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Abstract: RISC-V offers a modular technical approach combined with an open, royalty-free instruction
set architecture (ISA). However, despite its advantages as a fundamental building block for many
embedded systems, the escalating complexity and functional demands of real-time applications
have made adhering to response time deadlines challenging. For real-time applications of RISC-V,
real-time performance analysis is required for various ISAs. In this paper, we analyze the real-time
performance of RISC-V through two real-time approaches based on processor architectures. For
real-time operating system (RTOS) applications, we adopted FreeRTOS and evaluated its performance
on HiFive1 Rev B (RISC-V) and STM3240G-EVAL (ARM M). For real-time Linux, we utilized Linux
with the Preempt-RT patch and tested its performance on VisionFive 2 (RISC-V), MIO5272 (x86-64),
and Raspberry Pi 4 B (ARM A). Through these experiments, we examined the response times on
the real-time mechanisms of each operating system. Additionally, in the Preempt-RT experiments,
scheduling latencies were evaluated by means of the cyclictest. These are very important parameters
for implementing real-time applications comprised of multi-tasking. Finally, in order to show the
real-time capabilities of RISC-V practically, we implemented motion control of a six-axis collaborative
robot, which was performed on the VisionFive 2. This implementation provided a comparative result
of RISC-V’s performance against the x86-64 architecture. Ultimately, the results indicated that the
real-time performance of RISC-V for real-time applications was feasible. A noticeable achievement
of this research is its first implementation of an EtherCAT master on RISC-V designed for real-time
applications. The successful implementation of the EtherCAT master on RISC-V shows real-time
capabilities for a wide range of real-time applications.

Keywords: RISC-V; FreeRTOS; Preempt-RT; RTOS; EtherCAT; embedded Linux

1. Introduction

The surge in advanced intelligent and collaborative robots, along with automated
control systems, has accelerated research in real-time control [1,2]. Embedded systems for
real-time control must possess the capability to execute tasks within desired time frames
using limited resources [3]. Based on their response to missed deadlines, these systems
are classified into hard, soft, and firm real-time systems. Failure to meet deadlines in hard
real-time tasks can have severe consequences, such as system failure or even industrial
disasters [4]. In contrast, missing deadlines in soft and firm real-time tasks typically does
not lead to system destruction or severe consequences. If a soft real-time task exceeds
its deadline, it may result in a lower quality of service to users or the continuation of the
task, whereas a firm real-time task may render the results useless or cause them to be
ignored by the system [5,6]. Therefore, real-time applications for real-time control must
be implemented considering these time-critical constraints. As the demands for these real-
time applications grow, there is a corresponding increase in the complexity and expense of
implementing and validating their functionalities. However, costs can be mitigated with
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adequate technical support and detailed information about the instruction set architecture
(ISA) for these systems.

RISC-V is an ISA designed to be simple and modular. Developed as open-source and
royalty-free, it allows anyone to use and extend its capabilities freely [7]. This makes it
a popular option for creating embedded systems in real-time environments, especially
when budget constraints are a major consideration, due to its advantage of low-cost
deployment [8,9]. Additionally, RISC-V can be modified to meet various constraints and
requirements easily, allowing for the implementation of desired functionalities [10–12].
Leveraging these benefits, there is research into the use of RISC-V across various domains,
including artificial intelligence (AI) and the Internet of Things (IoT) [13,14]. However,
unlike ARM and x86-64, which benefit from advanced commercialization and a wealth of
information, RISC-V, as a relatively new player in the market, encounters challenges due
to limited technical support and information pertaining to the development of real-time
applications [15].

With the escalating complexity and functional demands of real-time applications,
meeting required response times has become increasingly challenging. Consequently, there
is an increased need for development information to implement RISC-V based real-time
systems that achieve these response times. In real-time applications comprised of multiple
tasks, extensive data transfer occurs between tasks, making the performance of inter-task
communication (ITC) crucial to overall real-time performance. ITC mechanisms facilitate
data transfers between tasks, and each kernel can implement these mechanisms with slight
variations in functionality and naming. The commonly used ITC mechanisms in real-time
kernels include queues, semaphores, and mutexes. A queue is a mechanism used for
message transfers between tasks, operating on a first-in, first-out (FIFO) basis. Semaphores
are used to manage access to task resources. Operating systems typically categorize them
into binary semaphores, with a count limit of one, and counting semaphores, with a higher
count limit. Unlike mutexes, semaphores do not prioritize tasks, making them suitable for
synchronizing operations between tasks. Finally, a mutex limits access to a resource to one
task at a time, ensuring that the task holding the mutex can operate without interference
from others [16–18].

