
International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014), pp.39-50

http://dx.doi.org/10.14257/ijseia.2014.8.6.04

ISSN:1738-9984 IJSEIA
Copyright ⓒ 2014 SERSC

Implementation of HTTP Live Streaming for an IP Camera using an

Open Source Multimedia Converter

Gil Jin Yang
1
, Byoung Wook Choi*2

 and Jong Hun Kim
3

1, 2
 Dept. of Electrical and Information Engineering, Seoul National Univ. of Science

and Technology, Seoul, Korea,
3
 R&D Center, Seyeon Tech Co., Ltd., Seoul, Korea

gjyang@seoultech.ac.kr, bwchoi@seoultech.ac.kr and jhk@seyeon.co.kr

Abstract

Hyper Text Markup Language (HTML) is the main markup language for creating web

pages and other information that can be displayed in a web browser. HTML5 is the fifth

revision of the HTML standard. Its aim is to deliver almost everything you want to do without

requiring additional plug-in. HTML5 first describes new tags for multimedia, which are the

new audio and video tags. We produced an implementation of HTTP Live Streaming (HLS)

for an IP camera by using elements of HTML5 for media playback. This implementation

follows HLS standard in which we utilizes an open source library named FFMPEG. A

conclusion of this paper is that live steaming on mobile devices over HTTP is achieved

without any plug-ins.

Keywords: HTML5, HLS, IP Camera, FFmpeg

1. Introduction

Analog Closed Circuit Television (CCTV) cameras have been widely used for applications

of security surveillance. In recent years, the development of internet communication and rapid

changes in technology have resulted in the advancement of a new surveillance system, which

employs a digital internet protocol (IP) camera for real-time monitoring and surveillance at

any time and from any place. In other words, information transmission technologies have

made a paradigmatic shift from a traditional text-centric approach to a multimedia based

approach. An IP camera decodes and compresses an input image and transmits it to a user

through a wired or wireless network. Studies have been conducted on multimedia

transmission methods that employ the live streaming protocol for providing information to

users in real-time [1-11].

There are three main methods to deliver multimedia: traditional streaming, progressive

download, and adaptive streaming. Traditional streaming requires a stateful protocol which

establishes a session between the service provider and client. In this technique, media is sent

as a continuous stream of packets over UDP or TCP transport. The Real-Time Transport

Protocol (RTP) together with the Real-Time Streaming Protocol (RTSP) are frequently used

to implement such service [9, 10]. In contrast, HTTP is stateless. Progressive download is a

technique to transfer data between server and client from standard HTTP Web servers. It has

become very popular and it is widely used on the Internet. Users request multimedia content

which is downloaded progressively into a local buffer. As soon as there is sufficient data the

media starts to play. If the playback rate exceeds the download rate, then playback is delayed

* Corresponding Author

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

40 Copyright ⓒ 2014 SERSC

until more data is downloaded. Disadvantages of progressive download are mostly that

bandwidth may be wasted if the user decides to stop watching the content after progressive

download has started, it is not really bitrate adaptive and it does not support live media

services. Adaptive streaming is a technique which detects the user’s available bandwidth and

CPU capacity in order to adjust the quality of the video that is provided to the user, so as to

offer the best quality that can be given to this user in their current circumstance. It requires an

encoder to provide video at multiple bit rates (or that multiple encoders be used) and can be

deployed within a Content Delivery Network (CDN) to provide improved scalability. As a

result, users experience streaming media delivery with the highest possible quality [7, 8].

Recently a new solution for adaptive streaming has been designed, based on the stream

switching technique. It is a hybrid method which uses HTTP as a delivery protocol instead of

defining a new protocol. Video and audio sources are cut into short segments of the same

length. All segments are encoded in the desired format and hosted on a HTTP server. Clients

request segments sequentially and download them using HTTP progressive download.

Segments are played in order and since they are contiguous, the resulting overall playback is

smooth.

Apple released a HTTP-based streaming media communication protocol called HLS [1, 2]

to transmit bounded and unbounded streams of multimedia data. According to this

specification, an overall stream broken into a sequence of small HTTP-based file downloads,

where users can select alternate streams encoded at different data rates. Initially, users

download an extended M3U playlist which contains several Uniform Resource Identifiers

(URIs) [14] corresponding to media files, where each file must be a continuation of the

encoded stream. Each individual media file must be formatted as an MPEG-2 transport stream

(TS) or a MPEG-2 audio elementary stream. Currently, iOS/Safari is the only platform with

built-in adaptive streaming, supporting Apple’s own HLS protocol based on HTML5.

