
3882 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 10, OCTOBER 2023

Dedicated FPGA Implementation of the
Gaussian TinyYOLOv3 Accelerator

Subin Ki, Student Member, IEEE, Juntae Park, Student Member, IEEE, and Hyun Kim , Senior Member, IEEE

Abstract—This brief presents a dedicated FPGA implementa-
tion of the Gaussian TinyYOLOv3 accelerator using a streamline
architecture for object detection in mobile and edge devices. The
proposed accelerator employs a hardware-friendly shift-based
floating-fixed MAC operator and shift-based quantization method
that significantly reduces hardware resources and minimizes
accuracy degradation. The pipelined streamline architecture
maximizes hardware utilization and stores all parameters in on-
chip memory to minimize external memory access. Moreover, the
Gaussian modeling-based performance enhancement technique
is effectively processed in the programmable system to address
the low accuracy issue in lightweight models. The proposed IP
implemented on Xilinx XCVU9P achieves a processing speed of
62.9 FPS and an accuracy of 34.01% on the COCO2014 dataset,
which demonstrates the superiority of the proposed accelerator
over prior research in terms of the trade-off between throughput,
hardware resources, and model accuracy.

Index Terms—Convolutional neural network (CNN), field-
programmable gate array (FPGA), hardware accelerator, object
detection, streamline architecture, TinyYOLOv3.

I. INTRODUCTION

W ITH the recent rapid development of artificial intelli-
gence (AI) models, AI is being increasingly used in

various fields, such as computer vision and natural language
processing. Among them, object detection based on convo-
lutional neural networks (CNNs) is being commercialized
not only for autonomous driving, security, medical equip-
ment, and military equipment [1], but also in various mobile
fields closely related to users [2]. In particular, the YOLO
model, a representative object detector, is widely used in
practical applications owing to its superior trade-off between
accuracy and computational complexity compared to other
models [3]. However, even the YOLO model has limitations
in real-time operations on ubiquitous mobile/edge devices

Manuscript received 3 April 2023; revised 9 June 2023; accepted 22
June 2023. Date of publication 26 June 2023; date of current version
25 September 2023. This work was supported by the Ministry of Science
and ICT (MSIT), South Korea, through the Information Technology Research
Center (ITRC) Support Program supervised by the Institute for Information
and Communications Technology Planning and Evaluation (IITP) under Grant
IITP-2023-RS-2022-00156295. This brief was recommended by Associate
Editor Z. Di. (Subin Ki and Juntae Park are co-first authors.) (Corresponding
author: Hyun Kim.)

The authors are with the Department of Electrical and Information
Engineering and the Research Center for Electrical and Information
Technology, Seoul National University of Science and Technology,
Seoul 01811, South Korea (e-mail: subin97@seoultech.ac.kr;
juntaepark@seoultech.ac.kr; hyunkim@seoultech.ac.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2023.3289514.

Digital Object Identifier 10.1109/TCSII.2023.3289514

with limited hardware resources and battery capacity because
it requires numerous parameters and computations [4]. To
address this issue, attempts have been made to use vari-
ous platforms with embedded GPUs for object detection in
real-time [2], [5]. However, GPUs exhibit drawbacks such as
significant power consumption and a lack of cost-effectiveness,
making the optimization of specific model implementations
challenging [4], [6].

As a solution, low-power/high-performance CNN accel-
erators based on field-programmable gate array (FPGA)
platforms that offer excellent power efficiency and design
flexibility are receiving increasing attention, and numerous
studies have been conducted [7], [8], [9], [10], [11], [12].
Yu and Bouganis [7] are the first to implement a parameter-
izable FPGA-tailored architecture for TinyYOLOv3, optimiz-
ing latency-sensitive applications for deployment on low-end
devices with strict resource constraints. However, this archi-
tecture has the limitation of causing significant degradation
in accuracy. Ahmad et al. [8] achieved high throughput
and relatively low power consumption by accelerating the
TinyYOLOv3 model through a hardware/software co-design
approach; however, this method has the limitation of focus-
ing only on accelerating the convolution (CONV) operation
rather than the entire CNN. Adiono et al. [9] implemented
all layers in TinyVOLOv3 on the hardware and specifically
designed the dataflow and control flow in a hybrid architecture
to asynchronously perform data processing and computation
processes. However, it has the limitation of relatively low
throughput, making it difficult to support real-time opera-
tions. Pestana et al. [10] implemented a prototype FPGA
including a configurable and scalable core for TinyYOLOv3
and TinyYOLOv4 to achieve high frames per second (FPS).
However, this design has the limitation of being accompa-
nied by significant degradation in accuracy. Sharma et al. [12]
achieved high throughput by designing a well-pipelined and
re-configurable hardware accelerator layer; however, it has
the limitation of requiring a relatively large amount of hard-
ware resources. In summary, there is a shortage of practical
accelerator research that considers optimization from both the
algorithm and architecture perspectives in terms of compre-
hensive trade-offs, such as accuracy, throughput, and hardware
resources.