In this paper, we compare and analyze the real-time performance capabilities of the
inter-task communication mechanism on embedded boards based on RISC-V and other
ISAs. For complex, multi-functional tasks in real-time applications, it is common to divide
them into smaller tasks based on their specific roles. These smaller tasks rely on ITC to
maintain data integrity and to ensure timely communication [19]. Specifically, ITC is used
for facilitating communication among various tasks in applications that collect signals from
sensors or other hardware, analyze and process these signals within a defined time frame,
and subsequently operate actuators [20,21]. The kernel architecture for running these
real-time applications differs based on the processor architecture and can be categorized
into RTOS and real-time Linux, depending on the approach.

For RTOS applications, we utilized FreeRTOS [22] and applied it to HiFive1 Rev B
(RISC-V) and STM3240G- EVAL (ARM M). For real-time Linux, we chose Linux with the
Preempt-RT patch [23], conducting our experiments on VisionFive 2 (RISC-V), MIO5272
(x86-64), and Raspberry Pi 4 B (ARM A). Tables 1 and 2 show the specifications of the
boards using FreeRTOS and Preempt-RT. We carried out experiments using both FreeRTOS
and Linux with the Preempt-RT patch for each ISA to assess and compare their real-time
performance capabilities across various processor architectures. In FreeRTOS, we focused
on measuring the response times of the queue, stream buffer, message buffer, semaphore,
and mutex. The results revealed that ITC mechanisms in FreeRTOS on RISC-V performed
better than those on ARM M. For Preempt-RT, our measurements included the response
times of the pipe, FIFO, message queue, semaphore, and mutex. Moreover, we evaluated
the scheduling latency of each ISA using cyclictest [24] on Linux with the Preempt-RT patch.
Across all tested metrics in Preempt-RT, x86-64 showcased the best real-time performance.
Notably, RISC-V surpassed ARM A in all ITC mechanisms except FIFO. However, its
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cyclictest results indicated the lowest performance. Despite this, the results demonstrated
that RISC-V meets the performance requirements necessary for real-time applications.
To validate RISC-V’s capability in real-world scenarios further, we tested its real-time
performance by controlling a collaborative robot. For a comparative analysis, we selected
x86-64, recognized for its superior real-time performance, and implemented an EtherCAT
master and a real-time motion control application on each ISA. Our results indicated that
real-time application based on RISC-V adequately fulfills the performance demands for
motion control of a collaborative robot.

The rest of the paper is organized as follows. Section 2 introduces previous related
studies and highlights the differences from our work. Section 3 provides an overview of
FreeRTOS, details the experimental setup for each ISA, explains the code used for real-time
performance measurement, and presents the benchmarking results. Section 4 introduces
Preempt-RT, discusses the experiments conducted to assess real-time performance capa-
bilities on real-time Linux, and presents the benchmarking results. Section 5 describes
the collaborative robot and experimental setup used to test RISC-V’s performance in a
real-time environment, explains the experimental methodology, outlines the architectures
implemented, and displays the response times for each task, along with the positional and
velocity differences for each joint. Finally, we summarize the benchmarking results and
conclude the paper.

Table 1. Specifications of the boards using FreeRTOS.

Hardware Microcontroller Unit Architecture RTOS Kernel Version

HiFive1 Rev B SiFive FE310-G002
32-bit RISC-V RV32IMAC FreeRTOS 10.2.0

STM3240G-EVAL
STM32F407IGH6 with

ARM Cortex-M4F
32-bit

ARMv7-M FreeRTOS 10.2.0

Table 2. Specifications of the boards using Preempt-RT.

Hardware Microprocessor Unit Architecture Real Time Kernel Kernel Version

VisionFive 2 JH7110 64-bit
quad-core RISC-V U74-MC Preempt-RT 5.15.0-rt17+

Raspberry Pi 4 B
Broadcom BCM2711

ARM Cortex-A72 64-bit
quad-core

ARMv8-A Preempt-RT 5.15.92-rt57-v8+

MIO-5272 Intel Core I7 6600U x86-64 Preempt-RT 5.15.79-rt54

2. Related Work

Recent research has focused extensively on analyzing the performance capabilities
of RTOS and real-time Linux across various architectures. In one such study [25], the
performance of RTOS on ARM M4 and M0 microcontrollers, with a particular emphasis on
context switching in systems that support preemptive scheduling. This included FreeRTOS,
RT-thread, Keil RTX, and uC/OS-II, and the evaluation was based on events, semaphores,
and mailboxes. The study provided insights for choosing an RTOS that is well-suited for
small microcontrollers by comparing various RTOS types on similar architectures. However,
these experiments were limited to the ARM M architecture and focused exclusively on
RTOS synchronization mechanisms. In contrast, our experiment broadens the scope by
comparing the real-time performance capabilities of task communication mechanisms
across various ISAs, including RISC-V, taking into account the data size transmitted.

