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A High-Throughput and Power-Efficient FPGA
Implementation of YOLO CNN

for Object Detection
Duy Thanh Nguyen , Tuan Nghia Nguyen , Hyun Kim , Member, IEEE, and Hyuk-Jae Lee , Member, IEEE

Abstract— Convolutional neural networks (CNNs) require
numerous computations and external memory accesses. Frequent
accesses to off-chip memory cause slow processing and large
power dissipation. For real-time object detection with high
throughput and power efficiency, this paper presents a Tera-OPS
streaming hardware accelerator implementing a you-only-look-
once (YOLO) CNN. The parameters of the YOLO CNN are
retrained and quantized with the PASCAL VOC data set using
binary weight and flexible low-bit activation. The binary weight
enables storing the entire network model in block RAMs of
a field-programmable gate array (FPGA) to reduce off-chip
accesses aggressively and, thereby, achieve significant perfor-
mance enhancement. In the proposed design, all convolutional
layers are fully pipelined for enhanced hardware utilization.
The input image is delivered to the accelerator line-by-line.
Similarly, the output from the previous layer is transmitted to
the next layer line-by-line. The intermediate data are fully reused
across layers, thereby eliminating external memory accesses. The
decreased dynamic random access memory (DRAM) accesses
reduce DRAM power consumption. Furthermore, as the con-
volutional layers are fully parameterized, it is easy to scale up
the network. In this streaming design, each convolution layer is
mapped to a dedicated hardware block. Therefore, it outperforms
the “one-size-fits-all” designs in both performance and power
efficiency. This CNN implemented using VC707 FPGA achieves
a throughput of 1.877 tera operations per second (TOPS) at
200 MHz with batch processing while consuming 18.29 W of
on-chip power, which shows the best power efficiency compared
with the previous research. As for object detection accuracy,
it achieves a mean average precision (mAP) of 64.16% for the
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PASCAL VOC 2007 data set that is only 2.63% lower than the
mAP of the same YOLO network with full precision.

Index Terms— Binary weight, low-precision quantization,
object detection, streaming architecture, you-only-look-once
(YOLO).

I. INTRODUCTION

OBJECT detection is a challenging task in computer
vision. Lately, deep learning has been widely adopted

in object detection owing to the support of powerful com-
putation devices, such as GPU. Therefore, several promising
approaches have been proposed for object detection with deep
learning, such as single-shot-multibox-detection (SSD) [1],
faster R-convolutional neural network (CNN) [2], and you-
only-look-once (YOLO) [3]. YOLO performs one of the
best tradeoffs between the accuracy and the speed for object
detection. It is a single neural network that predicts the object
bounding boxes and class probabilities in a single evaluation.

Although GPU is widely used for processing deep learning
algorithms, such as YOLO, it becomes inefficient in opti-
mization, such as the selection of the width of the data
bit and scheduling data access by the external memory.
Therefore, extensive research has been conducted to design
a deep learning accelerator for application-specific integrated
circuit (ASIC) and a field-programmable gate array (FPGA)
to address this challenge. FPGAs have been widely used for
high-efficient deep learning owing to their flexible design
and short development cycles. Several implementations use
the floating-point representation that has a large computation
cost [4]–[6]. Recent works have demonstrated that a floating-
point representation is unnecessarily redundant [7], and the
CNNs can be retrained and quantized to a very low-bit preci-
sion (1 or 2 bits) without significant loss of accuracy [8]–[10].
The quantization enables the design of a fast and power-
efficient CNN accelerator using an FPGA that stores the entire
quantized CNN model in its on-chip block RAMs of tens to
hundreds of Mb. For example, Virtex Ultrascale+ is an FPGA
comprising block RAMs (up to 500 Mb) arranged in small
units, thereby providing extremely high memory bandwidth
and low-power compared with a design using a single big static
random access memory (SRAM) or off-chip memory. Thus,
FPGA combined with low-bit CNN quantization enables to
design a low-power accelerator for deep networks offering a
throughput of the order of tera operations per second (TOPS).
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There are a number of FPGA designs using Vivado
high-level synthesis (HLS) [4], [6], [11]–[13]. However, these
are inefficient in terms of both hardware resource and perfor-
mance. Zhang et al. [4] present a single processing engine (PE)
using a theoretical roofline model to design an accelerator
for the execution of each layer. However, the accelerator is
found to consume a significant portion of the FPGA chip while
running at a modest throughput of 61 giga operations per sec-
ond (GOPS) for a small network of five levels. Designs in [6]
and [13] propose a fused-convolutional layer to reduce the off-
chip accesses by optimizing the intermediate data between the
neighboring layers in a group. Nevertheless, the authors report
a significantly larger number of block RAMs (for storing
intermediate data) and DSPs (due to additional control logic).
Similar to [4], the CNN accelerator in [11] optimizes the
data path using loop unrolling and tiling for the enhanced
performance of each layer. The authors also use Vivado HLS
to design the CNN accelerator for each layer, which is mapped
to the PE in their accelerator in a pipelined manner. However,
the entire intermediate feature-maps generated from each layer
are stored in a double buffer so that this scheme does not
scale well when the CNN becomes deeper owing to the
demand of large buffers. The design in [14] also faces the
same problem even though it delivers high performance for
the AlexNet network. Another recent work using Vivado HLS
in [12] employs the same optimization as proposed in [4].
In addition, the available resources are partitioned to make
multiple convolutional layer processors (CLP) of smaller size
rather than a single large CLP. This paper proposes a scheme to
decide the number of required CLPs, the resource partitioning
among these CLPs, and a scheduling algorithm to utilize
their concurrent operations effectively. As the network is not
quantized, the intermediate data are generally too large to
be stored in on-chip memory. Hence, all CLPs read their
inputs and write their outputs to external memory. Conse-
quently, this design requires a very high memory bandwidth.
Facing a similar problem, an approach in [15] presents a
register-transfer level (RTL) compiler to generate an RTL code
for each layer of a given network. In this design, each layer
also reads inputs and writes outputs to a dynamic random
access memory (DRAM). Each layer operates sequentially,
which means that the next layer starts only when the current
layer finishes its computation. This nonpipelined processing
and frequent accesses to external DRAM lower the processing
speed significantly.

