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ABSTRACT With the accumulation of large amounts of data that have the most significant impact on
network performance and the development of hardware accelerators that can support such data processing,
convolutional neural networks (CNNs) have achieved remarkable advances in various applications such as
computer vision. In particular, in recent years, various new data suitable for user environments have been
obtained from numerous mobile devices, and accordingly, methods have to be developed to train CNNs
with only new data on the existing pre-trained network without access to the data used for the pre-training
process on server platforms. Nevertheless, only a few studies have considered efficient training schemes for
new data. In this study, we propose a multi-step training framework that efficiently utilizes accumulated new
data for CNN training. In detail, to significantly improve the performance of CNNs, the proposed method
creates unimportant filters while preserving knowledge of previous data through selective sparsity training
and can effectively utilize these filters for CNN training of new data through diverse re-initialization and
adaptive online distillation techniques. In addition, the proposed multi-step sparsity training with multi-step
loss enables iterative network training of new data. The results of extensive experiments performed on various
datasets show that the proposed method outperforms many existing methods, including fine-tuning.

INDEX TERMS Convolutional neural network (CNN), continual learning, sparsity training, knowledge
distillation.

I. INTRODUCTION
With the development of GPUs and hardware accelerators
[1], [2], convolutional neural networks (CNN) have shown
remarkable success in computer vision tasks such as classifi-
cation [3], [4], object detection [5], [6], [7], and segmentation
[8], [9], [10]. However, for some applications that demand
very few errors, such as autonomous driving and medical
image analysis, further performance improvements are still
required, and considerable research efforts are being invested
[11], [12], [13]. Although various approaches have been
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examined to improve performance, increasing the amount
of training data is the most fundamental approach. The
amount of training data has the most direct influence on the
performance of networks regardless of the field (e.g., image,
sound, language, etc.) [14], [15].

Recently, as more people use mobile devices, various
new data that are suitable for user environments are being
acquired from these devices. If these data could be used for
network training, it is possible to secure a network optimized
for data distribution specific to each user’s environment,
away from the general data distribution. However, since the
data acquired from these mobile devices is unlabeled, the
task of labeling a large amount of unlabeled data involves
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a high cost [16]. Therefore, pseudo-labeling methods [17],
[18], [19] that improve network performance by generating
labels from large, readily available unlabeled data are actively
being researched in many tasks [16], [20]. However, even
if pseudo-labels are correctly generated, the generated new
data (i.e., pseudo-labeled data) must be efficiently trained
on existing networks. Nevertheless, because current studies
related to pseudo-labeling focus only on data generation,
further research is needed on strategies to train new data
efficiently and continuously. It is noteworthy that retraining
all existing training data together to train new data is
inefficient, and when this training is performed on mobile
devices, access to the training set used for pre-training is
impossible. That is, training only new data on the existing
pre-trained network without access to previous data used for
pre-training is important.

Until now, when networks need to be continuously trained
on new data, fine-tuning is used, which is a very simple
method of training new data by adjusting the learning rate
in the network pre-trained with previous data [21]. However,
as fine-tuning focuses only on optimizing networks for new
data, forgetting the knowledge of previous data is relatively
easy, and this approach has the disadvantage that it cannot
have high performance without a pre-trained network using
a huge dataset (e.g., ImageNet) [22]. Moreover, even if
the network is pre-trained on a huge dataset, the case
of performing multiple training procedures (i.e., multi-
step training) according to the continuous creation of new
data has not been widely considered. Besides fine-tuning,
approaches to improve the performance of CNNs or continual
learning methods in which a new class is added can be
used to train new data. The approaches adopted in [11],
[12], and [13] enhance the learning ability of CNNs in
various ways, and new data can be trained with higher
performance. However, because it is difficult to prevent
forgetting the knowledge of previous data during training new
data, achieving high performance is relatively challenging.
Continual learning [23], [24], [25] is an approach to solve
the catastrophic forgetting phenomenon in which knowledge
about a previously trained class is forgotten when a new class
that has not been previously trained is added. It deals with
the same situation in that new data are added, but because
it focuses on solving catastrophic forgetting, it is difficult
to train new data with high performance when applied to a
situation where new data with the same class is continuously
added.