In a previous study [26], experiments were carried out to measure execution times and
latencies. These included comparing the performance capabilities of two forms of RTOS,
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specifically FreeRTOS and uC/OS-III. The measurements focused on real-time latencies,
semaphore and mutex operation durations, and the frequency of sustained interrupts.
Furthermore, additional tests examined thread creation and mutex locking behaviors to
detect any functional issues in the operating systems. Another study [27] focused on the
performance of RTOS in IoT devices, measuring the time required for task-switching due to
semaphores and message queues, time durations when acquiring and releasing a fixed-size
memory region, and the response time of a task to an interrupt service routine. However,
as the computational demands and development costs of embedded systems rise, real-time
Linux is increasingly being adopted in various fields [23]. Therefore, in our study, we aim
to aid in the design and development of real-time applications for embedded systems by
providing insights into the real-time performance of not just RTOS, but also the Preempt-RT
kernel, across different ISAs.

One study [28] conducted a comparison of the timing accuracy and interrupt latency
between a compounded real-time operating system (cRTOS), Preempt-RT, and Xenomai.
In other research [29], the timing latencies of Linux patched with Preempt-RT were as-
sessed on different ARM architectures, specifically Raspberry Pi 3 and BeagleBone AI.
Researchers [29] also delved into the scheduling latency of real-time Linux on multi-core
general-purpose processors, offering development guidelines for real-time applications
suited to Xenomai and Preempt-RT kernels. Additionally, experiments were undertaken
on scheduling latency using cyclictest on the RISC-V architecture with the Preempt-RT
patch [30]. Despite these studies, there is a noticeable lack of information about the devel-
opment of real-time applications for RISC-V when compared to other ISAs. To address this
gap, we implemented real-time applications on both RISC-V and x86-64, providing insight
into real-time performance capabilities for robot motion control.

In this paper, we compare various real-time performances across multiple ISAs to
demonstrate the performance of the RISC-V architecture for real-time applications with
a multi-tasking structure. To validate the practicality of our experimental findings, we
implemented an EtherCAT master on both RISC-V and x86-64 to control a six-axis robot.
This paper contributes by offering valuable information about real-time performance
outcomes, aiding in the selection of an appropriate ISA for real-time systems. It also
highlights the potential for significant time and cost savings in the development of real-
time applications utilizing the RISC-V.

3. Real-Time Performance Measurement on FreeRTOS

FreeRTOS, an open-source RTOS, is suitable for small embedded systems that are
required to undertake multi-tasking [31]. It features a microkernel architecture and is
primarily used in microcontrollers and small microprocessors [32]. Its popularity in real-
time application development projects stems from its simplicity, compact size, portability,
user-friendliness, and compatibility with various hardware architectures. Additionally, the
robust FreeRTOS community offers substantial technical support, with system bugs and
errors swiftly addressed, providing significant benefits for development [33].

In this section, we outline the uniform RTOS environments and experimental method-
ologies applied across various ISAs and present the corresponding results. The hardware
used in the experiments and the experimental environment are detailed in Table 1. To eval-
uate the real-time performance of RISC-V and other ISAs in RTOS, we measured inter-task
communication response times in FreeRTOS. For the RISC-V assessments, we used the Hi-
Five1 Rev B board, which is equipped with a SiFive FE310-G002 32-bit microcontroller unit.
This board is capable of speeds up to 320 MHz and includes 2 kB of SRAM and 4 MB of flash
memory. In the ARM M case, our experiments were conducted on the STM3240G-EVAL
board, hosting an STMicroelectronics STM32F407IGH6 32-bit microcontroller unit with a
maximum speed of 168 MHz and 2 MB of SRAM. Our development environment consisted
of Visual Studio Code IDE and PlatformIO, employed as a cross-platform development ex-
tension [34]. Due to the limited availability of the FreeRTOS kernel version for the HiFive1
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Rev B board in our setup, we aligned the kernel version on the STM3240G-EVAL board to
V10.2.0 for consistency.

The experimental results demonstrated that the real-time performance of RISC-V in
all inter-task communication (ITC) mechanisms of FreeRTOS outperformed that of ARM.
Notably, especially due to the latency being unaffected by data size, it can be inferred that
RISC-V based systems are suitable for robust real-time systems.