Unlike a conventional convolution, the Winograd minimal
filtering algorithm introduced in [16] is employed in [17]
and [18] to speed up the convolutional computations. In [17],
additional optimizations, including loop unrolling and tiling,
are proposed to increase the throughput up to 1382 GOPS
for AlexNet. With the same filtering algorithm, the design
in [18] achieves a throughput of 2.94 TOPS for VGG network.
Nevertheless, this design still demands an excessive number
of DSPs and look-up tables (LUTs) even though the Winograd
algorithm reduces the number of multipliers significantly.
Moreover, the design of a single large convolutional layer
has an inherent drawback. The authors also report that the
performance of the network decreases, as it goes deeper owing

to the overhead of data transfer back and forth between the
CNN accelerator and external memory.

To reduce expensive external memory accesses, the reso-
lution of number representation is reduced in [19] and [20].
They aggressively quantize the weight and the activation to
a single bit. The multiplier-accumulator (MAC) operation is
replaced with a low-cost pop-count computation, and the com-
parator in a max-pooling layer is implemented by an OR gate.
Liang et al. [20] report the need for the floating-point number
for batch normalization to avoid severe degradation of the
accuracy. This shows an example that the performance of the
binary network is very poor for a challenging data set, such as
ImageNet.

For the implementation of YOLO, several FPGA designs
have been proposed. Tincy YOLO, presented in [21], uses an
extended version of the design in [19] to off-load 12 hidden
layers to programmable logics in Zynq Ultrascale+ FPGA.
The hardware accelerator processes these hidden layers one
by one. Moreover, the first and last layers are run on software
causing a low frame rate. Lightweight YOLO-v2 is proposed
in [22] to combine a binary network with support vector
machine (SVM) regression. The authors design a shared
streaming binary convolutional circuit in which each layer
is processed sequentially. Although these previous designs
succeed in the speed up by reducing the complexity of the
algorithm, they do not consider the reduction of external
memory accesses.

To avoid the frequent off-chip access for intermediate data
or large interlayer double buffers caused by unoptimized
data path in previous works, this paper proposes an efficient
Tera-OPS streaming architecture design. YOLOv2 network [3]
is used for evaluating the performance of the proposed FPGA
design in terms of both hardware performance and detection
accuracy. The network is retrained and quantized using 1-bit
weight and flexible low-bit activation. The main contributions
of this paper are summarized as follows.

1) A binary weight, flexible low-bit activation,
hardware-centric quantization, and a retraining method
for YOLO CNN are presented. This paper shows that
even the binary weight and 3-to-6-bit activation are
adequate to realize the desired accuracy of object
detection. The advantages of this quantization are as
follows: 1) it requires a minimum number of DSPs,
as the convolutional kernel contains only summations
and 2) binary weight enables storing the entire network
model in an on-chip memory to minimize the off-chip
accesses, thereby enhancing the performance.

