
Received 9 May 2023, accepted 24 May 2023, date of publication 29 May 2023, date of current version 5 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3280552

CP-CNN: Computational Parallelization of
CNN-Based Object Detectors in
Heterogeneous Embedded Systems
for Autonomous Driving
DAYOUNG CHUN1, (Graduate Student Member, IEEE), JIWOONG CHOI2,
HYUK-JAE LEE 1, (Member, IEEE),
AND HYUN KIM 3, (Senior Member, IEEE)
1Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
2NVIDIA, Santa Clara, CA 95051, USA
3Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and
Technology, Seoul 01811, South Korea

Corresponding author: Hyun Kim (hyunkim@seoultech.ac.kr)

This work was supported by the Research Program funded by the Seoul National University of Science and Technology (SeoulTech).

ABSTRACT The success of research using convolutional neural network (CNN)-based camera sensor
processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since
autonomous driving algorithms require high-performance computing for fast and accurate perception, a het-
erogeneous embedded platform consisting of a graphics processing unit (GPU) and a power-efficient dedi-
cated deep learning accelerator (DLA) has been developed to efficiently implement deep learning algorithms
in limited hardware environments. However, because the hardware utilization of these platforms remains low,
performance differences such as processing speed and power efficiency between the heterogeneous platform
and an embedded platformwith only GPUs remain insignificant. To address this problem, this paper proposes
an optimization technique that fully utilizes the available hardware resources in heterogeneous embedded
platforms using parallel processing on DLA and GPU. Our proposed power-efficient network inference
method improves processing speed without losing accuracy based on analyzing the problems encountered
when dividing the networks betweenDLA andGPU for parallel processing.Moreover, the high compatibility
of the proposed method is demonstrated by applying the proposed method to various CNN-based object
detectors. The experimental results show that the proposed method increases the processing speed by 77.8%,
75.6%, and 55.2% and improves the power efficiency by 84%, 75.9%, and 62.3% on YOLOv3, SSD, and
YOLOv5 networks, respectively, without an accuracy penalty.

INDEX TERMS Autonomous vehicle, convolutional neural network, embedded platform, low-power design,
parallel processing, real-time system.

I. INTRODUCTION
Deep learning algorithms have delivered outstanding per-
formance in various fields, and the use of these algorithms
in autonomous vehicles has been actively studied. Unlike
in other fields, autonomous driving applications need to

The associate editor coordinating the review of this manuscript and

approving it for publication was Jjun Cheng .

consider three main features: high accuracy, real-time opera-
tion, and power efficiency [1]. Failure to guarantee these three
features reduces the efficiency of autonomous driving and can
result in dangerous accidents. The general structure of the
autonomous driving algorithm processing is to perform the
perception process of each sensor input (e.g., camera, LiDAR,
and RADAR) independently and then integrate each output
for planning and control processing [2], [3]. It is noteworthy

52812
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-5176-4762

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

that the camera-based object detection has higher latency
than the other sensors (i.e., LiDAR and RADAR); thus, fast
processing of camera input is essential to synchronously
integrate the detection results of the camera sensor with
those of other sensors [2], [4]. Furthermore, low-power sys-
tems are essential for autonomous driving platforms because
autonomous vehicles generally operate on batteries with a
limited energy budget. Accordingly, perception, planning,
and control algorithms for autonomous driving are typically
performed on embedded systems [5].

In recent years, to take advantage of both graphics pro-
cessing unit (GPU)-based and field programmable gate
array (FPGA)-based platforms, the embedded GPU board,
which is widely used as an autonomous driving platform,
is composed of a heterogeneous system that contains a deep
learning accelerator (DLA) as well as a central processing
unit (CPU) and GPU [6], [7]. DLA has been proposed for
deep learning inference in embedded systems because it
is more power-efficient than GPU and provides a solution
for operating deep learning applications on mobile devices,
such as low-power edge-computing [8], [9], [10], [11]. Con-
sequently, heterogeneous embedded systems equipped with
DLA are expected to be used continuously in various deep
learning applications. However, because DLA has limited
computational performance compared with GPU, it is dif-
ficult to use DLA alone for running autonomous driving
algorithms that utilize a complex network structure with
high computational cost and memory access to achieve high
accuracy [12], [13], [14], [15]. Therefore, finding the opti-
mal operating method for a heterogeneous embedded system
considering the three features required for autonomous driv-
ing applications (i.e., high accuracy, real-time operation, and
power efficiency) is challenging but highly important.

Most studies aiming to accelerate deep learning inference
on existing embedded systems [16], [17], [18], [19], [20],
[21], [22], [23] have used the CPU and GPU environment
as the main platform without including DLA. For example,
[23] aims to achieve system speed improvement through
CPU/GPU pipelining in multiple embedded devices. In par-
ticular, they focus on reducing the latency of each layer and
consequently, some studies propose lightweight techniques
such as quantization and pruning, which can reduce the net-
work size but result in a loss of accuracy [24], [25], [26], [27].
Other studies [28], [29], [30], [31], [32], [33] have attempted
to optimize convolutional neural networks (CNNs) in terms
of their processing speed and power efficiency within limited
resource environments, but they also adversely affect accu-
racy. These studies, accompanied by a reduction in accuracy,
are unsuitable for autonomous driving applications, where
high accuracy is essential. Some deep learning solutions that
have recently been proposed for autonomous driving [1],
[34], [35] are relatively accurate with an acceptable process-
ing speed. However, because they are verified in GPU-based
server environments, they are not guaranteed to achieve the
same processing speed in real autonomous vehicles based

on an embedded environment. Therefore, it is necessary to
optimize autonomous driving applications by increasing pro-
cessing speed and power efficiency without loss of accuracy
in an embedded system.

To achieve this goal, this paper proposes a parallelization-
based optimization method that fully utilizes hardware
resources to perform CNNs in heterogeneous embedded sys-
tems. GPU offers high computing speed but low power effi-
ciency, whereas DLA achieves a higher power efficiency
but is computationally slower than GPU. Considering these
characteristics, we accelerate the processing speed of exist-
ing deep learning algorithms and reduce power consumption
without loss of accuracy by enabling DLA and GPU opera-
tions to be processed in parallel. It is noteworthy that a study
using both DLA and GPU together in heterogeneous sys-
tems has not yet been reported. The division of the network
between DLA and GPU must consider network structure,
layer dependencies, device utilization time, and data-transfer
time. Disregarding layer dependencies results in faulty infer-
ence. Likewise, failure to consider the device utilization and
data transfer time would not allow the proposed method to
be considered as a network inference operation optimized for
embedded systems. Based on these constraints, the proposed
method finds the optimal network partitioning point in the
heterogeneous system to fully utilize DLA and GPU. Con-
sequently, it achieves the most efficient parallel processing
by attaining the best trade-off between processing speed and
power efficiency. The experimental results show that the
proposed method increases the processing speed by 77.8%
and power efficiency by 84% on YOLOv3 [36] without
loss of accuracy. Moreover, the proposed technique is highly
compatible and can be applied to various CNN-based object
detectors such as YOLOv3, SSD [37], and YOLOv5 [38].