To overcome the limitations of previous studies, this brief
proposes an optimal TinyYOLOv3 accelerator that applies
various techniques across algorithms and architectures. The
contribution of this brief is summarized as follows:

• Through the design of a fully pipelined streamline archi-
tecture, all layers are designed to operate in parallel to
maximize hardware utilization. In addition, excluding the

1549-7747 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on September 27,2023 at 01:31:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7962-657X

KI et al.: DEDICATED FPGA IMPLEMENTATION OF THE GAUSSIAN TinyYOLOv3 ACCELERATOR 3883

Fig. 1. The structure of the Gaussian TinyYOLOv3.

Fig. 2. Block diagram of the overall architecture.

activations of the route and YOLO layers, all parameters
are pre-loaded into the on-chip memory, and all opera-
tions are designed to be computed only with the on-chip
memory, thereby minimizing external memory access and
improving the throughput.

• By designing hardware-friendly shift-based quantization
and a shift-based floating-fixed multiplication and accu-
mulation (MAC) unit, hardware resource-saving and
throughput improvement are achieved with minimal accu-
racy degradation. In addition, Gaussian modeling in the
YOLO layer is implemented in the processing system
(PS) of FPGA to minimize the accuracy drop.

• The proposed design is fully implemented on Xilinx
XCVU9P and achieves more than 1.7× higher throughput
(351.1 GOPS) and 0.91% higher accuracy (34.01% on
the COCO2014 dataset) with relatively fewer resources
compared to the existing state-of-the-art study [13].

II. PROPOSED ARCHITECTURE

A. Overall Architecture

The structure of the Gaussian TinyYOLOv3 model and the
overall architecture of the proposed accelerator are illustrated
in Fig. 1 and Fig. 2, respectively. In contrast to the recursive
architecture that performs the layer operations sequentially
and repeatedly by implementing a general-purpose processing
engine that can handle the entire model computation process,
in the designed streamline architecture, all layer operation
units are pipelined and fully utilized by implementing the
optimized operation units for each of the 13 layers, except
for the Gaussian YOLO layer. The global controller controls

Fig. 3. Block diagram of the processing unit module for each layer.

Fig. 4. Block diagram of the convolution processing unit.

the overall data flow and external memory access, and the
pre-fetcher determines and controls whether to perform a pre-
fetch for data that require memory read. Here, we implement
the streamline architecture to store the parameters (i.e., weight
and activation) of all layers except for the fifth layer required
by the route layer in on-chip memory (i.e., In/Out Buffer);
thus, external memory access for parameter fetch can be min-
imized and high throughput can be achieved with a pipeline
scheme. The FPGA PS is designed to handle post-processing,
such as Gaussian modeling operations in the Gaussian YOLO
layer, which are inefficient to implement in the FPGA PL.

B. Processing Units

The fundamental design of the layer processing unit (PU) in
this brief follows the structure illustrated in Fig. 3. The input
data are stored in the input buffer (i.e., Act. Buffer in Fig. 3)
and passed to the sliding window module. The sliding window
module generates a 3×3 window, allowing the input data to be
used as the input for the CONV module. A CONV operation
is then performed using the activation extracted from the 3×3
window and the weight and bias extracted from the parameter
buffer. The data resulting from the CONV operation are passed
through the batch normalization (BN) and activation modules
(i.e., Leaky ReLU) before being fed into the quantization mod-
ule. If the layer includes max-pooling, the PU for that layer
is implemented using a max-pooling operation module.