Android introduced HLS support since the latest version 4.0 [12, 15]. Dynamic Adaptive

Streaming over HTTP (DASH) also addresses the weaknesses of RTP/RTSP-based streaming

and progressive download [3, 4].

IP camera live streaming is made possible by a client-server structure. Almost all

commercial IP cameras employ the RTP/RTSP protocol in order to support live streaming [9,

10 and 18]. In that case, a user is required to install a separate application program or

download plug-ins supporting RTP/RTSP from the server to transmit multimedia data.

In recent years, innovations in technology have enabled the reproduction of multimedia in

a browser using standardized HTML without using a separate plug-in or a dedicated

application program. The latest version of HTML, HTML5, is currently under developing

standard; specifically, web pages that are based on HTML5 are able to provide graphics and

multimedia to users without employing a separate plug-in. Furthermore, to provide consistent

content and service to users, HTML5 developers have taken various developments and

utilization environments of users into account and continue to successively upgrade its

features [12].

One major problem encountered in the support of HLS is achieving IP camera live

streaming in an Apple device without employing a separate plug-in. Therefore, the goal of

this study is to realize live streaming of HLS through an open source library in an embedded

system programming environment for a commercial IP camera. HTML5 first describes new

tags for multimedia, which are the new audio and video tags. We produced an implementation

of HLS for the IP camera by using elements of HTML5 for media playback.

Generally, realization of live streaming requires the IP camera to export images in the form

of TS files, which are segmented in real-time. Almost all commercial IP cameras produce

image data in Joint Photographic Expert Group (JPEG) format or another similar image

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

Copyright ⓒ 2014SERSC 41

format. Image format is defined according to company preferences. The generated raw image

data is converted using standard image compression methods and is transmitted to users

through the client-server architecture. The IP camera images are generally displayed through

management software in the security surveillance, which employs multiple IP cameras. This

study aims to realize live streaming in a standard browser by supporting the HLS protocol.

Compatibility for supporting the existing method is maintained without employing separate

plug-ins or management software.

In this paper, a commercial IP camera, model FW1173-DS, is used [18]. For supporting the

HLS protocol, an open source FFMPEG library is used as a media converter [17]. FW1173-

DS generates image data in the format of JPEG Elementary Stream (JES). JES image data is

encoded by H.264 and is adapted in security surveillance systems in management software

through a transmission protocol. In this paper, we generates an MPEG-2 TS file which is the

standard for the HLS protocol using JES image data while supporting compatibility to the

existing surveillance. First, JES image data is converted to a raw H.264 stream and the raw

H.264 stream is then converted to segmented MPEG-2 TS files by a media converter of

FFMPEG library. And an M3U playlist file is produced and then live streaming is achieved to

the client through a web server.

In Section II, we propose an HLS Architecture for supporting compatibility with

commercial IP cameras which are used in the security surveillance systems. Section III

explains process of implementing the HLS Protocol and building a stream segmenter, media

converter, playlist generation, and web server. Sections IV and V describe the experimental

results and conclusions, respectively.

2. HLS Architecture for a Commercial IP Camera

Live streaming for the IP camera generally requires a plug-in or a live streaming protocol

supported in a web browser. Table 1 shows a comparison of streaming services currently

being used. Currently, live streaming protocols are realized by using Adobe Flash Player or

Microsoft Internet Information Services (IIS) plug-ins. In order to avoid using a plug-in, an IP

camera should be implemented with the HLS or DASH protocols. Of these two options, we

chose to implement HLS.

This paper aims to achieve live streaming in mobile devices for an IP camera, generally

used in security surveillance, without installing a plug-in or a separate application program.

HLS is a protocol that supports HTML5 standards and has a feature of no client dependency.

Furthermore, the system architecture is implemented to support the HLS protocol while

maintaining compatibility with existing IP cameras that are used in dedicated management

software.