II. BACKGROUND
A. OPTIMIZATION OF DEEP LEARNING INFERENCE ON
EMBEDDED PLATFORMS
In general, the inference phase in deep learning proceeds as
follows [17]: (1) pre-processing, (2) network operation, and
(3) post-processing. Recently, deep neural networks (DNNs)
have become very complex; the network operation has thus
become overwhelmingly large, and consequently, the pro-
cessing is mainly performed on GPU. The computational
complexity of a network operation depends on the network
architecture and input size. In particular, for applications
requiring high accuracy, such as autonomous driving, the
inference time increases because a deep and complex network
structure is used [1], [39], [40]. Typically, pre-processing and
post-processing times are shorter than the time required for
the network operation [5] and can be hidden by parallelization
on the CPU. Therefore, the network operation time on GPUs
determines the processing speed of deep learning algorithms.
Hence, methods to reduce GPU operation time are actively
studied to accelerate deep learning algorithms on embedded
systems.

VOLUME 11, 2023 52813

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

ENet [28] proposes an architecture that quickly processes
the semantic segmentation algorithm for autonomous driv-
ing in embedded platforms. ENet attempts to solve the low
processing speed of the existing semantic segmentation algo-
rithm with a large kernel size using small kernels (e.g., 3× 3
and 1 × 1). In addition, the feature map resolution is scaled
to reduce the model size and the number of operations signif-
icantly. Consequently, ENet improves the processing speed
of embedded systems. FRDet [41], an embedded platform-
based object detection algorithm targeting autonomous
driving, proposes a model lightweight method using a fire-
residual module for Gausisan YOLOv3 [1]. By combining
the residual skip connection [42] and fire module [43], FRDet
effectively reduces themodel size and processing speed while
minimizing the accuracy loss. Joint optimization [29] aimed
at optimizing the object detection algorithm Tiny-YOLO [44]
in an embedded system focuses on processing speed and
power efficiency. In this study, tucker decomposition [45]
and 16-bit quantization are used to reduce the network oper-
ation, thereby reducing the processing time. In addition,
CPU and GPU frequencies are experimentally selected to
optimize the energy consumption per processing speed. This
method reduces the computation required for the decompo-
sition process and enables fast processing. MobileNet [30]
is an architecture designed for the fast processing of edge
devices by reducing the number of parameters using channel
reduction, depth-wise separable convolution, and inverted
residuals. Tiny-SSD [46] proposes network architecture for
an embedded environment by combining the feature extrac-
tion structure of SSD [37] with the fire module proposed in
SqueezeNet [43]. DF-SSD [32] proposes a DepthFire mod-
ule that efficiently increases processing speed by integrating
depth-wise convolution structure [30] and fire module [43].
These schemes reduce the network size, and thus, the pro-
cessing speed increases while achieving high accuracy com-
pared to Tiny-YOLOv3. However, all the methods mentioned
above are accompanied by a loss of accuracy. For example,
the ImageNet accuracy of MobileNetv1, MobileNetv2, and
SqueezeNet is 70.6%, 72.0% and 60.4%, respectively, which
is more than 4% of accuracy drop compared to the accuracy
of ResNet50 (=75.9%) [30], [42], [43], [47]. As such, most
approaches that directly reduce the amount of network com-
putation based on changes in the network architecture lead to
loss of accuracy; hence, they are not suitable for autonomous
driving applications where high accuracymust be guaranteed.

In addition to algorithm-level implementations, various
studies have also been conducted to optimize pre-trained
model inference at the level of the hardware system to pre-
vent such accuracy degradation. For example, nvDLA [6] is
an accelerator proposed by NVIDIA as a solution for deep
learning inference. To improve the power efficiency and pro-
cessing speed, nvDLA [6] uses a special-purpose hardware
engine optimized for deep learning inference and analyzes
the memory access patterns that would need to be parallelized
during deep learning inference. Nevertheless, nvDLA [6]
delivers 4.1 TFLOPS in Float16 (FP16) operation, which

provides insufficient computing power compared to GPU.
In addition, layer functions that can be operated in DLA
do not yet operate optimally. In other words, because the
layer functions supported by DLA are limited to general layer
functions such as convolution layers, it is not easy to fully
process various networks in DLA. TensorRT (TRT) [48] is
an optimization toolkit for deep learning models that includes
an optimizer and a runtime engine. The model graph is
simplified by optimizing DNN operations via quantization,
bit-precision, and layer/tensor fusion in a pre-trained model.
The processing speed is also improved by creating a run-
time environment suitable for the platform and hardware
architecture.

B. OPTIMIZATION OF DEEP LEARNING INFERENCE ON
HETEROGENEOUS SYSTEMS
Efficient processing of network inference using hetero-
geneous processors has been studied [16], [17], [18], [21],
[22], [49]. MSCDNN [16] performs runtime scheduling to
increase throughput using a multi-phase processing method
that uses a different input for each device in a heteroge-
neous system (data parallelism). However, this method is not
suitable for autonomous driving applications, which require
processing real-time streaming images, where the network
needs to use the first-in-first-out approach for processing.
DeepX [17] splits the layers into the CPU and GPU using
a deep architecture decomposition process at the framework
stage to perform low-latency executions of deep networks
(layer parallelism). µLayer [18] proposes a channel-wise
distribution between GPU and CPU by dividing the layers
at a ratio that minimizes the latency (model parallelism).
Yolobile [21] proposes to allocate a branch with low latency
to the CPU for parallel processing with GPU in the branch
structure. However, most of these methods focus on reducing
the layer-level latency and are proposed along with other
latency reduction methods (i.e., pruning [17], [27] and quan-
tization [14], [18], [50]), resulting in a loss of accuracy.
In addition, the scope of thesemethods for efficiently dividing
tasks and utilizing devices in a heterogeneous system has
been limited to CPU and GPU devices.

Other studies on heterogeneous parallel processing are not
limited to CPUs and GPUs [51], [52]. Rodriguez-Borbon
et al. [51] use a field-programmable gate array (FPGA)
along with CPUs and GPUs to partition and pipeline appli-
cations, resulting in an increased processing speed and
energy efficiency compared to GPU homogeneous system.
Yang et al. [52] propose a heterogeneous parallel processor
containing many processing elements to increase process-
ing speed by parallelizing multiple tasks. However, because
these studies only target simple computational tasks, they are
not suitable for application to DNN operations with a large
amount of computation and data transfer. In conclusion, these
previously proposed solutions cannot optimally utilize state-
of-the-art (SOTA) heterogeneous systems containing DLAs
for DNN processing.

52814 VOLUME 11, 2023

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

FIGURE 1. Streaming input processing in autonomous driving
applications.

III. PROPOSED METHOD
This section proposes the method to parallelize the CNN on
a DLA and GPU in a heterogeneous embedded system. The
objective of this method is to improve processing speed and
power efficiency without loss of accuracy while maintaining
the order in which the streaming input arrives. As shown in
Fig. 1, input images are generated in chronological order in
autonomous driving applications. If the image order is not
maintained, the detected position of the object will not match
the real-time driving situation. Therefore, it is more important
to process real-time image input from the camera sequentially
than to process multiple images simultaneously. Based on an
analysis of problems that occur during network partitioning,
an optimized parallelization method for embedded systems is
proposed considering the trade-off between processing speed
and power efficiency.

