and returns the K
lowest pi,j based on FoMj

13: end procedure
14:

15: Step 2: Temperature variation comparison
16: oi = ⟨qi,1, qi,2, . . . , qi,U ⟩
▷ qi,j : The jth design parameter or performance of oi
▷ U : The number of design parameters and
performances

17: V = {v1, v2, . . . , vK }
▷ The variation of FoM of hk

18: H = {h1, h2, . . . , hK }
▷ hn : ii with the nth best FoM

19: procedure
20: for j← 1 to K do
21: Compute qi,j from SPICE with SS and FF condi-

tion
22: Calculate vj
23: end for
24: O← select(hi,j, vj,M )

▷ select: A function that selects and returns the M
lowest hi,j based on vj

25: end procedure
26:

27: Step 3: Sweep range setting
28: procedure
29: Calculate error rate
30: Set sweep range based on the error rate
31: end procedure

from the regression models is higher than a regression model
that is trained at the coarse simulation step. Moreover, we just
use the encoder part of VAE-structured to verify the results.
The VAE structure is an additional method to compensate
for or verify the accuracy of the model owing to problems;

Algorithm 3 Verification Step (II) Algorithm (Section III-F)
1: Input: D = {d1, d2, . . . , dT }
▷ Dataset containing T results of each ANN regression
model
▷ T : The number of predicted results

2: Output: Y = {y1, y2, . . . , yE }
▷ E selected values of design parameters
▷ E : The number of design parameters

3:

4: Step 1: Select the best FoM of each model
5: di = ⟨wi,1,wi,2, . . . ,wi,U ⟩
▷ wi,j : The jth design parameter or performance of di
▷ U : The number of design parameters and
performances

6: F = {f1, f2, . . . , fK }
▷ fn : di with the nth best FoM

7: procedure
8: for i← 1 to M do

▷ M : The number of fine simulation candidates
9: for j← 1 to T do

10: Calculate FoMj
11: end for
12: fi← select(di,j,FoMj, 1)

▷ select: A function that selects and returns the
lowest di,j based on FoMj

13: end for
14: end procedure
15:

16: Step 2: PVT variation comparison
17: minFoMi : The minimum FoM of ith candidates
18: maxFoMi : The maximum FoM of ith candidates
19: procedure
20: for i← 1 to M do
21: for j← 1 to T do
22: if (fi − di)/fi ∗ 100% ≤ 5% then
23: Calculate FoMj
24: if FoMj ≤ minFoMi then
25: minFoMi← FoMj
26: end if
27: if maxFoMi ≤ FoMj then
28: maxFoMi← FoMj
29: end if
30: end if
31: end for
32: Y ← select(fi,maxFoMi −maxFoMi, 1)

▷ select: A function that selects and returns the
lowest fi based on (maxFoMi −maxFoMi)

33: end for
34: end procedure

therefore, it is not required an entire part of the VAE struc-
ture in the fine simulation step. Consequently, we train each
regression model using the encoder part. And the point
with the highest FoM is selected based on each regression
model.
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FIGURE 6. Designed VCO block diagram and schematic circuit.

FIGURE 7. ANN regression model’s input and output.

F. VERIFICATION STEP (II)
In this step, data processing is performed in a flow similar
to that described in Section III-B. Although a mismatch can
be applied for each element to predict the precise PVT vari-
ations, this method is time-consuming. Furthermore, in the
verification step (II), calculations need to be performed for
PVT variations of 5 candidates. Tominimize processing time,
the approach described in Section II-C is employed to select
candidates with the least variation. Specifically, the design
parameters of the optimized point calculated within each
narrow sweep range are altered by 5 %. The point exhibiting
the least variation, as determined by the FoM result, is then
chosen as the final result. The final result is optimized; how-
ever, the designer may need to make slight adjustments for
subsequent layout design. Additionally, it is recommended
to perform simulations to verify PVT variations before the
layout design phase. The detailed flow of the algorithm for
this step is described in Algorithm 3.

IV. CIRCUIT DESIGN
In this study, an algorithm for the automated design of
a 1 GHz VCO is implemented, and the circuit is optimized.
The FoM is calculated using the root-mean-square (RMS)
value of the random jitter and power dissipation.