Table 1. Comparison of Streaming Services [3-8]

Feature Apple Adobe MS IIS MPEG-DASH

On-Demand & Live Yes Yes Yes Yes

Adaptive bitrates Yes Yes Yes Yes

Delivery Protocol HTTP HTTP HTTP HTTP

Origin Server Web Server
Adobe Media

Server
MS IIS Web Server

Media Container MP2 TS
MP4-part 14,

FLV
MP4-part 14

MP2 TS,

Fragmented MP4

Video Codecs
H.264 Baseline

Level
H.264 Agnostic

H.264, SVC,

Multiview Coding,

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

42 Copyright ⓒ 2014 SERSC

MPEG 4 AAC

Default Segment

Duration
10 seconds 2 seconds 4 seconds Flexible

End-to-End Latency 30 seconds 6 seconds >1.5 seconds Flexible

File Type on Server Fragmented Contiguous Contiguous Fragmented

Client Dependence No Flash Player Silverlight No

As shown in Table 1, HLS is a protocol implemented for Apple's iOS/Safari, QuickTime

Player, and Apple TV to provide live streaming and video on demand (VOD) streaming [1,

2]. The ability of HLS supporting Android devices in addition to Apple devices is suitable as

a live streaming protocol for mobile devices

Figure 1. System Architecture of http Live Streaming Protocol

Figure 1 shows the general structure of HLS Protocol. After the media is encoded, it is

segmented through a stream segmenter. The stream segmenter segments the media data,

which is received with respect to a fixed time interval, generates a segmented file, and then

generates a playlist file of meta data (.m3u8) through which the segmented file can be

accessed from client devices. Live streaming requires storing data in real-time; thus,

segmenting media data through a segmenter is not required. Instead, segmented streaming

data can be produced based on a predetermined duration of a media segment which is then

stored. The playlist file, which has an m3u8 file extension, has at least three types of TS files

in MPEG-2 media format. Users download an extended M3U playlist file which contains

several URIs corresponding to media files. Each individual media file must be formatted as

an MPEG-2 TS. For continuous live streaming, the playlist must be updated with the

production of the MPEG-2 TS file together with the produced URIs.

In this paper, to maintain compatibility with the management software of the existing

security surveillance system, the sequence of the media encoder and stream segmenter is

inverted as shown in Figure 2. Moreover, the structure is configured to support the HLS

protocol with JES image data encoded by an IP camera. Thus, the structure is designed to

maintain compatibility with the integrated management software of existing security

surveillance IP cameras that use JES image data.

Realization of IP camera live streaming based on the HLS protocol requires a server to

generate media files in real-time. This is followed by real-time update of the playlist file. The

stream generator of the HLS Protocol generates raw H.264 stream data with a predetermined

duration of a media segment using JES image data of Audio/Video as input to the camera.

The media encoder generates a segmented media file for the HLS protocol which is

converting raw H.264 stream data to MPEG-2 TS format using the FFMPEG library. The

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

Copyright ⓒ 2014SERSC 43

generation of the M3U playlist file of the media segments makes linking to these segments

possible when the play list is requested by a client.

Figure 2. System Architecture of HLS for an IP Camera

3. Implementation of HLS Protocol for the IP Camera

3.1. Stream Segmenter

Figure 3 shows the configuration menu for the JES Image Data in the camera through the

HTTP Web Server. Generally, image data of the IP camera is transmitted to a server through

a Common Gateway Interface (CGI). In order to support the HLS protocol using the received

image data in the server, it is required to do continuous generation of an MPEG-2 TS file

format that is encoded using the H.264 codec. Therefore, the output stream format of

FW1173-DS is chosen as the H.264 encoding format as shown in Figure 3.

Figure 3. Configuration of the IP Camera of FW1173-DS

Even though the encoding standard of the output stream from the IP camera is H.264, the

actual data format of output image stream is JES which is utilized in the management

software for security systems. The JES image data is composed of a JES header and the

image stream data. The JES Image Data Mandatory format and JES Header Format is shown

in Figure 4. The JES Header consists of the frame in-formation of the image data and status

information of the IP camera including vendor information. In this paper, we requires a raw

H.264 stream so a raw H.264 stream file from JES image data is made by extracting only the

image data stream encoded with H.264, while excluding JES header. Finally, a TS file for

supporting the HLS protocol and a playlist file for playing the TS file can be obtained from

the raw H.264 stream file by using an open source FFMPEG library.

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

44 Copyright ⓒ 2014 SERSC

Figure 4. JES Image Data Mandatory Format and JES Header Format

Figure 5. Elementary Streams of FW1173-DS

The raw H.264 streams named Elementary Streams extracted from the JES Image data are

shown in Figure 5. The generated image streams are I-frame or P-frame according to the JES

Image data header information. In order to support the HLS protocol, we generates a single

raw H.264 stream file by accumulating the generated raw H.264 streams as shown in Figure 5

for 10 seconds which is typical duration for TS of HLS.