The configuration of the CONV PU is shown in Fig. 4. In
this brief, CONV operations using floating-point weights and
fixed-point features are replaced with shift operations based on
the proposed 8-bit shift-based quantization, resulting in a sig-
nificant reduction in hardware resource. Detailed information
on shift-based quantization and the supporting MAC operator
is provided in Section III-C. Additionally, to reduce the com-
plexity of BN operations following CONV, BN folding [14]
is applied that replaces existing complex operations with the
simple addition of bias. The commonly used alpha value for
the Leaky ReLU function is 0.01. However, in this brief, to
efficiently handle multiplication operations, the alpha value is

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on September 27,2023 at 01:31:12 UTC from IEEE Xplore. Restrictions apply.

3884 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 10, OCTOBER 2023

Fig. 5. Block diagram of the max pooling unit.

approximately used as 0.09375 (=2−4 + 2−5). To implement
this approximate Leaky ReLU module, the sign of the input is
first checked using a multiplexer (MUX) in the corresponding
module. If the MUX value is 1, the input is directly output;
whereas if it is 0, the values shifted by 4 and 5 are added
to replace the multiplier operation, thereby saving the hard-
ware resources of the activation module. Finally, the values
from the 16-bit accumulator are quantized to 8-bit through the
quantization module and sent as input data to the next layer.
In the next layer, a CONV operation is performed using this
quantized activation and the pre-quantized weight in weight
buffers.

The max-pooling module is configured as shown in Fig. 5.
Depending on whether the row of input data is odd or even, the
order of the operations is implemented differently to minimize
line buffer use. For odd rows, the data for odd columns are
first stored, and the larger value between the odd column data
and the even column data is stored in the line buffer. For even
rows, the same method as for odd rows is applied to compare
the column data values of odd and even rows. Finally, max
pooling is performed by comparing the larger value with the
data stored in the line buffer. This structure enables efficient
max-pooling operations by utilizing a line buffer with a size
that is half the row size of the input feature map.

C. Floating-Fixed MAC With Shift-Based Quantization

In the design of CNN-based hardware accelerators, the
CONV module consumes a significant amount of hardware
resources, with multipliers generally accounting for the largest
portion. Consequently, various studies have been conducted on
efficient MAC design methods [15]. In particular, [16] demon-
strated that using a mixed form of floating-point and fixed-
point representations can reduce the number of multipliers and
the complexity of shifters compared to using only fixed-point
multipliers when the bit-width is relatively small (e.g., 8-
bit or less). Based on these result, this brief designs a
TinyYOLOv3 hardware accelerator by applying a floating-
fixed MAC (FF-MAC) operator that quantizes weights and
activation maps into 8-bit floating-point and fixed-point for-
mats, respectively, and performs CONV operations with these
quantized parameters. In particular, to design a more effi-
cient MAC than that in [16], this brief proposes the FF MAC
operator that applies shift-based quantization techniques to
minimize hardware resources.

1) Shift-Based Quantization: The proposed shift-based
quantization calculates the input activation scale (IS), weight
scale (WS), and accumulate scale (AS) for each layer based
on the minimum and maximum values of input activations,

weights, and accumulate activations of each layer, and per-
forms layer adaptive linear quantization with these parameters
as follows:

shift = AS − ((IS + M) − (E − B)) (1)

where M, E, and B correspond to the mantissa bit, exponent,
and bias of the weight, respectively. The difference between
the proposed and existing techniques is that IS and AS are
used to unify the shift operation direction within shift-based
FF-MAC. In the existing FF-MACs, many hardware resources
are required in the process of determining the shift direction
and shifting to the other direction due to the non-uniform shift
direction. In contrast, in this brief, the shift direction is uni-
fied in advance to one direction through (1). We unify the
shift direction for each layer by adjusting the AS value. For
example, in the case of a layer to unify the shift value into
a positive number, if the shift value is already positive with
the existing AS value, this AS is used as it is, but if the shift
value is negative with the existing AS value, the AS value
is adjusted to the minimum so that the shift value becomes
a positive number. The shift direction unified through AS is
determined as a more dominant sign in the sign distribution
of shift values within the layer when the existing AS value is
used. The finally determined shift value is used for the quan-
tized weights of shift-based FF-MACs in the {sign, mantissa,
shift} format.