FIGURE 2. An example of a time diagram of inference phase in
convolutional neural networks to show that processing times can be
reduced by using the GPU and DLA together rather than using only the
GPU alone: (a) GPU system, (b) DLA and GPU system.

A. PARALLELIZATION
In the case of network inference on existing GPU-only
platforms, even when the CPU pre-processing and post-
processing steps are hidden, network inference of the next
phase is possible only after finishing the GPU operation of the
previous phase, as shown in Fig. 2(a). Hiding CPU processing
does not significantly improve the speed of network inference
because the time required for GPU operation is much longer
than pre-/post-processing on the CPU [5]. Parallel process-
ing within GPU cannot reduce GPU operation time because

the CNN operation is usually a feed-forward operation that
computes the layers sequentially, which means that depen-
dencies exist between the layers. In other words, if the layers
with dependencies are processed in parallel, the feed-forward
operation will be disrupted, and the intended results will
not be obtained. Therefore, even in a heterogeneous system
equipped with DLA and GPU, it is impossible to process the
layers in one phase in parallel. However, parallel processing
between different phases is possible if the dependency of
the multi-phase layer operations is observed. Based on this
observation, concurrent multiple-phase processing is possible
by allowing parallel DLA and GPU processing to maximize
hardware utilization in a heterogeneous system that includes
both DLA and GPU. As shown in Fig. 2(b), when DLA
and GPU process in parallel, the operation is hidden by
the overlapping time between these devices, which reduces
the total inference time and increases the throughput of the
system. Since this method fully utilizes hardware resources
without changing the network structure, there is no loss of
accuracy. Accordingly, it is noteworthy that the proposed
method is compatible with several baseline networks as well
as several existing lightweight techniques that change the
network structure or operation methods, including approxi-
mation studies with insignificant loss [53], [54], [55], without
any dependency. In addition, the proposed method is advan-
tageous in terms of power efficiency and processing speed
because operations that were entirely performed on GPU
(with its poor power efficiency) are divided and computed
on both DLA (which is more efficient with respect to power
consumption) and GPU.

B. OPTIMIZATION OF PARTITIONING POINTS
To process one network in parallel on DLA and GPU, select-
ing a network partitioning point (PP) is necessary. As shown
in Fig. 3(a), it is important to select a network PP that
fully utilizes both devices by considering the difference in
computational speed between DLA and GPU. As shown in
Fig. 3(b), when the operation time of DLA is shorter than
that of GPU, DLA remains idle during GPU operation. In
contrast, as shown in Fig. 3(c), when the operation time of
DLA is longer than that of GPU, GPU experiences idle time
during DLA operation. This device’s idle time, caused by not
considering the utilization time of each device, leads to the
system performance degradation. Therefore, when setting the
network PP, device dependency must be considered to ensure
that both devices are fully utilized without idle time.

After selecting the appropriate network PP, the data trans-
fer time between the two devices must also be consid-
ered. The data transfer time depends on the layer depen-
dency according to the PP and the number of partitions.
The layer dependency depends on the network structure of
each model; this is described in Section III-C, along with
the process of applying the proposed technique. Regard-
ing the number of partitions, an additional device-to-device
memory copy (memcpy) occurs between the two devices,

VOLUME 11, 2023 52815

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

FIGURE 3. An example of time diagrams of device utilization according to the layer division point for device execution time: (a) DLA = GPU,
(b) DLA < GPU, (c) DLA > GPU.

FIGURE 4. Embedded system process according to the network partitioning: (a) 2-partition structure, (b) 4-partition structure.

DLA and GPU, for each increased partition point, as the
number of partitions increases. This is because in the case
of the conventional inference using only GPU, only memcpy
of CPU to GPU (MemCpyHtoD) for the input image and
GPU to CPU (MemCpyDtoH) for the output results, but the
proposed method using additional DLA essentially includes
memcpy for inter layer output sharing between DLA and
GPU (MemCpyDtoD). For example, on a platform with one
DLA and one GPU, when the network is divided into two
partitions, one device switch occurs for inference, as shown
in Fig. 4(a) (i.e., blue arrow). However, as shown in Fig. 4(b),
when the network is divided into four partitions and the
inference is processed in parallel by GPU and DLA, three
times as many memory accesses are required to transmit
the layer output between two devices. A simple comparison
of the 2-partition structure and 4-partition structure with-
out considering the data transfer time may indicate that the
overall processing speed is higher in the 4-partition structure
because more detailed and practical parallel processing is
possible by dividing the network into smaller layers. How-
ever, since the overhead of the data transfer time also affects
the inference time, these constraints should be comprehen-
sively considered. Additionally, if the network is divided into
smaller layers and processed in parallel, each device must
simultaneously process multiple phases. In general, GPU in
an embedded platform is limited in terms of its ability to
handle multiple kernel operations simultaneously [56], [57];

thus, considering the processability depending on hardware
resources is also important. Memory is important when
determining processability. If multiple phases are processed
concurrently, many buffers are used, which can cause out-
of-memory (OOM) problems. Moreover, if many data trans-
fers occur at the same time, bottlenecks could occur during
data transfers due to limited memory bandwidth, which could
slow down processing.

In particular, the proposed method is compatible not only
with a single DLA/GPU platform but also with various hard-
ware platforms (e.g., multiple DLA and GPU platforms) in
the same way. For example, in the case of two DLAs and
two GPUs, four processing phases can be processed simul-
taneously by assigning them to each of the DLAs and GPUs
by 4-partitioning as shown in Fig. 5, and consequently, this
can improve the processing speed by increasing the hiding
processing time. Therefore, the proposed method is easily
compatible with various hardware platforms regardless of
the number of cores in the processing unit. Even consid-
ering the multi-camera environment, since the perception
of the camera input is processed sequentially in units of
frames and the planning and control processes are performed
after perception by combining the perception results, there
is no dependency between each frame input from multi-
ple cameras [58]. Therefore, the proposed method can be
practically applied to a multi-camera platform with multi-
ple 2-partitioning structures. Similarly, even considering a

52816 VOLUME 11, 2023

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

FIGURE 5. 4-partition process on the platform with two DLAs and two
GPUs.

multi-sensor system (e.g., camera+ LiDAR+ RADAR), the
proposed method processes the independent inputs of each
sensor in parallel. Therefore, it can be universally applied
to the input processing of all sensors to achieve latency
and power reduction effects. Consequently, considering the
various problems mentioned here, partitioning the network to
minimize the idle/data transfer time and processing the net-
work in parallel byDLA andGPUwould result in the network
inference being optimized for a given system. In addition,
it is noteworthy that the proposed network inference with the
optimal PP does not incur additional costs, such as retrain-
ing, because the proposed method uses pre-trained weights,
as shown in Fig. 4. This differs significantly from many
recently proposed lightweight techniques that involve retrain-
ing requiring considerable time and resources [59], [60].