3.2. Media Encoder

The media encoder converts the generated raw H.264 stream file to a segmented MPEG-2

TS file of having10 seconds stream. The open source multimedia converter, FFMPEG, is

utilized to build MPEG-2 media. The design goal of media encoder is to minimize the

memory size of an embedded LINUX based IP camera. To cope with this objective, we

optimized FFMPEG library with using necessary functions.

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

Copyright ⓒ 2014SERSC 45

The employed libraries from FFMPEG library to implement the media encoder when

converting raw H.264 stream data to MPEG-2 TS format include libavformat, libavcodec and

libavutil. The library libavutil supports functions to enable processes such as string

processing, random number generation, special mathematical functions, and multi-media

encryption programming. The library libavcodec employs an encode/decode framework to

enable encoder/decoder, subtitle streaming, and a bit-stream filter operation. The library

libavformat consists of a muxer/demuxer function for a multi-media container format.

Figure 6. Procedures for Converting H.264 steam to TS File

The procedures conducted in converting the raw H.264 stream file to MPEG-2 TS file of

having 10 seconds are shown in Figure 6. First, the generated raw H.264 stream file is

examined to find out its file format. The analyzed information is stored at data structure

located in the library of libavformat. Next, the image and codec information in the raw H.264

stream file is searched. Once a video stream is searched, relevant image codec information is

examined. The codec information of the relevant image is stored at data structure using codec

information of libavcodec.

The output file is subsequently generated in MPEG-2 TS format using the file creation

function of libavutil. In this generated output file, an empty stream space is prepared. Codec

information of the raw H.264 stream data and stream data extracted according to Section 3.1,

are copied to the empty stream space; the stream data is copied by a single frame unit of

H.264 format. Through a repeated process, the output file attains the MPEG-2 TS file format.

However, when this process is repeated in a single processor, the spaces dynamically

allocated in the heap area of memory are not returned. In this case, the operating system

forces the process causing the overflow of unreturned memory to terminate. The final step

shown in Figure 6 is a process to prevent memory overflow. File format information and

codec information used in the file creation process are directly released through the free and

close functions of libavutil.

3.3. Playlist Generation

The procedure for generating and extracting a raw H.264 stream from an IP camera in

MPEG-2 TS file format is initiated at the same time as when the raw H.264 stream of having

10 sec duration of a media segment is obtained. The generated the raw H.264 stream is

converted to MPEG-2 TS file format through FFmepeg_thread. Once conversion is complete,

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

46 Copyright ⓒ 2014 SERSC

FFmepeg_thread returns the resource and modifies the playlist of the MPEG-2 TS file. Thus,

by repeating the procedure, MPEG-2 TS files and playlist required for live streaming of the

HLS protocol, are continuously generated.

Figure 7. Playlist Generation Considering Real-Time Update for Live Streaming

Pseudo-code for Thread_Manager of Figure 7 is shown in Figure 8. The extracted raw

H.264 streams are converted to TS files through employing libraries during a pre-set duration

of a media segment. A segmented TS file is then generated while a playlist is simultaneously

generated or modified using the Playlist function ().

Figure 8. Pseudo Code of the Thread_Manager

The fucntion of FFmpeg_Thread is described in Figure 9; the raw H.264 stream is

converted to the TS file format based on the duration of a media segment. And in this thread,

updating playlist by adding the generated MPEG-2 TS files is achieved.

Figure 9. Pseudo Code of the FFMPEG_Thread

Procedure FFmpeg_Thread(void * arg)

set filenumber to *((int *)arg);

set currentfile to “video%d.ts”, filenumber;

If currentfile exist then

 remove the currentfile;

convert file format to MPEG-2 TS from raw H264;

add URL of converted video%d.ts into playlist file;

end

Procedure Thread_Manager

If Queue is not empty then

 dequeue get filenumber;

 create FFmpeg_Thread;

 execute FFmpeg_Thread(filenumber);

 If filenumber >= MAX_FILE_NUMBER then

 open playlist file

 remove Headmost Media in the playlist file;

 increase media sequence++;

 close playlist file

end

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

Copyright ⓒ 2014SERSC 47

3.4. Web Server

A client must request the HLS server for HTTP to receive a response. In other words, the

segmented media and the information of media to be played are transmitted to the client;

when media playback is complete, the play list is reloaded, and the generated media is played

continuously upon receiving a request.

The M3U file format uses the UTF-8 character set by conforming to the extension

standards of the m3u file format. The M3U file is the playlist file containing a list of TS files,

which are played continuously. Table 2 shows the basic tags that are employed.