2) Floating-Fixed MAC: After the shift value is determined
through model training including shift-based quantization, the
CONV unit in Fig. 4 loads and uses this value. We perform
the MAC operation using quantized 8-bit floating weights in
{sign(1b), mantissa(3b), shift(4b)} format and quantized 8-bit
fixed-point input activation in {sign(1b), integer(3b), frac-
tion(4b)} format. The proposed MAC operator first multiplies
the 8-bit input activation and 4-bit weight excluding the shift
part. After that, the resulting value is shifted by the weight
shift value according to the shift direction determined for each
layer, and subsequent values are continuously accumulated. To
this end, the proposed shift-based FF-MAC in Fig. 4 is imple-
mented with a multiplier for 8-bit activation and 4-bit weight,
a shifter according to the weight shift value, and an accu-
mulator. Consequently, the proposed quantization method and
supporting MAC operator demonstrate more efficient hardware
performance while maintaining minimal accuracy degradation
compared with fixed-point multipliers.

D. Gaussian YOLO Processing

The Gaussian TinyYOLOv3 model is similar in structure
to the TinyYOLOv3 model but uses a Gaussian YOLO layer
instead of the final YOLO layer for object detection. The
existing YOLO layer has only bounding box (bbox) coor-
dinates and class probability information; thus, there is no
indicator of how much the bbox matches the object. In con-
trast, Gaussian YOLO layer [5] applies Gaussian modeling
to the bbox for calculating the mean and variance of each
coordinate, redesigns the loss function, and utilizing the out-
put variance as uncertainty in post-processing tasks such as
non-maximum suppression (NMS) in order to substantially
compensate for the relatively low accuracy of lightweight
object detectors while maintaining the real-time processing
speed. Although complex operations such as exponential and

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on September 27,2023 at 01:31:12 UTC from IEEE Xplore. Restrictions apply.

KI et al.: DEDICATED FPGA IMPLEMENTATION OF THE GAUSSIAN TinyYOLOv3 ACCELERATOR 3885

Fig. 6. Waveform of RTL simulation for each layer in the proposed IP.

sigmoid operations included in the Gaussian modeling pro-
cess and NMS can be easily processed in CPUs, they are
not suitable for gate-level designs, making them difficult
to implement in FPGA programmable logic (PL) or ASIC
designs [19], because each information must be stored in on-
chip memory (OCM) during operations and the significant
hardware resource usage and additional latency are incurred.

Therefore, in this brief, the FPGA PL and PS are co-
designed to process a Gaussian YOLO layer on an ARM
processor. Fig. 6 shows a valid output signal for each layer
of the proposed accelerator. In the PL, each layer operates in
parallel, and the 10th and last CONV layers output two detec-
tion values (i.e., 13 × 13 / 26 × 26 output tensors) for each
image. The values for each YOLO layer of each input image
are stored in the external DRAM as they are generated, and a
signal is sent to begin the Gaussian YOLO operation in the PS.
The PS sequentially processes the first and second Gaussian
YOLO layers, and each YOLO layer performs detection oper-
ations including NMS presented in [1]. After completing both
Gaussian YOLO layer operations, the box coordinates are cal-
culated and plotted on the input image. While the PS processes
the Gaussian YOLO layer and box coordinates, the PL calcu-
lates the detection value for the next image and stores the result
in external DRAM. The parallelism of the PL is adjusted to
ensure that the latency of generating detection values in the
PL is shorter than the latency of PS post-processing such that
the PS operation can run without stalling. In detail, we try to
minimize the processing bottleneck by considering the differ-
ence in processing speed between the PL and PS. In the PL,
two output tensors for each image are created with an interval
of 12.4 ms. On the other hand, the PS consumes 15.9 ms on
average to perform the Gaussian YOLO layer operation on the
two output tensors along with the execution of the interrupt
service routine. Therefore, processing in the PL is delayed for
about 3.5 ms (i.e., 12.4% of the operation time for one image)
despite the pipeline structure. Nevertheless, as can be seen
in the experimental results, the proposed accelerator with this
PL-PS co-design achieves the highest throughput and accuracy
compared to previous studies.