C. APPLICATION TO DEEP CONVOLUTIONAL NEURAL
NETWORKS
The application process of the proposed method can be sum-
marized as follows: (1) to identify the network architecture,
(2) to search the optimal PP of the network with Algorithm1,
and (3) to apply network pipelining of the DLA and GPU
based on the optimal PP. This subsection presents the pro-
cess of applying the proposed method to various CNN-based
object detectors with excellent compatibility by focusing on
a 2-partition structure. First, it is important to understand
the network structure including the dependencies of each
layer. In general, CNNs use a backbone network that stacks
convolution layers for feature extraction on the front part and
use a custom layer suitable for a specific task (e.g., detection,
segmentation) on the back part. It is important to note that
the backbone networks can be completely processed in DLA,
but the custom layers for a specific task in the back part
cannot be processed in DLA. For example, ResNet [42],
a representative classification network widely used as the
backbone of many other networks, is composed of convolu-
tion, pooling, and fully connected layers; thus, it can be fully
processed in DLA. However, in the case of YOLACT [61],
a representative semantic segmentation network, the ResNet
(i.e., backbone) and FPN [62] layers located in the front

part can be supported by DLA, but the layer that predicts
the convolution output in the back part cannot be supported
by DLA. Similarly, YOLOv3 [36], a representative object
detector, also contains a yolo layer on the back part, which
is a custom layer not supported by DLA. Therefore, if DLA
processes these custom layer operations in the back part,
calculations that DLA cannot handle must be transferred to
GPU for processing, which would cause unnecessary data
transfer latency. Consequently, it is efficient to design DLA
to process the front part of the CNNs to prevent unnecessary
data transfer. It is noteworthy that most CNN-based object
detectors for autonomous driving generally use backbones
for feature extraction, and most backbone networks consist of
convolutional layers [63]. Therefore, even if DLA processes
only a part of the convolution layers through the proposed
method, the latency and power performance can be improved
in most CNN-based object detectors.

Second, the calculation of the optimal network PP is possi-
ble by analyzing the device performance of DLA and GPU in
the embedded platform. Let Tdla and Tgpu be the ratio of tasks
divided to the DLA and GPU based on the PP, respectively,
andCPgpu andCPdla denote GPU computing power and DLA
computing power, respectively. Subsequently, the following
equations are established:

Tdla + Tgpu = 1 (1)
Tdla
CPdla

=
Tgpu
CPgpu

(2)

Based on these equations, Tdla and Tgpu should be determined
to satisfy (2) because the throughputs of the two devices
should be the same for an ideal parallel structure. From (1)
and (2), the optimal split ratio of tasks allocated to DLA is
calculated as follows:

Tdla =
CPdla

CPdla + CPgpu
(3)

For example, if the computing power of GPU in FLOPS is
twice that of DLA, then CPgpu = 2 × CPdla is satisfied.
Therefore, one-third of the entire network should be allocated
to DLA to fully utilize the two devices without incurring idle
time.

Finally, as mentioned in Section III-B, the data transfer
time between DLA and GPU should be considered when
selecting a network PP. For example, if there is a layer with
dependencies in addition to the partitioned output layer, the
data to be transmitted increases. Therefore, selecting a layer
with a short data transmission time that has no additional
dependencies as the optimal PP is also important. In addition,
the data transfer time affects the actual processing speed, even
if there is no dependency, and is proportional to the output
feature map size of the layer before the PP. In general, the
feature map size decreases in the back part of the layers.
Therefore, the final optimal PP, including the data transfer
time, is selected by comparing the PP selected according
to the device computing power and amount of computation
with the following PPs (i.e., layers) in the next position.

VOLUME 11, 2023 52817

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

Algorithm 1 The Network Partitioning Point Search Algo-
rithm
Input: N , Oi, tdlai , CPdevice

N: Total number of layers
Oi: The number of operations 0 to ith layer
tdlai : Sum of operation time of DLA and data transfer time
with ith PP
CPdevice: Computing power of device

Output: PP
PP: Partitioning point of network

1: i← 0
2: while | OiON

| ≤ |
CPdla

CPgpu+CPdla
| do

3: PP← i
4: while tdlaPP > tdlaPP+1 do
5: PP← PP+ 1
6: end while
7: i← i+ 1
8: end while

Algorithm1 describes a method to search for the optimal
PP that minimizes data transfer time (i.e., 4th, 5th lines),
in addition to the computing power of a device and the amount
of computation based on FLOPs (i.e., 2nd , 3rd lines). As a
result, the proposed method has high compatibility because
only a simple network analysis, device performance analysis,
and data transfer time analysis are required.

D. SUMMARY OF STRENGTHS OF
THE PROPOSED METHOD
The advantages of the proposed method are summarized as
follows:
• First, themost important advantage is that there is no loss
of accuracy because the target application fully utilizes
the hardware resources of the embedded system without
changing the network structure. It should be noted that
in real autonomous vehicles, accuracy is paramount to
ensure safety.

• Second, there is no additional cost such as re-training
because the method uses the pre-trained weights as
they are. This differs greatly from the fact that many
of the recently proposed lightweight techniques [25],
[64] basically involve re-training, and consequently, the
proposed method saves time and resources that would
have been used for re-training.

• Third, the proposed method is advantageous in terms of
power efficiency as well as processing speed because
operations that were entirely performed on GPU (with
its poor power efficiency) are effectively divided and
computed on both DLA (which is more efficient with
respect to power consumption) and GPU.

• Lastly, the proposed method has the advantage of
being highly scalable and can be applied to various
CNN-based object detectors in heterogeneous system
environments. Considering the characteristics of deep
learning algorithms, where new superior networks are

rapidly being proposed, this advantage is significant in
that the method can continue supporting the algorithm
even if the algorithm is constantly updated.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENTS
The superiority of the proposed technique is demonstrated
by conducting experiments with various object detection
algorithms on a Jetson Xavier AGX board, an embedded
platform for autonomous driving. The Xavier board is a
heterogeneous embedded system equipped with a Volta GPU
(512 CUDA cores) and nvDLA developed by NVDIA. The
server environment used for the comparison contains a Pascal
1080ti GPU (3584 CUDA cores). The Xavier board provides
seven modes according to the clock frequencies of each pro-
cessor and memory controller [65]. In this study, mode 0,
which uses the maximum clock frequency for high perfor-
mance, is used to fully utilize the hardware resources because
rapid and accurate operation processing is most important
in the autonomous driving environment we assumed. Since
the nvDLA can be controlled only through TensorRT [48],
in this experiment, the networks applying the proposed
method are implemented and used as tensorRT. The software
environment comprises CUDA 10.0, cuDNN version 7, and
TensorRT version 5.1.6.1 [48]. For accurate performance
evaluation as a solution for autonomous driving, the valida-
tion set of the Berkeley Deep Drive (BDD) [66] dataset, a rep-
resentative autonomous driving dataset, is used for accuracy
comparison, and the execution time and energy efficiency
are evaluated on the Jetson Xavier AGX board. The average
power consumption of the server GPU system and Jetson
Xavier AGX embedded board is measured using the cuda
nvidia-smi API [67] and the tegrastats utility included in
the NVIDIA JetPack SDK [68], respectively. All codes and
real-time demo videos related to this study are available at:
https://github.com/jjeonda/CP-CNN