2) A scalable and high-accuracy streaming architecture for
real-time object detection is proposed. The intermediate
data are reused to minimize the size of the input buffer of
each convolution layer while eliminating the accesses to
the off-chip memory. The convolutional layers are fully
parameterized. Thus, it is easy to change the network
structure.

3) The proposed architecture is implemented, and its rela-
tive merits are highlighted by comparing with the pre-
vious works. A real-time demo for the object detection
is also presented.
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Fig. 1. Convolutional computation.

Algorithm 1 Pseudocode for Original Convolution Layer

4) The proposed method can be easily extended to the
previous designs as well as YOLO-v2. It can also expect
a considerable enhancement in throughput by solving the
off-chip access that suffered in the previous designs.

The rest of this paper is organized as follows. Section II
introduces the CNN, YOLO-v2, and low-precision network
quantization/retraining. Section III presents the optimization
of the algorithm for the proposed design. The proposed archi-
tecture is elaborated in Section IV. The experimental results
are shown in Section V. Finally, Section VI concludes this
paper.

II. BACKGROUND

A CNN is typically composed of basic layers: convolution,
normalization, pooling, and fully connected. Considering that
the focus is on object detection, the fully connected layer is
not discussed in this paper.

A. Conventional CNN

1) Convolutional Layer: The convolutional layer is used to
extract higher features from the input image. The convolutional
computation is shown in Fig. 1. The input image, comprising
N channels, is convolved with M number of N-channel filters
to produce an M-channel output image. Each kernel has a size
of K × K . Algorithm 1 elaborates the convolutional operation
in detail. For simplicity, the stride is assumed to be 1, and the
bias is assumed to be 0. As a result, the output image has the
same size as the input image.

Algorithm 2 Pseudocode for Original 2 × 2 Max-Pooling
Layer With Stride = 2

The number of operations for a convolutional layer can be
calculated as NOPS =2×K×K×M×N×H×H . The constant
value 2 implies that each MAC needs a multiplication and an
addition.

2) Max-Pooling Layer: The max-pooling layer is used to
reduce the size of the feature-maps, thereby reducing the
amount of computation in the network, and to control the
overfitting. The original max-pooling computation is explained
in Algorithm 2. The size of the output image from the
max-pooling layer is half of that of the input image.

3) Batch Normalization: Batch normalization [23] has
proven to be effective in training the CNN. It helps the training
to converge faster and prevent the network from overfitting.
With batch normalization, the output of each convolutional
layer is normalized to reduce the internal covariate shift. It is
essential for both the training and inference phases.

The original batch normalization is as follows:

y = γ (i)(act − μ(i))
√

[σ (i)]2 + ε
+ β(i) (1)

where y and act are the outputs of batch-normalization and
convolutional computation, respectively. μ(i) and [σ (i)]2

are
the channelwise mean and variance of activations, respectively.
γ (i) and β(i) are the channelwise scale and bias, respectively.

B. Quantization of CNN Using Binary Weight
and Low-Bit Activation

1) Binary Weight: Weights of each kernel are represented
by only two values as shown in the following:

wb(i)
j =

{
1, if w(i)

j > 0

−1, if w(i)
j ≤0

(2)

where W b(i)
j is the binary weight and W (i)

j is the original
weight value j th in the i th kernel. For binary weight network,
the convolutional layer is formulated as follows:

act = (x ⊗ wb(i)) × μ
(i)
W = xW (i) × μ

(i)
W (3)

where μ
(i)
W is the mean of weights of the i th channel and

x is the input activation that is convolved with the i th weight
kernel.

2) Uniform Quantization for Activation: Activations are
quantized and represented by a fixed number of bits. Provided
the number of bits and quantization step s, the quantized values
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are computed by (6)

qmax = s × (2n−1 − 0.5) (4)

p(x) = s ×
(

round
( x

s
+ 0.5

)
− 0.5

)
(5)

q(x) =

⎧
⎪⎨

⎪⎩

qmax, if p(x) > qmax

−qmax, if p(x) < −qmax

p(x), otherwise.

(6)

III. ALGORITHMIC OPTIMIZATION FOR THE

PROPOSED STREAMING ARCHITECTURE

A. Hardware-Centric Quantization

This paper presents a method to train a low-precision model
for the proposed streaming hardware accelerator. Previous
studies in [8] and [20] show that the last layer is highly
sensitive to low-precision quantization. Therefore, the weights
in this layer are quantized to an 8-bit fixed point, and the
activations are quantized to a 16-bit fixed point to minimize
the loss of accuracy of quantization. In other layers including
the first layer, the weights and output activations are quantized
to 1 bit and 3–6 bits, respectively. It is noteworthy that the
input image is in the RGB format for the first layer.