Table 2. Important Tags of the M3U File Format (In reference [2], Chapter 3.3-
3.4 Tags)

Format Descriptions

#EXTM3U

An Extended M3U file is distinguished from a basic M3U

file by its first line, which MUST be the tag #EXTM3U. This

tag MUST be included in both Media Playlists and Master

Playlists.

#EXTINF:<duration>,<title> The EXTINF tag specifies the duration of a media segment.

#EXT-X-

TARGETDURATION:<s>

It applies only to the media segment that follows it, and

MUST be followed by a media segment URI. Each media

segment MUST be preceded by an EXTINF tag.

#EXT-X-MEDIA-SEQUENCE

Each media segment in a Playlist has a unique integer

sequence number. The sequence number of a segment is

equal to the sequence number of the segment that preceded it

plus one. This tag indicates the sequence number of the first

segment that appears in a Playlist file.

#EXT-X-ENDLIST

The EXT-X-ENDLIST tag indicates that no more media

segments will be added to the Media Playlist file. It MAY

occur anywhere in the Playlist file; it MUST NOT occur

more than once.

As shown in Table 1, MPEG-2 TS is used as the format for media files used in the HLS

protocol. In this study, a file is generated to support a standardized HLS protocol by using

stream data that is input from an IP camera. A video file in MPEG-2 TS File format is

generated based on a pre-determined duration of a media segment. A tag, as shown in Table

2, is used in the M3U playlist file; an example of an M3U playlist file is shown in Figure 11.

VOD streaming and live streaming in the play list structure can be distinguished by the

presence or absence of the "#EXT-X-ENDLIST" Tag.

Figure 10. Example of an M3U Playlist File

The HLS server receives a file transmission request from a client through a HTTP and

provides a response to the player. The requested media file is transmitted by responding to the

#EXTM3U

#EXT-X-TARGETDIRATION:10

#EXT-X-MEDIA-SEQUENCE: 0

#EXTINF:10.00,

http://www.example.abc/hls_test/segment0.ts

#EXTINF:10.00,

http://www.example.abc/hls_test/segment1.ts

#EXTINF:10.00,

http://www.example.abc/hls_test/segment2.ts

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

48 Copyright ⓒ 2014 SERSC

request according to the HTTP data transfer protocol. Therefore, to implement the HLS

server, a web server should be used, which can read the stored data and transmit data

according to HTTP responses [1, 16].

In this study, Apache2 is used as a Web server for the HLS Server; no special

configuration is necessary, apart from associating the Multipurpose Internet Mail Extension

(MIME) types of the files being served with their file extensions [1]. The MIME type of the

Apache2 Web server is presented in Table 3.

Table 3. MIME Types for HTTP Live Streaming [1]

File Extension MIME Type

.m3u8
application/x-mpegURL or

vnd.apple.mpegURL

.ts video/MP2T

Figure 11. Serving HLS Protocol in a Webpage

The HTML of a web page, used for serving the TS File to the client by using Apache2 web

server, is represented in Figure 11. HLS is supported by the HTML5; thus, when linking

playlist.m3u8 using the <video> tag, the client can play media in a standard web page through

the URL written in the playlist using the HLS protocol.

4. Result of the HTTP Live Streaming Play Test

Experiments for HLS playback were performed on iOS 7.0.4 (iPhone 4S), Android 4.4

(Nexus7) and Android 4.3 (Galaxy S4). As shown in Figure13, the streaming data for the IP

camera is played in real-time on an iPhone without any plug-ins. The real streaming data has

delay of 30 seconds because the real-time streaming can be started after the playlist have 3

MPEG-2 TS files which have 10 seconds duration each. This feature is summarized in Table I

as End-to-End Latency of 30 seconds for HLS protocol. HLS protocol is also supported in an

Android device which has Galaxy S4 browser; however, a simple problem is encountered in

the Android devices [12, 15]. Playback is possible in Android devices when it is done through

additional media playback application programs such MXplayer or DicePlayer. MXPlayer is

installed in Android machine as a default media player. Figure 14 shows live streaming

demonstration in Android 4.3 with MXPlayer. We expect that Android will support HLS

protocol [15] then live streaming is achieved on Android machines without playing any

multimedia players.