B. APPLICATION OF THE PROPOSED METHOD TO OBJECT
DETECTORS ON THE JETSON XAVIER AGX
In this subsection, we present the practical application of
the proposed method to object detectors on a Jetson Xavier
AGX board. First of all, the process of applying the proposed
method to YOLOv3 [36], a representative object detector,
is as follows. As shown in Fig. 6(a), YOLOv3 is composed
of a residual block with shortcut, route, and yolo layers. The
shortcut layer is a skip connection [42], and the route layer
returns concatenated feature maps of the indexed layers. The
yolo layer is a detection layer used in the YOLOv3 network;
consequently, the back part, including the yolo layer, should
be processed on GPU. Next, the performance of the two
devices in the heterogeneous embedded platform (i.e., DLA
and GPU) should be considered for optimal parallelization.
In the Jetson Xavier AGX, the computational performance of
GPU and DLA is 11 TFLOPS and 2.5 TFLOPS, respectively,
based on the FP16 format [65]. Thus, the performances of

52818 VOLUME 11, 2023

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

FIGURE 6. Network structure by layers considering the layer dependency and DLA support availability: (a) YOLOv3, (b) SSD. The operation sequence
is expressed by the layer number and arrow direction. Even if the proposed method is applied, the operation sequence is the same except that the
processing device is different according to the PP.

the two devices differ by approximately 4.4× based on the
FLOPS; thereby, a layer corresponding to 18.52% of the total
computational amount is selected as the PP. Finally, the data
transfer time between DLA and GPU should be considered,
and the transmission of the feature size 64 × 64 × 256
from DLA to GPU within the experimental environments
requires approximately 2 ms of data transfer time. This time
is approximately 3.88% of GPU processing speed based on
the TensorRT API [48] YOLOv3; hence, many data transfers
between the devices degrade the performance of the appli-
cation. In YOLOv3 depicted in Fig. 6(a), when setting the
15th layer as the PP and processing the preceding part with
DLA and the subsequent part withGPU, the output of the 13th
layer (i.e., the shortcut layer), as well as that of the 14th layer,
must be copied to GPU owing to dependencies. Therefore,
according to the 4th and 5th lines of Algorithm1, 16th layers
should be used as the PP.

TABLE 1. Execution time and energy efficiency according to the
partitioning points.

Table 1 lists the processing time per frame and the power
consumption in FP16 operation according to the PPs when

the network inference with an image input size of 512 ×
512 is processed by applying the proposed method to the
YOLOv3 network. We retrain the YOLOv3 network with the
ReLU activation function because nvDLA does not support
leaky ReLU. The second column indicates the network PP
on each network, and the numbers in parentheses indicate
the percentage of operations before the network PP in the
entire network. As mentioned above, the hardware utilization
of DLA and GPU can be optimized when using a layer that
is 18.52% of the total network computation as a PP, and the
16th layer is determined to be the optimal PP according to
Algorithm1. It should be noted that the number of floating
operations up to the 16th layer is 18.62% of the total num-
ber of convolutional operations, which closely approximates
18.52%. In other words, because the computing power ratio
(i.e., 11TFLOPs:2.5TFLOPs) and the measured hardware
utilization ratio (i.e., 6.22GFLOPs:1.42GFLOPs) of GPU and
DLA are similar, it is reasonable to use the computing power
of each device for the estimation of execution time.

Fig. 7 shows the actual profiling results [69] of YOLOv3
on the embedded board according to various PPs (i.e., 9, 16,
and 34) to check whether the devices are fully operated with-
out the idle time. Fig. 7(a) shows the profiling result when
using the optimal PP (i.e., 16) obtained by Algorithm1. Since
idle time does not occur in DLA and GPU during operations,
the processing time for one phase is the shortest. On the
other hand, in Fig. 7(b), as the number of layers processed by
the GPU increases, the one phase processing time becomes
longer compared to the optimal case in Fig. 7(a). This indi-
cates that DLA idle time longer than the increased GPU

VOLUME 11, 2023 52819

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

TABLE 2. Performance evaluation of various networks on various platforms.

FIGURE 7. YOLOv3 profiling results according to the partitioning points:
(a) 16, (b) 9, and (c) 34.

processing time occurs. In Fig. 7(c), the DLA operation time
is longer than the GPU operation time because the number
of layers processed by the GPU is smaller than in Fig. 7(a).
As a result, there is a GPU idle time until the next phase DLA
calculation result is received (i.e., MemCpy(DtoD)), which
leads to a longer one-phase processing time. These profiling
results show that the timing diagrams in Fig. 3 are reflected
in the embedded board, showing that assigning the optimal
network PP ensures the optimized operating speed even on
real embedded boards.

The scalability and compatibility of the proposed method
can be demonstrated by applying it to SSD [37] using the
same approach as YOLOv3. As shown in Fig. 6(b), SSD
uses a multi-scale feature map architecture that includes pri-
orbox, reshape, flatten, and detection layers in addition to
convolution layers. The priorbox layer performs bounding
box prediction, and the reshape layer changes the dimension.
The flatten layer performs softmax, and the detection layer
calculates non-maximum suppression (NMS). Because the
layers included in the back part of the SSD are also not sup-
ported by DLA, the back part should be processed by GPU.
In addition, considering the computational performance of

DLA and GPU, 18.52% of the total computational amount
should be selected as the PP, and the data transfer time should
be minimized using Algorithm1. In detail, first of all, the
3rd layer is determined as a PP according to the 2nd and
3rd lines of Algorithm1. Subsequently, based on the consid-
eration of the data transfer time in the 4th and 5th lines of
Algorithm1, the optimal PP is determined as the 5th layer.
This is because SSD performs NMS calculations that affect
the data transfer time as many times as the number of boxes
in the feature extraction layer, resulting in a speed bottleneck.
Consequently, as shown in the four rows in the lower part
of Table 1, the processing time and energy efficiency are
the best when the SSD is divided at the 5th layer. It is
noteworthy that SSD has a lower performance improvement
than YOLOv3 due to the gap between the ratio of the com-
puting power of devices and the optimal PP determined by
Algorithm1. However, the energy efficiency and processing
speed of the proposed method are still outstanding compared
to the baseline algorithm, making it suitable for operation in
an embedded platform environment.