1) Optimization for Batch Normalization: To reduce the
number of calculations at the inference phase, (1) is refor-
mulated as follows:

y = xW (i) × γ (i)
w + β(i)

w (7)

where γ
(i)
w and β

(i)
w are the new scale and bias factors that can

be computed beforehand

γ (i)
w = μ

(i)
W × γ (i)

√
[σ (i)]2 + ε

(8)

β(i)
w = − μ

(i)
W × μ(i)

√
[σ (i)]2 + ε

+ β(i). (9)

As the batch normalization parameter is sensitive to small
errors, the new scale and bias factors are quantized to 16-bit
fixed-point value to minimize the accuracy loss. By using (7),
the hardware for batch normalization requires only one mul-
tiplication and one addition, thereby reducing the data-path
delay.

2) Leaky Rectified Linear Unit: Compared with the rectified
linear unit (ReLU), the leaky ReLU helps prevent the neurons
from dying during training; thus, it is more stable. The
leaky coefficient a is chosen as 0.125 empirically for both
the training and inference phases to replace floating-point
multiplication by a 3-bit right shift operation

g(x) =
{

x, if x> 0

ax, if x ≤ 0.
(10)

3) Flexible Low-Bit Activation Quantization: Activations
are quantized and represented by a fixed number of bits
as shown in (4)–(6). The research in [24] shows that each
convolutional layer is quantized using a different number of
bits while preserving the accuracy of the quantized network.
The layers, which have a large number of parameters, seem
to be more redundant. Thus, they can be quantized using less
number of bits. Following this finding, the activations from
different layers of YOLO CNN are flexibly quantized. For Tiny
YOLO-v2 [3] (6.97 GOP) and Sim-YOLO-v2 (a simplified
version of YOLO-v2 with 24 layers, 18.95 GOP), the number
of bits for activation ranges from 3 to 6 bits. The chosen step
size is a power-of-two value so that the quantization requires
only shift operations instead of multiplications. It should be
noted that this quantization is a nonzero scheme (symmetric
quantization). There is no zero value in the quantized output
(i.e., the quantized value can be ±1,±3, . . .). The zero-
center quantization scheme performs a bit worse than the
former scheme. Moreover, it has an odd number of quanti-
zation levels (i.e., the quantized value can be 0,±1,±2, . . .).
Thus, one quantized level is wasted. The experiments show
that the symmetric quantization performs better than the
zero-centered quantization. The quantized network with 1-bit
weight and flexible low-bit activation reduces the model size
by approximately 30×, and the activation size is reduced by
5.4×. Moreover, the recent FPGA generations have a rich
on-chip SRAM resource. For example, 7 Series VC707 FPGA
board has 1030 units of 36-Kb block RAMs (approximately
4.6 MB), and Virtex Ultrascale+ FPGA chip includes on-chip
memory integration up to 500 Mb. Hence, this quanti-
zation enables storing the entire model of Sim-YOLO-v2
(or even much deeper networks) in block RAMs of the FPGA
chip. As a result, the off-chip memory accesses are signif-
icantly reduced. Thus, the system performance is boosted,
and power dissipation is reduced. Besides, the quantization
also helps reduce the hardware cost (by removing expensive
multiplications).

B. Data-Path Optimization for the Streaming Computation

Algorithm 1 explains the original loop computation for
a convolutional layer. To run it efficiently on a dedicated
hardware with limited resources, the loop computation needs
to be optimized. To solve this problem, the loop reordering
and tiling are proposed in [6], [11], [13], and [14]. Nev-
ertheless, the output of the entire intermediate feature-maps
from each layer is stored in the block RAMs. Moreover,
designs in [6], [11], and [14] use doubled buffer to pipeline the
computation. This scheme does not scale well when the CNN
becomes deeper because it consumes a large number of block
RAMs. For example, Tiny YOLO v2 has nine convolutional
layers, and the number of feature-maps is 5.8 million. If each
feature-map is quantized to 16 bit, it requires 5.8×2×2= 23.2
MB of block RAM for the doubled buffer. To reduce the size
of block RAM, studies in [4], [12], [18], [20], and [25] save the
intermediate data for each layer in off-chip memory. Hence,
the frequent off-chip accesses slow down the computation,
thereby consuming more power.
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Fig. 2. Scheduling for streaming convolutional layer. (a) No weight reuse.
(b) Fully weight reuse. (c) Proposed line-based weight reuse and input
feature-maps fully reuse.