<html>

 <head>

 <title>HTTP Live Streaming Example</title>

 </head>

 <body>

 <video src="http://www.example.com/hls_test/playlist.m3u8"

 height="300" width="400" controls></video>

 </body>

</html>

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

Copyright ⓒ 2014SERSC 49

Figure 12. Live Streaming of HLS on iOS7 without any Plug-ins

Figure 13. Live Streaming of HLS on Android 4.3 with MXplayer

5. Conclusions

HTTP based live streaming has the better traversal of NAT and firewalls, ease of

deployment and built-in friendly bandwidth sharing. One of adaptive streaming approaches

over HTTP is Apple’s HLS. This paper details a method for realizing HLS for a commercial

IP camera since IP cameras are major devices for security surveillance system.

This implementation follows the MPEG standard and HLS protocols so client device is

able to play live stream data on Apple devices without any plug-ins. This paper utilizes

FFMPEG library to use the transcoding capabilities when making MPEG-2 TS files.

FFMPEG library supports many container formats include MPEG-2 TS and raw H.264.

Generally, the commercial IP cameras produce raw image data encoded with H.264 format

and HLS is based on MPEG-2 TS files. Therefore, FFMPEG library is useful to implement

HLS protocol and the function of FFMPEG is ported into the IP camera as an embedded

system program.

In order to generate live streaming continuously, we developed a thread program to update

M3U playlist files which contains three TS files of 10 seconds duration. Based on HTML5 in

the Web server, live media was played on the client by using an Apple Device without any

kinds of plug-ins. For Android devices, we have to use a default media player. Results

showed that 30 seconds latency due to the standard of HLS which have three TS files prior to

send media data to the client.

International Journal of Software Engineering and Its Applications
Vol.8, No.6 (2014)

50 Copyright ⓒ 2014 SERSC

Acknowledgements

This study was financially supported by Seoul National University of Science and

Technology.

References

[1] Apple Inc., “HTTP Live Streaming Overview”, iOS Reference Library, (2014).

[2] R. Pantos, W. May and Apple Inc., “HTTP Live Streaming: draft-pantos-http-live-streaming-12”, IETF draft,

(2013) October.

[3] L. R. Romero, “A Dynamic Adaptive HTTP Steaming Video Service for Google Android”, MS Thesis, KTH

Information and Communication Technology, (2011).

[4] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP - Standards and Design Principles”, ACM

Multimedia Systems Conference (MMSys), San Jose, California, USA, (2011) February 23-25.

[5] G. J. Yang, B. W. Choi and J. H. Kim, “Implementation of HLS Protocol for an IP Camera”, AST

Letters. Networking and Communication, Jeju Island, Korea, (2014) April 15-18.

[6] A. Biernacki and K. Tutschku, “Performance of HTTP video streaming under different network conditions”,

Multimedia Tools and Applications, (2013).

[7] C. Knowlton, “Adaptive Streaming Comparison: The Official Microsoft IIS”,

http://www.iis.net/learn/media/smooth-streaming/adaptive-streaming-comparison, (2010).

[8] Microsoft Corporation, “ISS Smooth Streaming Transport Protocol”, (2009).

[9] H. Schulzrinne, U. Columbia, A. Rao, R. Lanphier Netscape and RealNetworks, “Real Time Streaming

Protocol (RTSP)”, RFC 2326, IETF draft, (1998).

[10] AVT Working Group, H. Schulzrinne, GMD Fokus, S. Casner, Precept Software, Inc., R. Frederick, Xerox

PARC, V. Jacobson and LBN Lab, “RTP: A transport protocol for real-time application”, RFC 1889. IETF

draft, (1996).

[11] Adobe Systems Inc., “Real-Time Messaging Protocol (RTMP) specification”, (2009).

[12] J. Wijering, “The State of HTML5 Video”, http://www.jwplayer.com/html5/, (2013).

[13] X. Yan, L. Yang, S. Lan and X. Tong, “Application of HTML5 Multimedia”, International Conference on

Computer Science and Information Processing, Xi'an, Shaanxi, China, (2012) August 24-26.

[14] T. Berners-Lee, MIT/LCS, R. Fielding, U. C. Irvine, L. Masinter and Xerox Corporation, “Uniform Resource

Identifiers (URI): Generic Syntax”, RFC 2396, IETF draft, (1998).

[15] Android Devices Supported Media Formats, “http://developer.android.com/guide/appendix/media-

formats.html”.

[16] Apache Software Foundation, “http://www.apache.org/”.

[17] FFMPEG, “http://FFMPEG.org/”.

[18] Seyeon Tech., “http://www.flexwatch.co.kr”.