A. VOLTAGE-CONTROLLED-OSCILLATOR (VCO)
The VCO circuit generates an actual clock from the Phase-
Locked-Loop (PLL) circuit. The clock frequency changes
in proportion to the size of the voltage. We designed a ring

oscillator that is connected to a 7-stage inverter. Because the
LC oscillator has a standardized design flow, the ring oscil-
lator is designed to be more suitable for automated design.
The inverter is a current-starved structure, as shown in Fig. 6.
The NC and PC wires are connected to a diode-connected
transistor. In other words, the current-starved inverter uses
the current mirrors of the PMOS and NMOS to control the
charge flow and change the frequency. For the VDD, power
supply voltages of 1 V, 1.2 V, and 1.8 V are applied to the
45 nm, 65 nm, and 180 nm processes, respectively.

B. DESIGN PARAMETER
Fig. 7 illustrates the parameters used in the design of a
current-starved inverter. The control voltage (VC) is an impor-
tant parameter as it determines the frequency of the output
signal in the VCO circuit. The ratio of PMOS to NMOS
(Wp/Wn) significantly affects the duty cycle of the VCO.
The W/L ratio, representing the width and length ratio of the
transistor, determines the frequency range generated by the
VCO circuit. To account for PVT variations, we introduce
process variations by examining the differences in Figure of
Merit (FoM) resulting from changes in the PMOS, NMOS,
and W/L ratios. We also consider voltage variations by com-
paring the FoM differences based on control voltage varia-
tions. Furthermore, temperature variations are incorporated
through corner simulations in the verification step (I).

C. SIMULATION ENVIRONMENT
Fig. 7 shows the input-output relationship of the regression
model to be trained. The result derives the random jitter,
average cycle, duty cycle, power dissipation, rising time,
and falling time. We adopt the FoMJ (Figure of Merit for
jitter-power based on the PLL) proposed by Gao et al. [18]
and replace the overall power dissipation of the PLL with the
power dissipation of the VCO (PVCO). Thus, we utilize the
revised VCO FoM as follows:

FoM = 10 log
((σrms

1s

)2 (
PVCO
1mW

))
, (2)

where σrms is the value for rms jitter. A VCO circuit is the
most important operating reference for synchronous circuits.
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FIGURE 8. ANN regression model accuracy comparison between coarse and fine simulations in CMOS 65nm.

If the clock generated by a clock generator differs signifi-
cantly from the average period of the clock, the probability
of malfunction increases. Power consumption is an important
performance specification for every circuit. Therefore, the
performance result is compared with the value of the product
of the random jitter and power dissipation, as shown in (2).
Regarding the remaining parameters, it is not a criterion for
selecting the optimized point, but the average cycle, duty
cycle, rising time, and falling time are required to verify a
circuit that operates normally.

D. SELECTION FILTER
When the design of analog circuits is automated, specifica-
tions other than the FoM may not be considered. Taking the
VCO circuit as an example, it is not possible to find a proper

design point, such as when an operating frequency of 1 GHz
cannot be obtained or when the difference in the duty cycle is
affected to the circuit. Therefore, a selection filter is required
that prioritizes the FoM, but excludes out candidates with
specifications below the standard in constructing the rest of
the circuit. We use a selection filter to determine whether the
circuit is operating normally with the rest of the parameters
except the FoM. And select the best result through random
jitter and power dissipation.

E. SIMULATION SETUP
The simulation result is derived from the transition time
analysis of the SPICE simulation, and it is used to opti-
mize with the goal of a 1 GHz VCO that has low jitter
and power dissipation. Additionally, the setup to add noise
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FIGURE 9. ANN regression model standard deviation of error comparison about multi-step (coarse, fine) and single-step
simulation.

TABLE 1. Accuracy of the final result in CMOS 180nm, 65nm, and 45nm processes.

is required, because the FoM is calculated with rms jitter.
In the case of rms jitter rather than peak-to-peak jitter, there
is no significant difference, even if the transition time is long.