The target of this paper is to eliminate the off-chip accesses
for intermediate data while minimizing the on-chip SRAM.
To achieve this, there should be a data-path optimization
to efficiently use the temporary data. As proposed in [4],
this paper also uses the block-based computations to achieve
the tradeoff between hardware resource and performance.
However, scheduling the data movement efficiently in stream-
ing convolutional computation is further investigated. Fig. 2
presents three scheduling schemes covering all the possibilities
of weight reuse. The advantages and drawbacks of each
strategy are analyzed in the following.

In the first strategy in Fig. 2(a), there is no weight reuse.
The input sliding cube moves from the beginning toward the
end of the channel dimension. Therefore, each sliding cube
is convolved with a new weight block. All these values are
accumulated to produce a final output. This scheme has the
best locality of the partial sum. Thus, it does not require a
temporary buffer for the accumulation. The input buffer size
is K × N × H × Q A , where Q A is the bit width of input
feature-maps. To overlap the computation between layers,
the number of buffer rows is increased from K to (K + 1).
However, the weight model needs to be read H 2 times, which
is inefficient for a large weight model.

The second scheme shown in Fig. 2(b) maximizes the
weight reuse, which is implemented in [11] and [14]. Each
weight is reused for the whole input channel (i.e., reuse
H 2 times). At a time, Ti input planes are convolved with

each of To weight blocks. The temporary accumulations are
stored in an output buffer. The SRAM size of this doubled
output buffer is 2 × To × H 2 × QS , where QS is the bit
width of the accumulation before quantization. To produce the
final To output feature-maps, the entire input feature-maps are
accessed. Hence, to generate output feature-maps, the input
feature-maps are repeatedly read M/To times. Because the
entire input feature-maps are read multiple times, the tempo-
rary buffers must be large to store them. Moreover, to pipeline
between layers, the buffer size should be doubled, which is
2×H 2 × N × Q A .

The scheme proposed by this paper is shown in Fig. 2(c).
The streaming process is explained as follows. The input
sliding cube (i.e., K × K × Ti pixels) slides along the
width of the input image, which is called a row pass. The
input sliding cube is convolved with To weight blocks each
time to produce To temporary output values. These weight
blocks are reused for a row pass. These To computations are
processed in parallel and saved in the line buffers, thereby
creating To temporary output channels. The input sliding cube
then shifts Ti channels toward the end of N-input channels.
In the next row pass, new To weight blocks are fetched and
convolved with the sliding cube. The convolutional outputs are
accumulated with the corresponding values from line buffers
and then saved in the line buffers. This operation repeats
Ni = N/Ti times until all the N input channels are computed.
The values in the line buffers at this time are the final To

output channels, which are then forwarded to the next layer.
This computation is performed when all the M output channels
are forwarded to the next layer. To finish the processing for
one line, the entire weight of the model is accessed from
the memory. For the next row computation, the sliding cube
shifts down by one row and then repeats the above-mentioned
process. Therefore, to process the whole input feature-maps,
the weights are read H times. As the weights are stored in
on-chip SRAM, and the weight prefetching can be applied
to hide the latency, the weight accesses do not cause system
degradation. The computation of a convolutional layer is
performed when all lines are processed. It is noteworthy that
each row of input feature-maps is reused K times. Regarding
the hardware resource, the input buffer size for pipelining is
(K +1)×N ×H ×Q A , and the temporary accumulation buffer
size is To × H × QS .

The partial output from a layer is input directly to the next
layer without going back to external memory. In addition, it is
noteworthy that the partial output parameter To of a layer is the
partial input parameter Ti of the next layer to minimize the cost
of the control logics and block RAM banks. The parallelism
parameters, such as Ti and To, are chosen to achieve the best
tradeoff between the hardware cost and performance.

Table I summarizes the three scheduling schemes. It should
be noted that Q A is much smaller than QS after quantization.
As analyzed previously, the first strategy (i.e., no weight reuse)
is not efficient enough owing to the frequent weight read
and no input reuse (i.e., no overlapped sliding windows).
The second scheme (i.e., full weight reuse) has the best weight
reuse among the three schemes, but it operates with framewise
computation, which requires a large interlayer doubled buffer
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TABLE I

COMPARISON OF THREE SCHEDULING SCHEMES
FOR STREAMING PROCESSING

Fig. 3. Overview of the proposed streaming architecture.

for pipelining. In batch mode, the buffer and convolution
kernel increase linearly as the batch size increases. The next
layer can start only after the entire output of the previous layer
is computed. On the other hand, the proposed scheme requires
smaller buffers and causes a smaller delay between the layers
(i.e., line delay). The weight prefetching can be used to hide
the latency of the weight read. It is also noteworthy that the
proposed scheme does not incur hardware resource overhead
in the batch mode. Therefore, the proposed line-based weight
reuse scheme outperforms the other schemes in terms of both
hardware cost and performance.