In this study, we propose a multi-step training framework
that efficiently trains accumulated new data without previous
data by utilizing sparsity training. The proposed method
proceeds in four steps. First, we prepare a pre-trained network
that has been trained on previous data. Second, through
proposed selective sparsity training (SST) that selects target
parameters adaptively according to the training progress,
pre-trained network compresses without degradation of
performance for previous data, creating useless parameters
with low importance. Third, to efficiently reuse useless

parameters for the training of new data, we selectively re-
initialize only some useless parameters in consideration of
the parameter state of the current network. Finally, we train
all parameters (i.e., parameters that remain due to high
importance and parameters that are re-usable through re-
initialize) of the network with new data through the proposed
adaptive online distillation (AOD). In the case of training
sequentially (i.e., multi-step), it proceeds through repetition
of the four-step training process (i.e., single-step) described
above. Notably, multi-step training involves a problem in
that it is difficult to preserve knowledge about previous
data by performing sparsity training only with current
data. Therefore, we overcome this problem by designing
a multi-step loss (MSL) function using only knowledge
distillation loss without cross-entropy loss using a pre-trained
network as a teacher. The results of extensive experiments
on the CIFAR-100 [26], Tiny-ImageNet [27], and ImageNet
[28] datasets show that the proposed method significantly
improves the performance of training new data.

The contributions of this work are summarized as follows:
• A selective sparsity training method is proposed to train
new data.

• We develop an adaptive re-initialization method and an
adaptive online distillation training method to achieve
high performance by efficiently training useless param-
eters created by sparsity training with new data.

• A multi-step loss function is designed for multi-step
training.

The remainder of this paper is organized as follows.
Section II introduces existing studies related to approaches
for training new data and sparsity training. Section III
presents a detailed description of the proposed multi-step
training framework, and Section IV provides the experimen-
tal results and an analysis of the proposed method. Finally,
Section V concludes this paper.

II. RELATED WORKS
A. APPROACHES FOR TRAINING NEW DATA
Several approaches have been developed to train pre-trained
CNNs with new data. Fine-tuning, a simple and common
strategy of transfer learning, trains new data by adjusting the
learning rate for a new purpose in the pre-trained network
using a huge dataset such as ImageNet [28]. However, fine-
tuning can be applied only in a limited environment because
it is generally difficult to achieve high performance without
the pre-trained network using a huge dataset [22] and even if
such a pre-trained network were available, existing methods
only considers single-step training; multi-step training is
not considered. That is, when new data are continuously
generated and accumulated, several training procedures are
required, but there is a problem that fine-tuning several times
decreases training efficiency and degrades performance.

When training new data, approaches to improving the
learning ability of CNNs can also be used. In these
approaches, various methods to improve performance such as
training additional knowledge obtained through knowledge
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distillation [29], adversarial training that controls the
difference between the distributions of inputs [11], and
reactivation of invalid parameters [30], [31] have been
studied. However, training new data through these approaches
does not accompany the solution to the problem of forgetting
knowledge about previous data in the training process, so the
performance for previous data degrades and it is difficult to
achieve high performance in multi-step training that requires
preserving knowledge obtained from previous data.

Continual learning [23], [24], [25], [32], [33], an approach
to training new classes, can also be used to train new data.
Continual learning was conducted with a focus on solving the
catastrophic forgetting phenomenon for the previous class,
which usually occurs while training new classes. However,
because continual learning focuses on solving catastrophic
forgetting, it is difficult to achieve high performance in
training where new data with the same class are continuously
added.

B. SPARSITY TRAINING
Sparsity training, combined with pruning [34], is a network
compressionmethod used to apply CNNs to real applications,
which enables us to identify insignificant parameters in
networks. A representative sparsity training method in [35]
imposes L1 regularization on the scaling factors in batch
normalization (BN) layers so that the BN scaling factor of
some parameters converges to 0, which simplifies identifying
insignificant filter without any changes to existing CNN
architectures. The training objective function of the sparsity
training in [35] is expressed as follows:

L =

∑
(x,y)

l(f (x,W ), y) + λ
∑
s∈τ

| s | (1)

where (x,y) and W denote the (training input, target) and
trainable weights, respectively. In (1), the first and second
sum-terms correspond to the cross-entropy loss of a CNN and
L1 norm sparsity-induced penalty on all the scaling factors,
respectively, and λ balances the two terms. This means that
the sparsity training in [35] is performed with all parameters
of the network as targets, which makes all BN scaling factors
of the network converge as a whole. This is not a big problem
for pruning where sparsity training is only performed once,
but if the sparsity training is used for multi-step training
methods that require training to be performed several times,
all BN scaling factors eventually converge to 0, which makes
it impossible for the network to achieve high performance.