Therefore, 100 ns, which is 100 cycles based on 1 GHz,
is designated as the transition time. Based on this setup,
the design parameters are automatically changed, and an
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FIGURE 10. Encoder part of structure in ANN regression model employed
VAE structure.

TABLE 2. Comparison of overall running time and normalized step size
between multi-step and single-step simulation.

automated design is implemented using a code that can be
run.

V. RESULTS
We optimized the circuit by applying all previously suggested
methods. The circuit is optimized based on 45 nm, 65 nm,
and 180 nm Process-Design-Kit (PDK) to prove that it is easy
to migrate to other tech nodes such as digital circuits. In the
verification step, the temperature is set to 120 ◦C in the SS
condition, and the FF is set to - 40 ◦C for the simulation.

A. COARSE AND FINE SIMULATION RESULT
Fig. 8 illustrates the error graph for the coarse and fine
simulations in CMOS 65 nm. Random jitter is related to the
size of the transistor; however, it varies in value for many
other reasons and is highly variable. For instance, due to the

random nature, it is difficult to obtain accurate results solely
through transition time simulations. As a result, although the
error is larger than that of the other results, considering that
units are between femto seconds and pico seconds, it does
not occupy a large proportion. Excluding the random jitter,
it can be seen that the error for the coarse simulation mostly
exists within 30%, and for the fine simulation, it exists within
approximately 5 %. The encoder structure of the ANNmodel
is designed as shown in Fig. 10, and the decoder structure
is designed in the reverse order of the encoder. The size of
the verified and trained datasets is 1225. In addition, the
ratio of the sizes of the training and validation datasets is
divided by 9:1.

B. FINAL RESULT
We compare the final result of applying our proposed algo-
rithm and the SPICE simulation results. Table 1 shows the
results and error rates applied to CMOS 180 nm, 65 nm, and
45 nm processes. The reason for applying the proposed algo-
rithm to various processes is to prove that migration between
processes is possible. In the case of the FoM, the difference
is calculated instead of the error rate. As can be seen from
this table, there is no significant difference in the error rate;
therefore, it can be considered suitable for migrating to other
processes.

According to the FoM performance comparison in Table 1,
the final results from our proposed multi-step design flow
show remarkably improved accuracy performance than that
of the single-step design approach. Although the final cir-
cuit’s FoM performance through the multi-step algorithm is
slightly lower than that of the single-step approach, the final
result of the multi-step algorithm is robust to PVT variations
as it has passed the sensitivity comparing process against PVT
variations.

C. COMPARE SINGLE-STEP ANN REGRESSION MODEL
We additionally train and verify the algorithm that pre-
dicts the best point only for a wide range, not the zoom-in
algorithm that we propose, the method applying the VAE
structure, or the method that calculates the result through
verification. The total amount of training data is configured
equal to the sum of the data used in this study.

Fig. 9 shows the standard deviation of the error between
the prediction result using only the ANN regression model
and the SPICE simulation result. We compared the results of
the multi-step simulation consisting of coarse and fine sim-
ulations, which are our proposed algorithms, and single-step
simulation results. In addition, we applied this algorithm to
the 45 nm, 65 nm, and 180 nm processes and compared the
results. In the case of random jitter, since the required dimen-
sion of a regression model is much higher than the others,
the final accuracy of the random jitter will be lower than
that of other performance indicators. However, the remaining
results did not show significant errors. We can observe that
the standard deviation of the fine simulation in the multi-step
simulation is smaller than that of the coarse and single-step
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TABLE 3. Comparison of final result about proposed multi-step, and multi-step without VAE structure and corner simulation.

simulations. In most of the results, the fine simulation results
have significantly smaller standard deviation values than the
single-step simulation results; therefore, it is more efficient
to divide the simulation steps. On the other hand, as a pro-
cess criterion, the smaller the unit process, the larger the
standard deviation. Although it can be predicted that the
smaller the unit of the process, the lower the accuracy due
to mismatches and various errors, it is considered to be
an acceptable error and is sufficiently applicable to other
processes.