3.1. Inter-Task Communication of FreeRTOS

In our test application, we measured the communication time between two tasks to
assess the real-time performance of the ITC mechanism. Figure 1 illustrates the setup used
to evaluate the real-time performance of the ITC mechanism on FreeRTOS. We assigned
the priorities of the two tasks differently, with the highest being 8 and a slightly lower
priority ranking at 7, conducting the tests for 10 ms. During the experiments, we connected
the GPIO pins of each board to an oscilloscope and recorded measurements from over
1000 adequate samples. The real-time performance of the ITC mechanism for each ISA
was then determined by calculating the average of these measured response times. The
methodology for measuring the ITC mechanism’s response time adheres to the approach
outlined in [35], with the specific pseudocodes provided in Algorithms 1 and 2.

Figure 1. Diagram for measuring the real-time performance of the ITC mechanism on FreeRTOS.

Algorithm 1: Pseudocode for measuring the response times of the queue, stream
buffer, and message buffer.

Data: N message size;
Function Task_1:

while (1) do
Sending a message of size N to task_2;
GPIO pin on;
Receiving a message of size N from task_2;
GPIO pin off;
Delay for the duration of the period time;

end
Function Task_2:

while (1) do
Receiving a message of size N from task_1;
Sending a message of size N to task_1;

end
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Algorithm 2: Pseudocode for measuring the response times of the semaphore
and mutex.

Function Task_1:
while (1) do

releasing semaphore/mutex;
GPIO pin on;
Delay for the duration of the period time;

end
Function Task_2:

while (1) do
waiting for semaphore/mutex acquisition;
GPIO pin off;

end

3.1.1. Queue

In our experiment, we measured the time required for a task to send data to a queue
and for another task to receive and return the data. We utilized two separate queues for
sending and receiving data, enabling efficient communication between the tasks. Unlike
previous studies [36] that measured RTOS performance using a single task to send a
fixed-size message to itself, our experiment aimed to evaluate message communication
performance capabilities in a multi-tasking real-time application. We conducted tests with
messages of varying sizes, handled by two tasks. To assess how the response time varied
with different data sizes, we incrementally increased the data size sent through the queue,
starting with 60 bytes and increasing to 600 bytes in 60-byte steps.

Figure 2 displays the experimental results. We observed that with an increase in the
data size, the average response time ranged from 9.84 us to 12.85 us for HiFive1 Rev B and
from 64.72 us to 334.70 us for STM3240G-EVAL. Notably, the queue’s response time was
consistently shorter in RISC-V, and the escalation in the response time as the data size was
increased was also relatively minimal.

Figure 2. Results of the response time of the queue on FreeRTOS.

3.1.2. Stream Buffer

A stream buffer, a mechanism used to transfer data of varying lengths as a byte stream
between two tasks, was employed in our experiment. We utilized two stream buffers, one
for sending and the other for receiving data between the tasks, to measure the time required
for data exchange. To determine how the response time varied with different data sizes, we
increased the data size by 60 bytes in each step of the experiment.
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Figure 3 presents the results of these tests. We observed that the average response
time ranged from 13.05 us to 32.75 us for HiFive1 Rev B and from 71.40 us to 342.04 us for
STM3240G-EVAL.

Figure 3. Results of the response time of stream buffer on FreeRTOS.

3.1.3. Message Buffer

In our experiments, we focused on the message buffer, a mechanism specifically de-
signed to transmit variable-length discrete messages between two tasks. We used two mes-
sage buffers, one for sending and the other for receiving data, to measure the time required
to exchange data. To analyze how the response time varied with different data sizes, we
systematically increased the data size in increments of 60 bytes.

The outcomes of these experiments are depicted in Figure 4. We noted that the average
response time increased from 3.10 us to 9.64 us for HiFive1 Rev B and from 18.31 us to
108.51 us for STM3240G-EVAL.

Figure 4. Results of the response time of the message buffer on FreeRTOS.

3.1.4. Semaphore and Mutex

In FreeRTOS, semaphores are categorized into counting and binary semaphores based
on the number of preemptible semaphores. Counting semaphores control access to a re-
source by limiting the number of semaphores available for resource preemption, restricting
access once the count reaches zero. On the other hand, binary semaphores and mutexes
are used to prevent simultaneous access to a resource by two tasks. In this experiment,
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we measured the time taken for a semaphore or mutex to be released and then acquired
between two tasks [37].