III. PROPOSED METHOD
A. APPROACH OVERVIEW
We propose a multi-step training framework using sparsity
training for the efficient training of accumulated new data
without access to previous data. The multi-step training
framework is a framework that can continuously train new
data to the network through repetition of the single-step train-
ing framework. Figure 1 illustrates the proposed single-step
training procedure.We associate a scaling factor (reused from

the BN layer) with each filter in all convolution layers so
that the filter scaling factor converges to 0. By performing
training with a filter unit, new data can be trained efficiently
while preserving knowledge of previous data. As shown
in Figure 1, after preparing a pre-trained network trained
with previous data (i.e., Figure 1 (a)), we create useless
filters by converging the scaling factor of specific filters to
0 through sparsity training without performance degradation
(i.e., Figure 1 (b)). Subsequently, the filter scaling factor
converged to 0 is re-initialized and reused for training again
(i.e., Figure 1 (c)), and we train the network with new data
(i.e., Figure 1 (d)). As a result, although the actual network
size is the same, by creating useless filters through sparsity
training and using them for new data training, the proposed
method significantly improves network performance. Multi-
step training is performed through repetition of single-step
training by using the results of the current step (i.e., the results
of Figure 1 (d)) as a pre-trained network in the next step.
However, if the proposed training procedure is performed

using existing methods, achieving high performance is
challenging owing to various limitations. Existing sparsity
training methods are not suitable for multi-step training of
new data because of the limitations of forgetting knowledge
of previous data and reducing the overall parameter values.
In addition, when re-initializing the scaling factor of useless
filters, the existing initialization method [36], [37] cannot
be used. This is because during previous training, most
parameters already have optimal values, and re-initialization
should be performed only for the scaling factors of some
useless filters while considering the state of other filter
scaling factors in the network. Moreover, when training new
data after re-initialization, because existing methods [21],
[29], [38] do not have the ability to preserve the knowledge of
previous data and efficiently train new data simultaneously,
they are difficult to be used for new data training owing to
their poor performance.

B. SELECTIVE SPARSITY TRAINING
The proposed SST is performed by targeting a few filter
scaling factors selected adaptively, rather than all filter
scaling factors. By preventing the reduction of factors other
than the scaling factor of the useless filter, we overcome
the problem of existing sparsity training [35] that the
scaling factors of all filters in networks converge to 0 when
performing training several times. We defined SPr (0 < SPr
< 1) as the ratio of the target filter currently being sparsity
trained and Targetr (0 < Targetr < 1) as the final sparsity
strength set by the user. Because a small L1 norm scaling
factor has a small effect on training, the target filter scaling
factor is selected as much as the SPr in the order of the
scaling factor with a small L1 norm, and the SPr is determined
adaptively to the training progress (epoch) as follows:

SPr =


Targetr − 1

Ecut
∗ Ecur + 1 (Ecur < Ecut )

Targetr (Ecur ≥ Ecut )
(2)
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FIGURE 1. Procedure for the proposed single-step training on the pre-trained network.

FIGURE 2. Overview of the adaptive online distillation for efficient training of new data.

where Ecur is the current epoch, and Ecut is the epoch
when SPr matches Targetr . When training begins, SPr
starts at 1, and sparsity training is performed targeting all
filter scaling factors. However, as training progresses, SPr
decreases linearly and eventually matches the Targetr at the
Ecut epoch. To determine the optimal Ecut , several factors
need to be considered. First, it is necessary to quickly match
the SPr and Targetr to prevent unnecessary reduction of
the filter-scaling factor. Second, if SPr is decreased too
rapidly, there is a higher chance of misjudging which filter’s
scaling factor is important. Third, if L1 regularization for
sparsity training is applied too strongly, performance can
degrade significantly. Therefore, we conduct an experiment
to empirically determine the optimal Ecut considering these
three points, and consequently define Ecut as an epoch in
which the learning rate generally decreases as follows:

Ecut =
1
3
Emax (3)

where Emax is the maximum number of training epochs.
If filter scaling factors as much as the Targetr converge to
0 before the Ecut epoch, SPr immediately has the same value
as the Targetr to prevent unnecessary reduction of other filter
scaling factors. To verify the Targetr setting, comparative
experiments are conducted based on the Targetr in the SST
section of the ablation study.