C. PERFORMANCE EVALUATION
Table 2 lists the processing time per frame, energy per
image, and mean average precision (mAP) of YOLOv3, SSD,
and YOLOv5 small model (YOLOv5s) [38], during network
inference with an image input size of 512 × 512 on vari-
ous computing platforms. The optimal PPs of YOLOv3 and
SSD follow the results in Table 1, and when the proposed
method is applied to YOLOv5s, conv3, which is the 16.52%
of the total number of convolutional operations, is deter-
mined as optimal PP according to the proposed method.
The experimental results show that the server environment
consumes much more power than the embedded environ-
ment, but the processing speed of the server GPU environ-
ment (3rd row) is higher than that of the embedded
environment (4th row). This implies that the processing speed
of an algorithm capable of real-time operation in a server
environment is degraded when used as it is on an embedded
board with limited resources. This constitutes a limitation
for autonomous driving applications where real-time pro-
cessing is essential. Accelerating the same model using only
GPU with the TRT library (GPU-TRT) without retraining
(5th row) enables faster processing times than the baseline
embedded GPU system (4th row). In addition, as shown in
the comparison between 5th row and 6th row, FP16 achieves

52820 VOLUME 11, 2023

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

much faster processing time and superior energy efficiency
than FP32 on the same platform. It should be noted that
there is no difference in the accuracy between FP16 and
FP32 [70]. When using only DLA with the TRT library
(i.e., DLA-TRT in the 7th row), the power consumption per
second is approximately twice as low as that when using only
GPUwith the TRT library (i.e., GPU-TRT in the 6th row), but
the time taken to process one phase ismore than twice as long;
thus, the energy efficiency (i.e., energy per image) is worse.
Finally, when the proposed parallelization method with the
optimal PP is applied (i.e., Proposed-TRT in the 8th row),
the processing speed and the energy efficiency are enhanced
compared with the best-performing GPU-TRT with the FP16
platform among existing platforms. It is noteworthy that the
mAP of each model is the same on all platforms as none of
the platforms mentioned above incurs a loss of accuracy. In
detail, the proposedmethod enhances the processing speed by
45.44 (77.8%) and 101.7 (75%) ms and the power efficiency
by 1.61 (84%) and 2.81 (75.9%) J/image on YOLOv3 and
SSD, respectively, compared with the baseline embedded
GPU system (i.e., FP32 on the GPU platform). In addition,
compared to the GPU-TRT with the FP16 platform, the pro-
posed method on YOLOv3, SSD, and YOLOv5s not only
improves the processing speed by 5.14ms (28.4%), 13.4ms
(28.9%), and 3.61ms (40.8%), but also enhances the power
efficiency by 22.63 mJ/image (6.9%), 76.3 mJ/image (7.9%),
and 19.65 mJ/image (12.8%), respectively. The results of
these experiments clearly show that the proposed method
additionally utilizes energy-efficient DLA together with GPU
in a heterogeneous system to increase the processing speed
and energy efficiencywithout loss of accuracy. As a result, the
proposed method enables real-time processing by overcom-
ing performance degradation when implementing algorithms
in embedded systems with limited resources. In addition, all
these experimental results show that the proposedmethod can
be generally applied to various CNN-based object detectors
due to its high scalability and compatibility.

TABLE 3. Performance comparison of execution time, energy efficiency,
and mAP.

D. PERFORMANCE COMPARISON
To demonstrate the superiority of the proposed method, the
performance of the proposed scheme is compared with that of
existing networks [29], [30], [36], [37], [46] in an embedded
system environment. Table 3 presents the processing time per

frame, energy per image, and mAP of the proposed method
and existing networks when the input frame size is 512×512.
The joint optimization of Tiny-YOLO [29], Tiny-SSD [46],
and MobileNet-SSD [30], which improves the processing
speed and power efficiency by optimizing each network, has
higher processing speed and power efficiency compared with
the baseline algorithm. However, the accuracy degradation
is problematic because it is unacceptably severe. Conversely,
the proposed parallel processing on DLA and GPU enhances
the processing speed and power efficiency and yields the
best mAP. Consequently, the proposed method is the most
suitable for operating a real-time low-power deep learning
algorithm based on a heterogeneous embedded platform for
autonomous driving.

V. CONCLUSION
In this paper, we propose a method to optimize hardware
utilization through parallel processing of GPU and DLA
in heterogeneous embedded systems without changing the
model structure (i.e., without loss of accuracy). In particular,
the GPU and power-efficient DLA are fully utilized without
idle time to enhance processing speed and power efficiency.
Another advantage of the proposed method is that it does
not require additional costs such as re-training or lightweight
techniques, and can be easily applied to various CNN-based
object detectors due to its high compatibility. The applica-
tion of the proposed method to YOLOv3 and SSD, which
are representative object detectors, improves the processing
speed by 77.8% and 75.6%, respectively, and the energy
efficiency by 84% and 75.9%, respectively, compared with
the baseline system. As a result, the proposed method is the
most suitable for autonomous driving applications because
it achieves the best trade-off between accuracy, processing
speed, and power efficiency, and has excellent scalability.
In conclusion, this paper proposes a standalone solution for
camera input processing that requires the most power and
latency in multi-sensor systems and can be compatible with a
multi-autonomous driving system. Moreover, it is notewor-
thy that the proposed method has the advantage of being
easily extended to various embedded platform-based image
processing applications.

REFERENCES
[1] J. Choi, D. Chun, H. Kim, and H.-J. Lee, ‘‘Gaussian YOLOv3: An accurate

and fast object detector using localization uncertainty for autonomous
driving,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 502–511.

[2] S. Pang, D. Morris, and H. Radha, ‘‘CLOCs: Camera-LiDAR object candi-
dates fusion for 3D object detection,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2020, pp. 10386–10393.

[3] R. Nabati and H. Qi, ‘‘CenterFusion: Center-based radar and camera fusion
for 3D object detection,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), Jan. 2021, pp. 1526–1535.

[4] Y. Wu, Y. Wang, S. Zhang, and H. Ogai, ‘‘Deep 3D object detection
networks using LiDAR data: A review,’’ IEEE Sensors J., vol. 21, no. 2,
pp. 1152–1171, Jan. 2021.

[5] J. Choi, D. Chun, H.-J. Lee, and H. Kim, ‘‘Uncertainty-based object
detector for autonomous driving embedded platforms,’’ in Proc. 2nd IEEE
Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Aug. 2020, pp. 16–20.

VOLUME 11, 2023 52821

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

[6] NVIDIA Deep Learning Accelerator, NVIDIA, Santa Clara, CA, USA,
2018.

[7] The Evolution of EyeQ, MOBILEYE, Jerusalem, Israel, 2020.
[8] Y. Li, A. Dua, and F. Ren, ‘‘Light-weight RetinaNet for object detection on

edge devices,’’ in Proc. IEEE 6th World Forum Internet Things (WF-IoT),
Jun. 2020, pp. 1–6.

[9] M. Xia, Z. Huang, L. Tian, H. Wang, V. Chang, Y. Zhu, and S. Feng,
‘‘SparkNoC: An energy-efficiency FPGA-based accelerator using opti-
mized lightweight CNN for edge computing,’’ J. Syst. Archit., vol. 115,
May 2021, Art. no. 101991.

[10] S. P. Kaarmukilan, S. Poddar, and K. A. Thomas, ‘‘FPGA based deep
learning models for object detection and recognition comparison of
object detection comparison of object detection models using FPGA,’’ in
Proc. 4th Int. Conf. Comput. Methodol. Commun. (ICCMC), Mar. 2020,
pp. 471–474.