III. EXPERIMENTAL RESULTS

A. Experimental Environments

In this brief, hyperparameters such as batch size, learning
rate, and epochs required for model training follow the same
settings of [5]. We trained the reference code implemented
in the DarkNet framework on COCO 2014 [20] and Pascal

TABLE I
COMPARISON OF LOGIC RESOURCES AMONG MAC OPERATORS

TABLE II
EVALUATION OF SHIFT-BASED QUANTIZATION PERFORMANCE

VOC2007 [21] using Titan-XP 2GPU. Xilinx Vivado 22.1
and Vitis 22.1 are used for accelerator implementation, and
a Xilinx XCVU9P FPGA board is used as the target board.

B. Shift-Based FF MAC Operator and Shift-Based
Quantization

Table I presents the results of synthesizing a MAC com-
prising a single multiplier and an accumulator using four
different methods. Notably, 32b-Naive Fixed-Fixed MAC
implies using 32-bit fixed-point format for both weights and
activations. Compared with the 32b-fixed-fixed MAC and 8b-
fixed-fixed MAC, the proposed shift-based FF-MAC unit uses
significantly fewer look-up tables (LUTs) (34.8% and 43%,
respectively) and CARRY8s (50% and 60%, respectively).
Furthermore, it used 33.8% fewer LUTs than the previous
method [16]. Using this MAC unit can save a significant
amount of hardware resources when implementing hundreds
of MACs.

Table II presents a comparison of the mean average
precision (mAP) of the proposed shift-based quantization
for TinyYOLOv3 and Gaussian TinyYOLOv3. The proposed
method shows an average mAP drop of 0.35% and 0.04%
compared with the baseline and the existing method [16],
respectively. This means that the proposed scheme achieves
a significant reduction in logic resources, as shown in Table I,
with relatively little accuracy drop. In particular, the proposed
Gaussian modeled accelerator achieves higher accuracies of
0.91% and 0.48% on the COCO 2014 and Pascal VOC2007
datasets, respectively, compared with the 32-bit TinyYOLOv3
because of the implementation of Gaussian modeling on the
FPGA PS.

C. Performance Comparison With Various Accelerator
Designs

Table III presents a comparison of the implementation
results of the proposed Gaussian TinyYOLOv3 accelera-
tor with those of previous studies. Results not provided
in the previous studies are indicated by a dash (-). The
proposed accelerator achieves the highest 62.9 FPS, which
is possible because of the well-pipelined and parallel oper-
ation of all the logic in the streamline architecture, as
shown in Fig. 6. Additionally, it achieves approximately

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on September 27,2023 at 01:31:12 UTC from IEEE Xplore. Restrictions apply.

3886 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 70, NO. 10, OCTOBER 2023

TABLE III
PERFORMANCE COMPARISON WITH PREVIOUS WORKS

3.2% higher accuracy than previous studies [7], [11] on the
COCO dataset. In terms of hardware resources, the proposed
accelerator uses a relatively large OCM (i.e., Quantized
weight: 8,910KB, Bias+Scale: 4KB, Intermediate activa-
tion: 117KB, and DRAM RD/WR: 135KB) owing to the
design of the streamline architecture; however, it is imple-
mented with the fewest digital signal processing (DSP)
blocks and flip-flops (FFs). In addition, the power efficiency
(i.e., throughput per power consumption) of the proposed
accelerator achieves 63.61 GOPS/W, which is about 20.5×
and 1.4× superior to previous studies [7] (3.11 GOPS/W)
and [10] (46.51 GOPS/W), respectively. Consequently, the
proposed accelerator is superior to that of previous studies in
terms of throughput, hardware resources, and model accuracy
trade-offs.

IV. CONCLUSION

This brief proposes a dedicated FPGA implementation of
a Gaussian TinyYOLOv3 accelerator using a fully pipelined
streamline architecture with the hardware-friendly shift-based
FF-MAC operator and PL-PS co-design. Consequently, the
proposed accelerator is superior to that of previous research in
terms of overall performance and is most suitable for use in
mobile/edge devices. We anticipate that the proposed design
will accelerate the commercialization of CNN-based object
detectors for various mobile/edge devices.