C. DIVERSE RE-INITIALIZATION TO REUSE FILTERS
After the proposed SST, the scaling factor of filters identified
as useless is almost 0, and re-initialization is necessary for
efficient training of new data. However, since all filters except
those targeted for re-initialization have knowledge of previ-
ous data, re-initialization should be performed carefully. The
proposed scaling factor re-initialization method re-initializes
to a random value within an appropriate range, considering
the size of the scaling factors of all filters in the network.
When the filter scaling factors are sorted in order of size,

129616 VOLUME 11, 2023



J. J. Lee, H. Kim: Multi-Step Training Framework Using Sparsity Training

the scaling factors near the Targetr have very small values,
converging to almost 0, and the maximum scaling factor
applied to only a few specific filters has a very large value.
If these values are included in the re-initialization range,
proper re-initialization may not be performed. Therefore,
we determined the optimal re-initialization range of the filter
scaling factor, R (0 < R < 1), as follows:

Targetr + I < R < 1 − I (4)

where I is a term ranging from 0 to 1 that determines the
appropriate R. A higher value of I results in a narrower range
R with less diversity but a higher probability of including
an appropriate value, while a lower value of I results in a
wider range R with more diversity but a lower probability of
including an appropriate value.

D. ADAPTIVE ONLINE DISTILLATION
As a result of the proposed SST and re-initialization, after
securing an extra filter that enables the training of new data
while preserving the knowledge of previous data, we improve
the training efficiency of new data through the proposed
AOD. The proposed AOD method adaptively combines
knowledge distillation loss (LKD) with cross-entropy loss
(LCE ) to enable two student networks to effectively perform
collaborative learning, and consistency regularization loss
(LCR) is added to improve network consistency. It should be
noted that many existing online distillation approaches [29],
[39], [40] focus only on the type of knowledge of student
networks and the distillation strategy, and do not consider
the performance of each student network. An overview of
the proposed AOD is shown in Figure 2. As input, we use a
pair of randomly cropped images of BF , the horizontal flip
version of the original batch image (B), and BC , which is
a color jitter version with corrected saturation, brightness,
and illuminance. Because both input images represent the
same class, the predicted class must be matched. Therefore,
we improve the prediction consistency of the network by
introducing the Kullback-Leibler divergence (KL), which is
often used in CNNs, as a LCR, as follows:

LCR = KL(PF ∥ PC ) (5)

where PF and PC are the prediction logits for BF and
BC , respectively. To achieve a higher performance than
that obtained by the improved prediction consistency of the
network, we use two student networks. To make collaborative
learning more effective through knowledge distillation of two
different student networks with different knowledge, before
starting AOD, in the re-initialization stage, the value of I ,
which has a great influence on the range of re-initialization
range R, is set differently to securing the diversity of filters
reused. That is, two different student networks are created by
performing diverse re-initialization using different values of
I after SST. Training two student networks for knowledge
distillation inevitably creates a relatively superior student
network and an inferior student network. For the superior
network, it is better to train with a high coefficient of LCE

rather than transfer the knowledge from the inferior network.
However, for the inferior network, since it is difficult to
outperform the superior network by training with the same
dataset and loss function as the superior network, it is better
to transfer the knowledge from the superior network with
a high coefficient of LKD. Shortly, it is more reasonable to
train a superior network using a low coefficient of LKD and
an inferior network using a high coefficient of LKD rather
than two networks distilling each other’s knowledge with
the same coefficient. To simplify the notation, when k=1,2,
we denote two student networks as Nk , the prediction logit
of each network for a pair of inputs as PkF ,PkC , and the loss
functions of each network as LkCE , L

k
KD, L

k
CR. The coefficient

W k
KD of LkKD to be applied to network Nk is determined by the

ratio of cross-entropy loss (LkCE ) as follows:

W 1
KD =

L1CE
L1CE + L2CE

,

W 2
KD =

L2CE
L1CE + L2CE

. (6)

The knowledge distillation loss LkKD and the total loss Lk of
each network are as follows:

L1KD = JS(P1F ∥ P2F ),

L2KD = JS(P2F ∥ P1F ), (7)

L1 = W 2
KD ∗ L1CE +W 1

KD ∗ L1KD + α ∗ L1CR,

L2 = W 1
KD ∗ L2CE +W 2

KD ∗ L2KD + α ∗ L2CR, (8)

where in (7), JS represents the Jensen-Shannon divergence,
and in (8), α is a term that balances the total loss Lk .