The results are displayed in Figure 5. The average response times for HiFive1 Rev
B were 4.74 us for counting semaphores, 4.68 us for binary semaphores, and 4.90 us for
mutex. For STM3240G-EVAL, these times were 12.64 us, 27.97 us, and 13.68 us, respectively.
Notably, the binary semaphore experiment on STM3240G-EVAL showed highly unstable
signals, with a significant standard deviation of 68.8 us. To investigate potential errors in
the ARM’s binary semaphore related to the FreeRTOS version, we repeated the experiment
using version 10.4.4 without any code changes. This led to stable binary semaphore signals,
showing a response time of 12.50 us and a remarkably low standard deviation of 0.002 us.
Additionally, version 10.4.4 displayed a modest improvement in the real-time performance
for both counting semaphores and mutex compared to version 10.2.0. Table 3 presents the
experimental results for semaphores and mutexes, including FreeRTOS version 10.4.4.

Figure 5. Results of the response times of semaphores and mutexes on FreeRTOS.

Table 3. Results of the response times of semaphores and mutexes, including FreeRTOS V10.4.4.

HiFive1 Rev B (10.2.0) STM3240G-EVAL (10.2.0) STM3240G-EVAL (10.4.4)

ITC Mean
(us)

Min
(us)

Max
(us)

Sdev
(us)

Mean
(us)

Min
(us)

Max
(us)

Sdev
(us)

Mean
(us)

Min
(us)

Max
(us)

Sdev
(us)

Counting
Semaphore 4.74 4.73 4.74 0.004 12.64 12.63 12.64 0.003 12.39 12.39 12.40 0.002

Mutex 4.90 4.73 4.95 0.037 13.68 13.12 13.73 0.1 13.51 13.50 13.52 0.004

Binary
Semaphore 4.68 4.65 4.73 0.019 27.97 0.07 334.71 68.8 12.50 12.50 12.51 0.002

4. Real-Time Performance Measurement of Preempt-RT

The Preempt-RT patch consists of a series of kernel modifications aimed at minimizing
latency and enhancing determinism for tasks on Linux [38]. By applying the Preempt-RT
patch to a Linux kernel, real-time tasks can be executed alongside non-real-time tasks in
the same user space. This integration offers features such as symmetrical multiprocessing
(SMP) and priority inheritance to avoid priority inversion outcomes [39,40]. Furthermore,
the development of real-time applications is facilitated by its compatibility with existing
libraries and tools that comply with the POSIX standard [23].

In this section, we describe the real-time Linux environment and experimental methods
for various ISAs, and their corresponding experimental results. To evaluate the real-time
performance of RISC-V and other ISAs in a real-time Linux environment, we patched Linux
with Preempt-RT and measured the response time of the ITC mechanism. Figure 6 depicts
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the setup for assessing the real-time performance of the ITC mechanism in Preempt-RT. We
also conducted a cyclictest to evaluate the scheduling latency of each ISA. For consistency
across experiments, we applied the Preempt-RT patch to a Debian-based Linux version 5.15,
suitable for each board, within a desktop environment. This setup was then cross-compiled
and installed on all boards.

The hardware used and the versions of the real-time kernel are detailed in Table 2. For
these experiments, the RISC-V VisionFive 2 board with a StarFive JH-7110 64-bit micropro-
cessor unit at 1.5 GHz and 8 GB SDRAM was utilized. The ARM A ISA was represented
by Raspberry Pi 4 B, equipped with a Broadcom BCM2711 64-bit microprocessor unit at
1.5 GHz and 8 GB SDRAM. The x86-64 setup involved the MIO-5272 board, featuring a Intel
Core i7 6600U 64-bit microprocessor unit at 2.6 GHz and 16 GB of SDRAM. The experimen-
tal findings indicate that in Preempt-RT, x86-64 offered the best real-time performance for
the ITC mechanism, and except for FIFO, RISC-V outperformed ARM A. In the cyclictest
results, x86-64 showed superior performance, while RISC-V recorded the lowest outcome.
More detailed information is well-documented in the references [41].

Figure 6. Diagram for measuring the real-time performance of the ITC mechanism in Preempt-RT.

4.1. Inter-Task Communication of Preempt-RT

In the test application to measure the real-time performance of the ITC mechanism
in Preempt-RT, we measured the communication time between two tasks, similar to the
experiment conducted previously in FreeRTOS. We set the corresponding task priorities to
95 and 90 and established a 10 ms period for the experiment, which ran for a total duration
of 30 min. The response time of the ITC mechanism was captured using the high-resolution
time function clock_gettimer(), and the data were saved to a file for analysis. The real-time
performance capabilities of the ITC mechanism for each ISA were then determined by
calculating the average of these recorded response times.