IV. PROPOSED STREAMING ARCHITECTURE

A. Overview of Accelerator Architecture

Fig. 3 presents the overall block diagram of the proposed
design, which is straightforward yet proven to be very efficient.
The aggressively quantized model is stored entirely in block
RAMs. The input to each layer is given line-by-line. Instead
of a large doubled buffer as proposed in [6], [11], and [14],
each layer requires only an additional line buffer to overlap
the computation between layers. In the streaming design,
the timing optimization of each layer is crucial. As each layer
processes a different amount of computation at a different
speed, there must be synchronization between layers for cor-
rect operation. This design uses the handshake mechanism to
synchronize the operation of all layers. It is noteworthy that
the streaming style completely eliminates the off-chip access
for intermediate results, which was a limitation of the previous
works in [4], [12], [18], [20], and [25]. The DRAM is accessed
only for the input image and the final detection results.

B. Streaming Design of the Convolutional Layer

Fig. 4 shows the proposed architecture for a streaming
convolutional layer. It is noteworthy that the kernel size
(i.e., 3 × 3) can be changed easily, as the proposed design
is fully parameterized. For better understanding, Fig. 4 is
explained in conjunction with Fig. 2(c). In Fig. 4(a), the input
buffer includes four lines of SRAM (for the case of 3 × 3
kernel). This additional buffer enables the overlapping of
the computation of the current layer and the previous layer.
A partial input from the previous layer is written to a line
buffer while the data from other three line buffers are sent to
To PEs for computation. As described in Section III, the input
sliding cube slides along the width of the line buffers to send
the data to each PE. In each PE, the Ti 3 × 3 input data
are convolved with corresponding 1-bit 3 × 3 weight kernel,
as shown in Fig. 4(b). Then, the 3 × 3 results are summed up
using two-stage ternary adders (i.e., three-input adder). The
results from each Ti kernel are input to a pipelined adder tree.
The output data from the adder tree are saved temporarily to
the buffers. In the next iteration, the next Ti input channels
are sent to the PEs, the outputs from adder tree are summed
up with the corresponding value in the buffers, and then,
the resulting values are saved to the buffers. This iteration
is performed when N input channels are sent to the PEs, and
the values in the temporary buffer are the final convolutional
values. The computation for each line is performed when
all M output channels are calculated. This input line is no
longer needed, and hence, it can be replaced by the next line.
Thus, this feature-maps reuse scheme does not require writing
back to DRAM, and consequently, the memory bandwidth
can be significantly reduced. The outputs from convolutional
computation are input to the batch normalization module that
includes both quantization and leaky activation as described in
Section III. The output from the batch normalization layers are
the final quantized values that are concatenated and forwarded
to the next layer. It should be noted that the number of bits
to quantize the activations are less than the number of bits
to represent the real value of activations. For example, the
activations of a layer are quantized to 6 bit, and it needs seven
bits to represent the real value of activations

real_value = step

2
∗ (2 ∗ quantized_value + 1). (11)

This representation saves the 1/7th size of SRAM for input
line buffers at the cost of one more addition. The SRAM size
for the circular buffer is 4 × C × N × Q A , where C is the
width of the input image. In this streaming design, the partial
inputs come to a layer in the same way, as they are read
out for computation. Therefore, it is efficient to have a single
deep SRAM to store multiple partial-line inputs sequentially,
as shown in Fig. 5. This storage scheme utilizes the block
RAMs of FPGA effectively. The depth and width of SRAM are
N/Ti ×C and Ti ×Q A , respectively. Ti is chosen, such that the
SRAM width is not too large, and thus, the number of block
RAMs needed for a line buffer is minimum. Ti and To are the
parallelism factors chosen to achieve the best tradeoff between
the performance and hardware cost. It is also noteworthy that
the number of bits for the input and output activations can be
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Fig. 4. Streaming design of a convolutional layer. (a) Architecture of a 3 × 3 convolutional layer. (b) Design for 1-bit weight and low-bit activation 3 × 3
Kernel.

Fig. 5. Memory storage for a line buffer composed of multiple partial lines.

flexibly changed during the design phase to achieve the best
performance.

For signed addition, this paper uses binary adder trees with
pipelined registers added between each stage to achieve a high
clock speed. The bit width of each pipeline stage is flexibly
changed to minimize the hardware cost.