E. MULTI-STEP LOSS FOR MULTI-STEP SPARSITY
TRAINING
The multi-step training procedure is a repetition of the
single-step training procedure, but one additional problem
needs to be overcome to achieve high performance. In other
words, unlike single-step training, which performs sparsity
training using pre-training data, multi-step training (i.e.,
second step, third step, etc.) performs sparsity training
only with current data, so it has to overcome the problem
of forgetting knowledge about previous data. Therefore,
we design an MSL in addition to SST and then perform
training by freezing the fully connected layer. To distill the
knowledge of previous data, the network trained so far is used
as a teacher network, frozen during training, and when the
performance of the student network outperforms the teacher
network’s performance, the student network is updated to the
new teacher network for distilling more powerful knowledge
to the student network. The MSL designed without LCE
preserves the knowledge from previous data by distilling the
attention map of each block of the teacher network as well as
the prediction logit of the teacher network to figure out which
part of the feature map is in focus. The designed MSL, LMS ,
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is formulated as follows:

LMS = KL(PT ∥ PS ) + (
n∑
i=1

LAT )/n, (9)

where PT and PS are the prediction logits of the teacher and
student networks for the previous data, respectively, n is the
total number of blocks in the network, i is the block index, and
LAT is the attention loss in [41]. It should be noted that the first
and second terms of (9) are the prediction logits distillation
loss and the attention map distillation loss, respectively.

IV. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENTS
To evaluate the performance of the proposed multi-step
training framework, we conducted extensive experiments
related to each contribution, hyperparameter setting, and
comparison with other approaches using commonly used
architectures (i.e., ResNet [3], Wide-ResNet [42], and
MobileNetv2 [43]) and various datasets (i.e., CIFAR-100
[26], Tiny-ImageNet [27], and ImageNet [28]) in image
classification tasks. For use in the single-step and multi-step
experiments, all datasets are split so that they do not overlap.
In the single-step experiment, all datasets are randomly split
by 1:1 and used as previous data and new data, respectively,
without overlapping images; in the multi-step experiment,
all datasets are randomly split in a 1:1:1:1 ratio without
overlapping images and 4-step training is conducted using
partitioned Data1, Data2, Data3, and Data4, respectively.
It should be noted that Data1 is trained from scratch whereas
the remaining data are trained on the pre-trained network.
We use Top-1 classification accuracy (%) as an evaluation
metric and report the average and standard deviation of three
experiments to provide a more convincing analysis.

B. IMPLEMENTATION DETAILS
All experiments are conducted using NVIDIA GeForce
RTX 3090 GPUs and NVIDIA GeForce RTX 2080 GPUs.
We use stochastic gradient descent (SGD) as the optimizer
and an initial learning rate of 0.1 for the first training
and sparsity training, and 0.001 otherwise. The detailed
environmental settings for CIFAR-100 include a batch size
of 256, a momentum of 0.9, weight decay of 0.0005, overall
training epochs of 300, and cosine annealing scheduler [44]
is used. For Tiny-ImageNet and ImageNet training, a batch
size of 64, momentum of 0.9, weight decay of 0.0001, and
overall training epoch of 90 are used, and the learning rate is
divided by 10 for every 30 epochs. For the diversity of two
student networks used in AOD, each I = {0.1, 0.2} is used,
and α = 0.5 is set to balance the loss.

C. ABLATION STUDY
1) SELECTIVE SPARSITY TRAINING
To verify the proposed SST, we compared it with the base
sparsity training (BST) from [35] using Tiny-ImageNet in
ResNet50. Figure 3 displays the distribution and average

TABLE 1. Top-1 Accuracy(%) according to the Targetr and Ecut .

of the filter scaling factors of the three networks: the pre-
trained network, the network trained with BST, and the
network trained with SST. As shown in Figures 3 (a) and (b),
both methods generated useless filters (i.e., filters in which
the scaling factor converges to 0) after sparsity training.
In Figure 3(c), the proposed SST with pink color maintains
the average scaling factor of the remaining filters, except for
the useless filter, which is similar to that of the pre-trained
network with blue color, but the BST with green color shows
that the average scaling factor is significantly reduced. Thus,
the scaling factor does not converge to 0 even if the proposed
SST is performed several times.