The results reveal that for all ITC mechanisms, RISC-V based systems exhibit higher
latency compared to x86 systems. However, they show superior performance compared
to ARM based systems. Additionally, the results demonstrate relatively consistent perfor-
mance regardless of data size. Therefore, it can be confirmed that RISC-V based systems
are beneficially applicable in real-time systems with multitasking structures.

4.1.1. Pipe

A ‘pipe’ is a mechanism that facilitates the transmission of messages without set
boundaries by means of a byte stream between two tasks [42]. In our experiment, we used
two pipes, one for sending and the other for receiving data, to measure the time required to
exchange data. To observe the variations in the response time with different data sizes, we
conducted the experiments while gradually increasing the data size from 4 to 3072 bytes.
The outcomes of these experiments are depicted in Figure 7. The average response time for
VisionFive 2 was shorter than that of Raspberry Pi 4 B but longer than that of MIO-5272.
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Figure 7. Results of the response time of the pipe on Preempt-RT.

4.1.2. FIFO

FIFO, functioning similarly to a pipe, is a mechanism used for message transmission
between two tasks. It can be handled like a file in a file system, akin to a regular file [43]. In
our experiment, we utilized two FIFOs, one for sending and the other for receiving data,
to measure the time needed to complete the data exchange. To assess how the response
time varied with different data sizes, we progressively increased the data size from 4 to
3072 bytes in each test. The results of these experiments are presented in Figure 8. We
observed that the average response time for VisionFive 2 was less than that of Raspberry Pi
4 B but greater than that of MIO-5272.

Figure 8. Results of the response time of FIFO on Preempt-RT.

4.1.3. Message Queue

A message queue is a mechanism used for transmitting fixed-length messages between
two tasks, ensuring that the receiver receives complete messages as sent by the sender. In
our experiment, we used two message queues for sending and receiving data to measure
the time required to exchange data. To determine how the response time varied with
different data sizes, we incrementally increased the data size from 4 to 3072 bytes during
these tests. The outcomes of these experiments are illustrated in Figure 9. We found that
the average response time for the VisionFive 2 was less than that of the Raspberry Pi 4 B
but greater than that of the MIO-5272.
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Figure 9. Results of the response time of the message queue on Preempt-RT.

4.1.4. Semaphore and Mutex

We measured the time it took for two tasks to release and subsequently acquire a
semaphore or mutex. The results of this experiment are displayed in Figure 10. For both the
semaphore and mutex, the average response times were 10.84 us and 10.01 us for VisionFive
2, 18.29 us, and 18.11 us for Raspberry Pi 4 B. The corresponding times were 4.92 us and
4.90 us for MIO-5272.

Figure 10. Results of the response time of semaphore and mutex on Preempt-RT.

4.2. Scheduling Latency

In a real-time Linux environment, we employed the cyclictest benchmarking tool to
evaluate the scheduling latency of each ISA. Cyclictest measures the difference between a
thread’s intended wake-up time and the time it wakes up for each ISA [44]. A previous
study [30] used cyclictest on a Preempt-RT patched Linux system to assess the real-time
performance of RISC-V. However, our experiment expanded this analysis to include not
only RISC-V but also ARM A and x86-64, enabling a comprehensive comparison of their
real-time performance capabilities. The measurements for each ISA were carried out over a
two-hour period with 1 ms intervals.

For cyclictest, we used the -m option to prevent page faults and the -S option for
efficient testing in SMP (symmetric multiprocessing) systems ($cyclictest -m -S -p97 -i1000
-N -d0 -D2h). Our results showed that MIO- 5272 exhibited the shortest average scheduling
latency of 3.92 us, whereas VisionFive 2 had the longest at 32.69 us. In terms of the standard
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deviation, MIO-5272 also had the smallest value at 0.20 us, while VisionFive 2 had the
largest outcome at 7.02 us. A summary of the cyclictest results is provided in Figure 11 and
Table 4.

The results demonstrate that the latency of RISC-V based systems exhibits higher
mean and standard deviation values for latency compared to systems based on the other
two ISAs. However, with a maximum latency of 202.984 us and a mean value of 32.690 us,
it is evident that these results are suitable for real-time system applications. The validation
of this performance evaluation (for practical applicability) will be further verified in the
subsequent section through motion control with a collaborative robot.

Figure 11. Boxplot of observed scheduling latencies for various ISAs measured with cyclictest on a
Preempt-RT patched Linux system.