The computation of the convolutional layer has two basic
tasks: parameter fetching and computation. To increase the
speed of computation, the parameters are fetched beforehand.
The size of the weight buffer is doubled, and it works as a
ping-pong buffer. The period of each pipeline stage is equal
to that of the longest task. This optimization increases the
throughput of a layer significantly.

The design of the 1 × 1 convolutional layer is similar to
that of the 3 × 3 layer. The only differences are: 1) the input
buffer requires only two lines of memory and 2) there is no
need of Ti 3 × 3 kernels; instead, the input is multiplied with
binary weight and then input to adder tree.

For efficient prefetching of weight in order to speed up the
convolutional computation, the weights in block RAMs need to
be in a predefined pattern. Fig. 6 describes the proposed weight
memory pattern to support partial convolution. Each weight
block contains weights for To PEs, each of which computes
the partial convolution for Ti input channels. Weight blocks
are stored sequentially in memory according to the processing
order. Weights from memory are loaded to the weight buffer
block-by-block at consecutive addresses. This weight block is

Fig. 6. Weight memory pattern for efficient weight prefetching.

Fig. 7. Streaming architecture of a 2 × 2 partial max-pooling layer.

reused for each line of the Ti input channels. To produce one
line of final output, the whole weight for that layer is loaded.
Hence, each layer needs to load an image-width number of
times to process the entire image. For layers with a large
number of kernels, it does not incur many weight reloads from
block RAMs, as the width of the input image is rather small.

C. Streaming Design of Max-Pooling Layer

The streaming design of the 2×2 partial input max-pooling
layer is shown in Fig. 7. It is noteworthy that this layer requires
one line of a buffer with a depth of half of the width of the
input image. The partial input from the convolutional layer
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is latched, and the latched input is then compared with the
input. If the current row is even (assume that row counts
from zero), the comparison results are stored in the line
buffer. Otherwise (i.e., the current row is odd), the comparison
results are compared one more time with the value in the
corresponding address in the buffer. The final comparison
results are concatenated to produce the Ti -channel outputs.

D. Resource-Aware Parallelism

The aforementioned parameters Ti and To are chosen to
achieve the best performance of the streaming architecture
in terms of both throughput and hardware cost. As shown
in Fig. 2, the parallelism factor is Ti × To. Larger values of
Ti and To can achieve more throughput in the convolution
layer. However, as the network is very deep, each big layer
contributes to the hardware resource substantially. Therefore,
Ti and To should be carefully selected. For a convolutional
layer that computes N-channel inputs to produce M-channel
outputs, the number of repetitions of the partial computation
and accumulation to produce a final output is Ni = N /Ti .
In addition, To output channels are computed in parallel.
Thus, the number of repetitions required to compute all output
channels is Mo = M/To. It is noteworthy that Ti and To are
the divisors of N and M , respectively, to avoid a complicated
design and underutilization of the computation kernels.

The delay of each block-based computation for each kernel
size (i.e., 1 × 1 and 3 × 3) is given as follows:

t1×1 = 8 + log(Ti ) (12)

t3×3 = 10 + log(Ti ). (13)

Here, the specific numbers, such as 8 and 10, are present owing
to the certain pipeline stages in the convolutional kernel.

Hence, the computation time per line for each layer
(depends on the kernel size) is given as follows:

T1×1 = (8 + log(Ti )) × C × N

Ti
× M

To
(14)

T3×3 = (10 + log(Ti )) × C × N

Ti
× M

To
(15)

where C is the width of the input image. It should be
noted that the computation time varies for each group of a
layer. For example, owing to the 2 × 2 max-pooling layer,
two lines are computed in CONV1 to produce one line for
CONV2. Similarly, CONV2 needs to compute two lines to
produce one line for CONV3, and so on. To achieve the
maximum efficiency of pipeline processing, the computation
time for each layer should be similar. It is noteworthy that
the Ti parameter of the current layer is the To value of
the previous layer. Therefore, the parallelism factors for two
consecutive convolutional layers (denoted in layer 1 and 2 in
the following) present in different groups should satisfy the
following condition:

2 × (10 + log(Ti1)) × C1 × N1

Ti1
× M1

To1

≈ (10 + log(Ti2)) × C2 × N2

Ti2
× M2

To2
(16)

Fig. 8. Batch processing.

where M1 = 2 N1 = N2 = 0.5 × M2, C1 = 2 C2, and
To1 = Ti2. Hence, the condition is simplified as

(10 + log(Ti1)) × 1

Ti1
≈ (10 + log(To1)) × 1

To2
. (17)

The convolutional layers in the same group process the input
images of the same size, N1 = M2, and M1 = N2. Therefore,
the condition is simplified as follows:

(10 + log(Ti1)) × 1

Ti1
≈ (8 + log(To1)) × 1

To2
. (18)