To determine the optimal values of Ecut and Targetr ,
a single-step experiment is conducted using ResNet50 on
Tiny-ImageNet. Table 1 presents the experimental results
under various conditions (i.e., a total of 9 cases obtained
by combining three types of Targetr and Ecut , respectively).
Table 1 shows that the best performance was observed when
Targetr was set to 0.3 and Ecut to Emax /3. This means that
the highest performance can be achieved when matching
the value of sparsity strength with Targetr at 1/3 of the
entire training epoch, while 70% of the entire network
stores information about previous data and the remaining
30% learns information about new data. However, since the
performance varies significantly with changes in Targetr
compared to Ecut , we performed additional experiments on
various networks to identify an appropriate Targetr while
keeping Ecut fixed at Emax /3.

Table 2 shows the results of single-step experiments using
Tiny-ImageNet in ResNet34, ResNet50, and ResNet101 to
determine the optimal value for Targetr . It should be noted
that when the Targetr is set too high, many useless filters
are created, and valuable knowledge from previous data is
lost; on the other hand, when it is set too low, the number of
filters that can train new data completely decreases, making
it difficult to efficiently train new data.The best performance
was observed in all three networks when Targetr was set to
0.3. This means that Targetr of 0.3 allows the network to
learn information about both previous data and new data in
themost balancedway. Therefore, we empirically determined
that Targetr = 0.3 is the optimal value and all subsequent
experiments were conducted with this optimal Targetr and
Ecut = Emax /3.

2) DIVERSE RE-INITIALIZATION AND ADAPTIVE ONLINE
DISTILLATION
In (7), AOD uses the adaptive LKD and LCR. To compare
the effects of each loss when training new data, Table 3
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FIGURE 3. Distribution and average of the filter scaling factors of the three networks. (a) shows the distribution of the filter scaling factors of the
pre-trained network, (b) shows the distribution of the filter scaling factors after BST and SST, and (c) shows the distribution and average of remaining
scaling factors excluding scaling factors of useless filters.

TABLE 2. Top-1 Accuracy(%) according to the Targetr on various
networks.

TABLE 3. Top-1 Accuracy(%) according to the various loss functions in
AOD.

TABLE 4. Top-1 Accuracy(%) comparison with and without diverse
re-initialization(Dri) and AOD after SST.

shows the results of single-step experiments conducted using
CIFAR-100 and ResNet110. Compared with general training,
general LKD and adaptive LKD achieve a performance
improvement of 0.81% and 2.13%, respectively. This shows
that adding LKD to general training improves the training
performance of new data, and LKD adaptive to LCE achieves
better performance than general LKD. In particular, AODwith
the adaptive LKD and LCR achieves the highest accuracy of
69.71% with a performance improvement of 3.63%.

Table 4 presents the results of verification experiments
conducted on ResNet50 using Tiny-ImageNet to evaluate
the performance of diverse re-initialization and AOD. When

TABLE 5. Top-1 Accuracy(%) comparison according to the teacher
network update in MSL.

TABLE 6. Top-1 Accuracy(%) comparison w/ and w/o MSL in BST and SST.

training new data after SST, comparing the single-step
experiment results of fine-tuning with the proposed method
shows that applying AOD and diverse re-initialization
achieves performance improvements of 0.34% and 0.18%,
respectively. These results show that the performance of the
proposed AOD is better than fine-tuning when training new
data after SST, and in particular, the performance of AOD can
be further improved through diverse re-initialization.

3) MULTI-STEP LOSS FOR MULTI-STEP SPARSITY TRAINING
In MSL, if the student network outperforms the teacher net-
work, it is updated as the new teacher network. Table 5 shows
the results of multi-step training experiments conducted
using Tiny-ImageNet on ResNet50 to verify the superiority
of teacher network updates. In steps 1 and 2, there is no
performance difference due to the teacher network update in
MSL; however, a clear performance difference occurs from
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TABLE 7. Top-1 Accuracy(%) comparison in single-step training and multi-step training.

step 3, and in step 4, a performance improvement of 1.41% is
achieved compared to when the teacher network is fixed. This
shows that continuously updating the network with a better
teacher leads to better performance than fixing the teacher
network in step 3 or higher where MSL is applied.