REFERENCES

[1] J. Choi, D. Chun, H. Kim, and H.-J. Lee, “Gaussian YOLOV3: An
accurate and fast object detector using localization uncertainty for
autonomous driving,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 502–511.

[2] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection
system on mobile devices,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 1967–1976.

[3] J. Redmon and A. Farhadi, “YOLOV3: An incremental improvement,”
2018, arXiv:1804.02767.

[4] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 8, pp. 1861–1873, Aug. 2019.

[5] J. Choi, D. Chun, H.-J. Lee, and H. Kim, “Uncertainty-based object
detector for autonomous driving embedded platforms,” in Proc. 2nd
IEEE Int. Conf. Artif. Intell. Circuits Syst., 2020, pp. 16–20.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[7] Z. Yu and C.-S. Bouganis, “A parameterisable FPGA-tailored archi-
tecture for YOLOV3-tiny,” in Proc. 16th Int. Symp. Appl. Reconfig.
Comput., 2020, pp. 330–344.

[8] A. Ahmad, M. A. Pasha, and G. J. Raza, “Accelerating tiny YOLOV3
using FPGA-based hardware/software co-design,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), 2020, pp. 1–5.

[9] T. Adiono, A. Putra, N. Sutisna, I. Syafalni, and R. Mulyawan,
“Low latency YOLOV3-tiny accelerator for low-cost FPGA using
general matrix multiplication principle,” IEEE Access, vol. 9,
pp. 141890–141913, 2021.

[10] D. Pestana, P. Miranda, J. Lopes, R. Duarte, M. Véstias, H. Neto, and
J. De Sousa, “A full featured configurable accelerator for object detection
with YOLO,” IEEE Access, vol. 9, pp. 75864–75877, 2021.

[11] P. Miranda et al., “Configurable hardware core for IoT object detection,”
Future Internet, vol. 13, no. 11, p. 280, 2021.

[12] M. Sharma, R. Rahul, S. Madhusudan, S. Deepu, and D. S. Sumam,
“Hardware accelerator for object detection using tiny YOLO-V3,” in
Proc. IEEE 18th India Council Int. Conf., 2021, pp. 1–6.

[13] V. Herrmann, J. Knapheide, F. Steinert, and B. Stabernack, “A YOLO
V3-tiny FPGA architecture using a reconfigurable hardware accelerator
for real-time region of interest detection,” in Proc. IEEE 25th Euromicro
Conf. Digit. Syst. Design (DSD), 2022, pp. 84–92.

[14] B. Jacob et al., “Quantization and training of neural networks for effi-
cient integer-arithmetic-only inference,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 2704–2713.

[15] H. Chen et al., “AdderNet: Do we really need multiplications in deep
learning?” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 1468–1477.

[16] L. Lai, N. Suda, and V. Chandra, “Deep convolutional neural network
inference with floating-point weights and fixed-point activations,” 2017,
arXiv:1703.03073.

[17] S. Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang, and Y. Wang, “An
FPGA-based reconfigurable CNN accelerator for YOLO,” in Proc. IEEE
Int. Conf. Electron. Technol., 2020, pp. 74–78.

[18] H. Hongmin, L. Xueming, Q. Yadong, H. Xianghong, and X. Xiaoming,
“An efficient parallel architecture for convolutional neural networks
accelerator on FPGAs,” in Proc. 6th Int. Conf. High Perform.
Compilation Comput. Commun., 2022, pp. 66–71.

[19] Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, and H. Yang, “CNN-
based feature-point extraction for real-time visual SLAM on embedded
FPGA,” in Proc. IEEE 28th Annu. Int. Symp. Field Program. Custom
Comput. Mach. (FCCM), 2020, pp. 33–37.

[20] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[21] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn,
and A. Zisserman, “The Pascal visual object classes challenge:
A retrospective,” Int. J. Comput. Vis., vol. 111, pp. 98–136,
Jan. 2015.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on September 27,2023 at 01:31:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