[11] J. Tang, S. Liu, L. Liu, B. Yu, and W. Shi, ‘‘LoPECS: A low-power
edge computing system for real-time autonomous driving services,’’ IEEE
Access, vol. 8, pp. 30467–30479, 2020.

[12] D. T. Nguyen, T. N. Nguyen, H. Kim, and H. Lee, ‘‘A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,’’ IEEETrans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1861–1873, Aug. 2019.

[13] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-K. Chang, ‘‘An approximate
memory architecture for a reduction of refresh power consumption in deep
learning applications,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2018, pp. 1–5.

[14] D. T. Nguyen, H. Kim, and H.-J. Lee, ‘‘Layer-specific optimization for
mixed data flow with mixed precision in FPGA design for CNN-based
object detectors,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 6,
pp. 2450–2464, Jun. 2021.

[15] H. Mo, L. Liu, W. Zhu, Q. Li, S. Yin, and S. Wei, ‘‘A 460 GOPS/W
improved mnemonic descent method-based hardwired accelerator for face
alignment,’’ IEEE Trans. Multimedia, vol. 23, pp. 1122–1135, 2021.

[16] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, ‘‘MCDNN: An approximation-based execution frame-
work for deep stream processing under resource constraints,’’ in Proc. 14th
Annu. Int. Conf. Mobile Syst., Appl., Services, Jun. 2016, pp. 123–136.

[17] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,
and F. Kawsar, ‘‘DeepX: A software accelerator for low-power deep learn-
ing inference on mobile devices,’’ in Proc. 15th ACM/IEEE Int. Conf. Inf.
Process. Sensor Netw. (IPSN), Apr. 2016, pp. 1–12.

[18] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, ‘‘µLayer: Low latency on-
device inference using cooperative single-layer acceleration and processor-
friendly quantization,’’ in Proc. 14th EuroSys Conf., Mar. 2019, pp. 1–15.

[19] A. Zlateski, K. Lee, and H. S. Seung, ‘‘ZNNi: Maximizing the infer-
ence throughput of 3D convolutional networks on CPUs and GPUs,’’ in
Proc. Int. Conf. for High Perform. Comput., Netw., Storage Anal. (SC),
Nov. 2016, pp. 854–865.

[20] S. Hossain and D.-J. Lee, ‘‘Deep learning-based real-time multiple-object
detection and tracking from aerial imagery via a flying robot with GPU-
based embedded devices,’’ Sensors, vol. 19, no. 15, p. 3371, Jul. 2019.

[21] Y. Cai, H. Li, G. Yuan, W. Niu, Y. Li, X. Tang, B. Ren, and
Y. Wang, ‘‘YOLObile: Real-time object detection on mobile devices via
compression-compilation co-design,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 35, 2021, pp. 955–963.

[22] Y. Xu, H. Wu, W. Zhang, C. Yang, Y. Wu, H. Gao, and T. Wang, ‘‘Talos:
A weighted speedup-aware device placement of deep learning models,’’ in
Proc. IEEE 32nd Int. Conf. Appl.-Specific Syst., Architectures Processors
(ASAP), Jul. 2021, pp. 101–108.

[23] W. Zhang, H. Sun, D. Zhao, L. Xu, X. Liu, H. Ning, J. Zhou, Y. Guo,
and S. Yang, ‘‘A streaming cloud platform for real-time video process-
ing on embedded devices,’’ IEEE Trans. Cloud Comput., vol. 9, no. 3,
pp. 868–880, Jul. 2021.

[24] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[25] S. Kim and H. Kim, ‘‘Zero-centered fixed-point quantization with iterative
retraining for deep convolutional neural network-based object detectors,’’
IEEE Access, vol. 9, pp. 20828–20839, 2021.

[26] N. J. Kim and H. Kim, ‘‘FP-AGL: Filter pruning with adaptive
gradient learning for accelerating deep convolutional neural
networks,’’ IEEE Trans. Multimedia, early access, Jul. 11, 2022,
doi: 10.1109/TMM.2022.3189496.

[27] Z. Wang, W. Hong, Y.-P. Tan, and J. Yuan, ‘‘Pruning 3D filters for
accelerating 3D ConvNets,’’ IEEE Trans. Multimedia, vol. 22, no. 8,
pp. 2126–2137, Aug. 2020.

[28] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, ‘‘ENet: A deep
neural network architecture for real-time semantic segmentation,’’ 2016,
arXiv:1606.02147.

[29] D. Kang, D. Kang, J. Kang, S. Yoo, and S. Ha, ‘‘Joint optimization of speed,
accuracy, and energy for embedded image recognition systems,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 715–720.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[31] S. Mittal, ‘‘A survey on optimized implementation of deep learning models
on the NVIDIA Jetson platform,’’ J. Syst. Archit., vol. 97, pp. 428–442,
Aug. 2019.

[32] H. Guo, H. Bai, Y. Zhou, and W. Li, ‘‘DF-SSD: A deep convolutional
neural network-based embedded lightweight object detection framework
for remote sensing imagery,’’ Proc. SPIE, vol. 14, no. 1, p. 014521, 2020.

[33] Q. Zhou, J. Wang, J. Liu, S. Li, W. Ou, and X. Jin, ‘‘RSANet: Towards real-
time object detection with residual semantic-guided attention feature pyra-
mid network,’’ Mobile Netw. Appl., vol. 26, no. 1, pp. 77–87, Feb. 2021.

[34] B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer, ‘‘SqueezeDet:
Unified, small, low power fully convolutional neural networks for real-time
object detection for autonomous driving,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017, pp. 446–454.

[35] P. Li, H. Zhao, P. Liu, and F. Cao, ‘‘RTM3D: Real-time monocular 3D
detection from object keypoints for autonomous driving,’’ in Proc. Eur.
Conf. Comput. Vis. Singapore: Springer, 2020, pp. 644–660.

[36] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[37] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Singapore: Springer, 2016, pp. 21–37.

[38] G. Jocher et al., ‘‘Ultralytics/YOLOv5: V7.0-YOLOv5 SOTA real-
time instance segmentation,’’ Zenodo, Tech. Rep., 2022, doi: 10.5281/
zenodo.7347926.

[39] Y. Zhou, A. Mao, S. Huo, J. Lei, and S.-Y. Kung, ‘‘Salient object detection
via fuzzy theory and object-level enhancement,’’ IEEE Trans. Multimedia,
vol. 21, no. 1, pp. 74–85, Jan. 2019.

[40] J. Li, X. Liang, J. Li, Y.Wei, T. Xu, J. Feng, and S. Yan, ‘‘Multistage object
detection with group recursive learning,’’ IEEE Trans. Multimedia, vol. 20,
no. 7, pp. 1645–1655, Jul. 2018.

[41] S. Oh, J.-H. You, and Y.-K. Kim, ‘‘FRDet: Balanced and lightweight
object detector based on fire-residual modules for embedded processor of
autonomous driving,’’ 2020, arXiv:2011.08061.

[42] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[43] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50× fewer param-
eters and <0.5 MB model size,’’ 2016, arXiv:1602.07360.