Next, to evaluate the superiority of the proposed method
in multi-step training, we apply MSL to both BST and SST
on ResNet50 with Tiny-ImageNet and compare the results
of the multi-step experiment in Table 6. When training up to
Step 2, the performance difference between BST and SST is
not significant, but the performance gap widens as the step
increases, confirming that the proposed SST is much better
in multi-step training. Furthermore, since Step 2 training
belongs to the single-step, performance does not change
depending on whether MSL is applied or not. However, in the
multi-step experiment where Data3 and Data4 are trained, the
networks with the proposed MSL show better performance in
both BST and SST. In particular, the proposed SST w/MSL
shows a large performance difference of 4.64% compared to

the BST w/o MSL, verifying that the proposed SST andMSL
are excellent in multi-step training.

D. COMPARISON OF CLASSIFICATION ACCURACY
We compare the proposed multi-step training framework to
standard fine-tuning and various recently proposed methods,
including HPO [21], DML [29], and LwM [38]. HPO [21]
is a recent study that has conducted many experiments and
suggested new hyperparameter settings, such as learning rate,
batch size, momentum, and weight decay, for fine-tuning
based on the relationship between previous data and new data.
HPOwith improved fine-tuning was selected as a comparison
target to show the performance improvement limit when
training new data only by fine-tuning in the existing network.
DML [29] demonstrated that collaborative learning of
multiple student networks performed better than knowledge
distillation from a powerful teacher network and proposed an
online distillation method in which an ensemble of student
networks collaboratively distill knowledge to each other.
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In multi-step training, it is important to continuously train
new data with high performance. Therefore, DML, which
improves performance by supplementing the weaknesses
of each network through an ensemble of various student
networks, was selected as a comparison target for fair
performance comparison with the proposed AOD. LwM
[38], a recent study related to continual learning, achieved
higher performance by distilling the prediction logit and
final attention map of networks. LwM, which approached the
catastrophic forgetting problem using distillation loss, was
selected as a comparison target to verify the catastrophic for-
getting prevention effect of the proposed MSL in multi-step
training.

Table 7 presents the results of the single-step experiments
with various network architectures. The proposed method
outperforms the comparative approaches in all single-step
experiments with very high performance. Specifically, on the
CIFAR-100 dataset, the proposed method improves the per-
formance by 1.22%, 3.81%, and 4.45% compared to the
baseline in ResNet32, ResNet110, and WRN28-10, respec-
tively. On the Tiny-ImageNet dataset, the proposed method
shows performance improvements of 5.09%, 3.49%, 1.07%,
and 0.85% compared to the baseline in ResNet34, ResNet50,
ResNet101, and MobileNetv2, respectively. Additionally, the
proposed method achieves 0.5% higher performance than
the baseline in ResNet34 on the ImageNet dataset. The
proposed method shows the best performance in all eight
single-step experiments using various datasets and networks,
and achieves a significant performance improvement of
5.09% when training Tiny-ImageNet in ResNet34. In order
to achieve high performance in single-step experiments, it is
most important that the network learns new data while
preserving knowledge about previous data. Therefore, these
results show that the proposed SST efficiently learned new
data through Dri and AOD while preserving knowledge of
previous data well in the network.

Table 7 also presents the multi-step experiment results
conducted in various network architectures. In the proposed
method, ResNet32 and ResNet110 trained on CIFAR-100
show performance improvements of 2.28% and 4.61%,
respectively, compared to the baseline, and ResNet50 and
MobileNetv2 trained on Tiny-ImageNet show performance
improvements of 6.42% and 2.68%, respectively, compared
to the baseline. As a result, compared to other approaches,
the proposed method achieves excellent performance despite
undergoing sparsity training several times with only current
data, which verifies the effectiveness of the designed MSL
for multi-step training. Moreover, the fact that the highest
performance is achieved in all steps further confirms the
superiority of the proposed multi-step training framework.

V. CONCLUSION
In this paper, we have proposed a novel multi-step training
framework for efficiently training accumulated new data
without access to previous data. Our approach achieves this
by creating useless filters through SST, maintaining the

performance of previous data, and then performing diverse
re-initialization to reuse these useless filters for training new
data, followed by efficient training with AOD. When new
data are accumulated and training is needed again, multi-
step training is performed by applying the MSL to SST.
Extensive experiments have been conducted to demonstrate
the excellent performance of the proposed approach on
various networks and datasets, both in single-step and multi-
step scenarios.
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