Table 2 presents the overall running time and normalized
step size for both multi-step and single-step simulations.
The running time is determined by concurrently execut-
ing 10 SPICE simulations. The step size in the single-step
simulation is defined as a normalized step size for compari-
son, while in the multi-step simulation, it is relative to the step
size of the fine simulation. Comparing the normalized step
size, the average value in the single-step simulation is more
than three times higher than in the multi-step simulation.
This discrepancy becomes more pronounced as the dataset
size increases, emphasizing the importance of training the
regression model with denser data for improved simulation
accuracy and efficiency.

D. COMPARE MULTI-STEP ANN REGRESSION MODEL
WITHOUT VAE STRUCTURE AND CORNER SIMULATION
Table 3 shows that the maximum error values in the proposed
multi-step approach are lower compared to the multi-step
approach without the VAE structure and corner simula-
tion. The difference in FoM is also reduced. Additionally,
the proposed algorithm prioritizes robustness against corner
simulation, as evidenced by a FoM variation of 4.72 dB
in the proposed multi-step approach, while the multi-step
approach without the VAE structure and corner simulation
exhibits a FoM variation of 6.18 dB. Consequently, the design

parameters are optimized to ensure robust performance in
corner simulation scenarios.

VI. CONCLUSION
In this study, we propose several methods to achieve maxi-
mum efficiency with minimal simulation data. The zoom-in
algorithm divides the sweep range of the design parameters
into coarse and fine simulations. In other words, the role
of each step can be divided into finding and predicting the
accurate points. Thus, the zoom-in algorithm makes efficient
searching possible. In addition, the VAE structure detects
the points at which the ANN model is mistrained. Finally,
through the verification step, a design point robust to PVT
variations is determined.

Furthermore, the fine simulation predicts the necessary
points for a specific candidate group, but the ANN model
created in the coarse simulation uses data computed based
on the overall simulation range. Models trained with coarse
simulation data have the advantage that they can be reused
if other VCO performance is needed. Thus, when a VCO
is required in another circuit, it is possible to immediately
designate a candidate group using the created ANN Model.
In addition, if the ANN model is trained with a much larger
dataset, the design time is significantly reduced, and the accu-
racy is higher. Therefore, it has tremendous advantages when
designing various specifications in the same circuit topology.

REFERENCES

[1] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
and K. Zhong, ‘‘Machine learning for electronic design automation: A sur-
vey,’’ ACM Trans. Design Autom. Electron. Syst., vol. 26, no. 5, pp. 1–46,
Jun. 2021.

[2] Q. Zhang, J. J. Liou, J.Mcmacken, J. Thomson, and P. Layman, ‘‘Modeling
of mismatch effect in submicron MOSFETs based on BSIM3 model and
parametric tests,’’ IEEE Electron Device Lett., vol. 22, no. 3, pp. 133–135,
Mar. 2001.

VOLUME 11, 2023 58861



J.-W. Hyun, J.-W. Nam: AMS Circuit Design Optimization Technique

[3] J.-W. Hyun and J.-W. Nam, ‘‘Regression model-based VCO design opti-
mization technique,’’ in Proc. Int. Conf. Electron., Inf., Commun. (ICEIC),
2023, pp. 1–3.

[4] P. M. VanNostrand, I. Kyriazis, M. Cheng, T. Guo, and R. J. Walls,
‘‘Confidential deep learning: Executing proprietary models on untrusted
devices,’’ 2019, arXiv:1908.10730.

[5] N. Lourenço, E. Afacan, R. Martins, F. Passos, A. Canelas, R. Póvoa,
N. Horta, and G. Dundar, ‘‘Using polynomial regression and artificial
neural networks for reusable analog IC sizing,’’ in Proc. 16th Int. Conf.
Synth., Model., Anal. Simul. Methods Appl. Circuit Design (SMACD),
Jul. 2019, pp. 13–16.

[6] S.-Y. Peng, B. A. Minch, and P. Hasler, ‘‘Analog VLSI implementation
of support vector machine learning and classification,’’ in Proc. IEEE Int.
Symp. Circuits Syst., May 2008, pp. 860–863.

[7] S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, ‘‘TENET: Temporal
CNN with attention for anomaly detection in automotive cyber-physical
systems,’’ in Proc. 27th Asia South Pacific Design Autom. Conf. (ASP-
DAC), Jan. 2022, pp. 326–331.