[44] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[45] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, ‘‘Compression
of deep convolutional neural networks for fast and low power mobile
applications,’’ 2015, arXiv:1511.06530.

[46] A. Womg, M. J. Shafiee, F. Li, and B. Chwyl, ‘‘Tiny SSD: A tiny single-
shot detection deep convolutional neural network for real-time embed-
ded object detection,’’ in Proc. 15th Conf. Comput. Robot Vis. (CRV),
May 2018, pp. 95–101.

[47] D. Zhang, M. Cui, Y. Yang, P. Yang, C. Xie, D. Liu, B. Yu, and Z. Chen,
‘‘Knowledge graph-based image classification refinement,’’ IEEE Access,
vol. 7, pp. 57678–57690, 2019.

[48] Tensorrt Developer’s Guide, NVIDIA Corp., Santa Clara, CA, USA, 2020.
[49] J. Lee, J. Jang, J. Lee, D. Chun, and H. Kim, ‘‘CNN-based mask-pose

fusion for detecting specific persons on heterogeneous embedded sys-
tems,’’ IEEE Access, vol. 9, pp. 120358–120366, 2021.

[50] Y. Xu, W. Dai, Y. Qi, J. Zou, and H. Xiong, ‘‘Iterative deep neural network
quantization with Lipschitz constraint,’’ IEEE Trans. Multimedia, vol. 22,
no. 7, pp. 1874–1888, Jul. 2020.

52822 VOLUME 11, 2023

http://dx.doi.org/10.1109/TMM.2022.3189496
http://dx.doi.org/10.5281/zenodo.7347926
http://dx.doi.org/10.5281/zenodo.7347926

D. Chun et al.: CP-CNN: Computational Parallelization of CNN-Based Object Detectors

[51] J. M. Rodriguez-Borbon, X. Ma, A. K. Roy-Chowdhury, and W. A. Najjar,
‘‘Heterogeneous acceleration of HAR applications,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 30, no. 3, pp. 888–902, Mar. 2020.

[52] J. Yang, Y. Yang, Z. Chen, L. Liu, J. Liu, and N. Wu, ‘‘A heterogeneous
parallel processor for high-speed vision chip,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 28, no. 3, pp. 746–758, Mar. 2018.

[53] X.Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, andG.Ding, ‘‘ResRep: Loss-
less CNN pruning via decoupling remembering and forgetting,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 4490–4500.

[54] P. Chen, J. Liu, B. Zhuang, M. Tan, and C. Shen, ‘‘AQD: Towards accu-
rate quantized object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 104–113.

[55] O. Spantidi, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel,
‘‘Positive/negative approximate multipliers for DNN accelerators,’’ in
Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), Nov. 2021,
pp. 1–9.

[56] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and
F. D. Smith, ‘‘Avoiding pitfalls when using NVIDIA GPUS for real-time
tasks in autonomous systems,’’ in Proc. 30th Euromicro Conf. Real-Time
Syst. (ECRTS).Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018, pp. 1–21.

[57] J. Luitjens, ‘‘CUDA streams: Best practices and common pitfalls,’’ in Proc.
GPU Techonology Conf., 2015, pp. 1–71.

[58] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai,
‘‘BEVFormer: Learning bird’s-eye-view representation frommulti-camera
images via spatiotemporal transformers,’’ 2022, arXiv:2203.17270.

[59] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, ‘‘Learning filter
pruning criteria for deep convolutional neural networks acceleration,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 2006–2015.

[60] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin,
and L. S. Davis, ‘‘NISP: Pruning networks using neuron importance score
propagation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[61] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, ‘‘YOLACT: Real-time instance
segmentation,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 9156–9165.

[62] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[63] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling,
‘‘M2Det: A single-shot object detector based on multi-level feature
pyramid network,’’ in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 9259–9266.

[64] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, ‘‘Importance
estimation for neural network pruning,’’ in Proc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11256–11264.

[65] D. Franklin, ‘‘Jetson AGX Xavier and the new era of autonomous
machines webinar,’’ NVIDIA, Tech. Rep., 2020. [Online]. Available:
https://info.nvidia.com/jetsonxavier-and-the-new-era-of-autonomous-
machines-reg-page.html

[66] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and
T. Darrell, ‘‘BDD100K: A diverse driving dataset for heterogeneous mul-
titask learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 2633–2642.

[67] NVIDIA System Management Interface, NVIDIA, Santa Clara, CA, USA,
2016.

[68] NVIDIA Jetson Linux Driver Package Software Features, NVIDIA, Santa
Clara, CA, USA, 2019.

[69] Profiler User’s Guide, NVIDIA, Santa Clara, CA, USA, 2020.
[70] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, ‘‘Deep learn-

ing with limited numerical precision,’’ in Proc. Int. Conf. Mach. Learn.,
2015, pp. 1737–1746.

DAYOUNG CHUN (Graduate Student Member,
IEEE) received the B.S. degree in electron-
ics engineering from Sogang University, Seoul,
South Korea, in 2018. She is currently pursuing
the integrated M.S. and Ph.D. degree in electri-
cal and computer engineering with Seoul National
University, Seoul. Her research interests include
the algorithms and architectures of deep learning
and GPU architectures for computer vision.

JIWOONG CHOI received the B.S. degree
in electrical and electronics engineering from
Chung-Ang University, Seoul, South Korea,
in 2015, and the M.S. and Ph.D. degrees in electri-
cal and computer engineering from Seoul National
University, Seoul, in 2017 and 2021, respectively.
He is currently a Deep Learning Research Engi-
neer with NVIDIA, Santa Clara, CA, USA.

HYUK-JAE LEE (Member, IEEE) received the
B.S. and M.S. degrees in electronics engineer-
ing from Seoul National University, South Korea,
in 1987 and 1989, respectively, and the Ph.D.
degree in electrical and computer engineering
from Purdue University, West Lafayette, IN, USA,
in 1996. From 1998 to 2001, he was with the
Server and Workstation Chipset Division, Intel
Corporation, Hillsboro, OR, USA, as a Senior
Component Design Engineer. From 1996 to 1998,

he was with the Faculty of the Department of Computer Science, Louisiana
TechUniversity, Ruston, LS, USA. In 2001, he joined the School of Electrical
Engineering and Computer Science, Seoul National University, where he
is currently a Professor. He is also the Founder with Mamurian Design
Inc., where he is focusing on the fabless SoC design house for multimedia
applications. His research interests include computer architecture and SoC
design for multimedia applications.

HYUN KIM (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering and computer science from Seoul National
University, Seoul, South Korea, in 2009, 2011, and
2015, respectively. From 2015 to 2018, he was
with the BK21 Creative Research Engineer Devel-
opment for IT, Seoul National University, Seoul,
as a BK Assistant Professor. In 2018, he joined the
Department of Electrical and Information Engi-
neering, Seoul National University of Science and

Technology, Seoul, where he is currently an Associate Professor. His
research interests include algorithm, computer architecture, memory, and
SoC design for low-complexity multimedia applications and deep neural
networks.

VOLUME 11, 2023 52823