Table 4. Results of scheduling latencies for various ISAs measured with cyclictest on a Preempt-RT
patched Linux system.

Hardware Mean (us) Min (us) Max (us) Std (us)

VisionFive 2 32.690 7.662 202.984 7.023

Raspberry Pi 4 B 21.472 14.311 158.704 1.440

MIO-5272 3.919 3.489 38.051 0.202

5. Real-Time Performance Experiment on a Collaborative Robot

In this section, we describe the experimental environment used to assess real-time
Linux motion control of a collaborative robot based on RISC-V. Figure 12 displays the
six-axis collaborative robot from Neuromeka that was utilized in our experiments [45].
We detail the implementation procedure and results of the executed real-time application.
By assessing the real-time performance of each ISA via the ITC mechanism and with
cyclictest experiments within the Preempt-RT framework, we were able to ascertain that
RISC-V meets the requisite performance benchmarks for real-time application deploy-
ment. Accordingly, we developed a real-time application for collaborative robot motion
control and examined its response times to ensure the ISA’s compatibility with real-time
operational demands.

To construct the real-time motion control system, our platform of choice was Preempt-
RT, which is consistent with our previous experimental environment. For the EtherCAT mas-
ter implementation, we adopted IgH EtherCAT, an open-source fieldbus protocol [41,46].
In the ensuing experiments, we selected VisionFive 2 on RISC-V and MIO-5272 of x86-64,
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which is recognized for its superior real-time performance. These boards were patched
with Preempt-RT and subsequently integrated with the IgH EtherCAT master.

In prior research, referenced as [47], the focus was on EtherCAT master’s implemen-
tation and a real-time performance evaluation for a Python-based servo motor control
application. This paper directly evaluates RISC-V’s applicability in real-time systems by
evaluating response times during a collaborative robot motion control test. Figure 13 shows
the architecture of the EtherCAT network with Preempt-RT for motion control. Commands
dispatched from the EtherCAT master for motion control traverse the Ethernet driver,
subsequently reaching the robot’s six actuators via the network interface. The EtherCAT
application interface provides the requisite libraries and tools pivotal for EtherCAT motion
control applications, while the EtherCAT master core contains crucial data pertaining to
both master and slave entities.

The EtherCAT master core was designed to abstract system-level routines related
to EtherCAT, utilizing the IgH EtherCAT application interface and library. The master
base is responsible for configuring the EtherCAT master according to the connected slaves.
Furthermore, data acquisition and control for each slave should be executed in line with its
specific slave base. The real-time functionalities intrinsic to the Preempt-RT kernel manifest
through RT-POSIX. Hence, every task integral to the motion control application functions
as a real-time task, operated via POSIX threads within the RT-POSIX environment.

Figure 12. Motion control with Indy7 collaborative robot.

Figure 13. Architecture of the EtherCAT network with Preempt-RT for motion control.

Motion Control of a Collaborative Robot

To ensure the efficient operation of the motion control application, its functionalities
were modularly partitioned and decomposed across multiple tasks, culminating in a multi-
task implementation. Figure 14 shows the architecture of the motion control application.
The dynamic task is responsible for computing inverse dynamics and leverages the open-
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source Kinematics and Dynamics Library (KDL) provided by Orocos. The trajectory task
specifies the designated trajectory and velocity for each joint. The main task controls
Indy7’s operations, utilizing the IgH EtherCAT protocol. It receives control data from
message queues managed by individual tasks. Finally, the log task logs the response times
of each task, encompassing its own, and integrates the encoder data, subsequently storing
this information in a designated file.

In the experiment conducted here, motion control involved rotating each motor angle
of Indy7 [45] within a range from 0 to 90 degrees. Concurrently, the real-time performance
was evaluated by examining the response times associated with each task.

Figure 14. Motion control application architecture.

Table 5 shows the experiment task configurations and the corresponding response
time results. The data reveal that, concerning the application response times across both
architectures, the dynamic task had the shortest durations, whereas the log task registered
the longest. Specifically, for VisionFive 2, the response times for the dynamic task and log
task were 112.71 us and 329.50 us, respectively. In contrast, for MIO-5272, these times were
95.89 us for the dynamic task and 164.08 us for the log task.

Table 5. Configuration and response time results of motion control tasks.