[8] S. R. Chowdhury, S. Bhardwaj, and J. Kitchen, ‘‘Design automation of
CMOS Op-amps using statistical geometric programming,’’ in Proc. IEEE
Int. Symp. Circuits Syst. (ISCAS), May 2022, pp. 1575–1579.

[9] J. Nam and Y. K. Lee, ‘‘Machine-learning based analog and mixed-signal
circuit design and optimization,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN),
Jan. 2021, pp. 874–876.

[10] M. Qu and M. A. Styblinski, ‘‘An adaptive approach to statistical macro-
modeling of analog integrated circuits,’’ in Proc. Int. Symp. Circuits Syst.,
vol. 3, Sep. 1995, pp. 1596–1599.

[11] S. Su, Q. Zhang, J. Liu, M. Hassanpourghadi, R. Rasul, and M. S. Chen,
‘‘TAFA: Design automation of analog mixed-signal FIR filters using time
approximation architecture,’’ in Proc. 27th Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2022, pp. 526–531.

[12] J.-W. Nam, Y.-K. Cho, and Y. K. Lee, ‘‘Regression model-based AMS cir-
cuit optimization technique utilizing parameterized operating condition,’’
Electronics, vol. 11, no. 3, pp. 408–422, Jan. 2022.

[13] E.Maricau, D. De Jonghe, and G. Gielen, ‘‘Hierarchical analog circuit reli-
ability analysis using multivariate nonlinear regression and active learning
sample selection,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Mar. 2012, pp. 745–750.

[14] M. Barros, J. Guilherme, and N. Horta, ‘‘GA-SVM optimization kernel
applied to analog IC design automation,’’ in Proc. 13th IEEE Int. Conf.
Electron., Circuits Syst., Dec. 2006, pp. 486–489.

[15] D. Ghai, S. P. Mohanty, and G. Thakral, ‘‘Fast analog design optimization
using regression-based modeling and genetic algorithm: A nano-CMOS
VCO case study,’’ in Proc. Int. Symp. Quality Electron. Design (ISQED),
Mar. 2013, pp. 406–411.

[16] G. G. E. Gielen and R. A. Rutenbar, ‘‘Computer-aided design of ana-
log and mixed-signal integrated circuits,’’ Proc. IEEE, vol. 88, no. 12,
pp. 1825–1854, Dec. 2000.

[17] Q. Xu, Y. Yang, Z. Wu, and L. Zhang, ‘‘Different latent variables learning
in variational autoencoder,’’ in Proc. 4th Int. Conf. Inf., Cybern. Comput.
Social Syst. (ICCSS), Jul. 2017, pp. 508–511.

[18] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, ‘‘Jitter
analysis and a benchmarking figure-of-merit for phase-locked loops,’’
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121,
Feb. 2009.

JIN-WON HYUN received the B.S. degree in
electronic and IT media engineering from the
Seoul National University of Science and Tech-
nology, Seoul, South Korea, in 2023, where he is
currently pursuing the M.S. degree in electronic
engineering. His research interests include AMS
circuit design automation, clock generation cir-
cuits, and low-power high-speed high-resolution
analog-to-digital data converters.

JAE-WON NAM (Member, IEEE) received
the B.S. and M.S. degrees from the Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, South Korea, in 2006 and
2008, respectively, and the Ph.D. degree in elec-
trical engineering from the University of South-
ern California (USC), Los Angeles, CA, USA,
in 2019. From 2008 to 2012, he was with the Elec-
tronics and Telecommunications Research Insti-
tute (ETRI), Daejeon, as a full-time Researcher.

Since Fall 2017, he has been a Graduate Intern with the Data Center Group,
Intel Corporation, Santa Clara, CA, USA, involved in next-generation high-
speed I/O architectures. From July 2019 to July 2020, he was an Analog
Engineer with the I/O Circuit Technology Team, Intel Corporation Ltd. He is
currently an Assistant Professor with the Department of Electronic Engineer-
ing, Seoul National University of Science and Technology (SeoulTech). His
research interests include designing low-power high-speed high-resolution
analog-to-digital data converters and high-speed I/O interface circuits.

58862 VOLUME 11, 2023