Task
Response Time (us)

Period (ms) Priority
VisionFive 2 MIO-5272

Dynamic Task 112.71 95.89 1 95

Main Task 292.14 152.99 1 90

Trajectory Task 319.04 159.97 2 85

Log Task 329.50 164.08 100 70

Figure 15 depicts the discrepancies between the reference and actual trajectories for
each joint of the Indy7, controlled by VisionFive 2. In this figure, the deviation in degrees
for each joint of the collaborative robot remains within a 2-degree margin. The experimental
outcomes for x86-64 closely mirror those of RISC-V, thus only the velocity data for the joints
are shown. Table 6 presents the velocity discrepancies between the reference and actual
trajectories for each joint when comparing the two ISAs. The occurrence of negative min
values in Table 6 is attributed to measurements taken in reverse directions. Consequently,
the average difference in joint velocity was the highest in Joint 5, showing 0.2843 deg/s
in RISC-V and 0.2874 deg/s in x86-64. Additionally, the maximum difference in joint
velocity was the highest in Joint 4, with RISC-V showing 12.9488 deg/s and x86-64 showing
13.0634 deg/s. The positional and velocity values for each joint were derived from encoder
sensor feedback data.

The experimental results indicate that the hardware maintained a positional variance
of less than two degrees across all joints. Nonetheless, notable velocity discrepancies were
evident at the initiation and culmination of the motion sequences. These fluctuations
likely arose from real-time adjustments and optimizations of the velocity controller to
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ensure accurate and smooth motion. Notably, both VisionFive 2 and MIO-5272, built on
x86-64 ISA, and recognized for their superior real-time performance, effectively performed
motion control for Indy7. This underscores the potential feasibility of employing RISC-V in
real-time applications, particularly for collaborative robot management.
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Figure 15. Results of the position difference observed from 0 to 90 degrees for all joints of a collabora-
tive robot controlled on RISC-V.

Table 6. Results of the velocity difference for all joints observed while controlling a collaborative
robot from 0 to 90 degrees on two ISAs.

VisionFive 2 MIO-5272

Joint Mean
(deg/s) Min (deg/s) Max (deg/s) Sdev (deg/s) Mean

(deg/s) Min (deg/s) Max (deg/s) Sdev (deg/s)

Joint 0 −0.2282 −8.8236 6.9901 1.8447 −0.2356 −8.9381 6.9901 1.8670

Joint 1 −0.2519 −7.7349 6.9901 2.2061 −0.2484 −7.5057 6.9901 1.7420

Joint 2 −0.2448 −11.2873 6.9901 2.2061 −0.2355 −11.3446 6.9901 2.2189

Joint 3 −0.2347 −11.6883 6.9901 2.0839 −0.2403 −12.2613 7.1620 2.1197

Joint 4 −0.2595 −12.9488 6.9901 2.2177 −0.2627 −13.0634 6.9901 2.2180

Joint 5 −0.2843 −12.0894 6.9901 2.0947 −0.2874 −12.3186 6.9901 2.1172

6. Conclusions

In this paper, we analyzed the real-time performance of RISC-V and other ISAs to
provide development metrics for real-time system applications. We employed two real-
time approaches, FreeRTOS and Linux with Preempt-RT. For FreeRTOS, we evaluated the
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ITC mechanism’s response time on both HiFive1 Rev B (RISC-V) and STM3240G-EVAL
(ARM M). Meanwhile, with Preempt-RT, we assessed the ITC mechanism’s response time
and determined the scheduling latency using cyclictest across three types of hardware:
VisionFive 2 (RISC-V), Raspberry Pi 4 B (ARM A), and MIO-5272 (x86-64). Following our
analysis, we successfully implemented the IgH EtherCAT master on both RISC-V and the
outperforming x86-64 ISA. Utilizing a multi-task real-time application, we controlled the
motion of a six-axis collaborative robot, known as Indy7, to assess the real-time capabilities
of both ISAs. Our findings indicate that while RISC-V excels in real-time performance,
particularly with the ITC mechanism in RTOS, its performance and scheduling latency in
real-time Linux were comparatively low. However, with regard to real-time robot control
applications, RISC-V’s performance stood competitively alongside those of other ISAs. For
the robot control application, task data communication was facilitated through message
queues, which proved to be more efficient in RISC-V than other ITC mechanisms and exhib-
ited the smallest performance gap when compared to the top-performing ISA, x86-64. Thus,
RISC-V based applications employing message queues are capable of achieving the required
performance standards for controlling collaborative robots in a real-time environment.

In future research, leveraging the insights obtained from our real-time performance
analysis in this study, we aim to expand the scope of RISC-V applications within real-time
environments, particularly for overseeing diverse robotic systems such as mobile robots.
Furthermore, we intend to explore the feasibility of integrating advanced intelligent control
systems, harnessing deep learning and machine learning techniques, in RISC-V based
real-time applications.
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