Multiplications are mapped to DSPs in FPGA. Hence,
DSPs are used only for the batch normalization module.
Therefore, the number of DSPs in each layer except the last
layer is only To. As the last layer requires multiplications of
weights and input feature-maps, the number of DSPs is Ti ×
To + To. Given the number of available DSPs, the parallelism
parameters of all layers must satisfy the following condition:

T (n)
o × T (n−1)

o +
n∑

i=1

T (i)
o ≤ DSPsavailable (19)

where n is the number of layers and T (i)
o is the To value

of nth layer. For each PE in Fig. 4, there are 4 × Ti ternary
adders and Ti +1 binary adders. Therefore, in the convolutional
kernel in each layer, there are To × (5 × Ti + 1) adders. It is
noteworthy that the ternary adder is implemented efficiently
using the LUT6 and carry chain in the same slice for the
Virtex-7 FPGA chip, thereby saving the area and achieving
high frequency [26]. Consequently, it requires only two cycles
to reduce nine inputs to a single output while guaranteeing a
high speed of 200 MHz.

E. Batch Processing

As shown in Fig. 8, the streaming architecture with pipelin-
ing enables the ability to run computation in batch mode to
fully utilize the pipeline processing. Each layer is delayed
by 1-to-4 input lines from the previous layer. Because the
network is very deep, the delay from the first layer to the
last layer becomes large. If a single frame is processed at a
time, the first layers are underutilized for a definite period.
The idea of batch processing is that, while the layers at the
end of the networks run the first image, the first layers, which
finish running the first image, can start running for the second
image to utilize the idle period. The batch processing mode
increases the throughput significantly.
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TABLE II

ACCURACY (MAP) OF QUANTIZED TINY YOLO
CNN (W: WEIGHT AND A: ACTIVATION)

To define the processing time and speedup, the T , D, L,
and n are defined as follows. T is the frame processing time
for the last layer, D is the delay from the first layer to the
last layer, L is the latency between the last layers of two
consecutive frames, and n is the batch-size. The processing
time of a frame for normal mode is T + D. The processing
time for a batch size of n is D + n × T + (n − 1) × L. The
speedup can be derived as follows:

speedup = T + D

T + L + (D − L)/n
. (20)

Larger the batch-size results in bigger throughput. It is note-
worthy that the accelerator with batch-mode support does
not require any additional hardware resource owing to the
pipelined processing scheme.

V. EXPERIMENTAL RESULTS

A. Low-Bit Quantization

The quantized network is retrained using Darknet [27]
deep learning framework. The YOLO CNN is trained using
PASCAL VOC 2007+2012 data set and tested using PASCAL
VOC 2007. Table II shows the accuracy of the quantized Tiny
YOLO-v2. The quantized network with 1-bit weight and 6-bit
activation (i.e., 1-b W and 6-b A) incurs an accuracy loss of
approximately 2.5% compared with the full-precision network.
The model size is reduced by 30×, and the activation size is
reduced by 5.4×.

To justify the efficiency of the proposed streaming architec-
ture in computing the deeper networks, the quantization of a
deeper network is performed. This paper selects a simplified
version of YOLO-v2 as a baseline for the quantization. This
network, the so-called Sim-YOLO-v2, inherits the structure of
YOLO-v2 except the last layers for multiscale detection [3].
As the research in [3] points out that the pass-through layers,
which fetch features from an earlier layer to the final outputs,
enable a modest increase in performance (i.e., 1%), these pass-
through layers are removed to save the computation budget.
Hence, the Sim-YOLO v2 contains 19 convolution layers and
5 max-pooling layers. Its architecture is the same as Darknet-
19 network in [3]. Table III presents the accuracy of the
quantized networks in YOLO-v2 and Sim-YOLO-v2 compared
with the full-precision network.

The binary version of these above-mentioned networks
attains accuracy comparable with that of the full-precision
networks, meanwhile, saving a significant amount of compu-
tation. These quantized networks are used for the verification

TABLE III

ACCURACY (MAP) OF QUANTIZED YOLO-V2 AND SIM-YOLO-V2

TABLE IV

YOLO-V2 NETWORK ARCHITECTURE AND

PARALLELISM FACTORS FOR EACH LAYER

of the streaming architecture. It is noteworthy that the deeper
networks perform better in terms of quantization. The binary
network numbered (3), which has 17 convolution layers and
5 max-pooling layers [removed 2 CONV layers from Sim-
YOLO-v2 (2)], achieves an accuracy of 64.16%, which is
12.78% higher than that of the quantized Tiny YOLO-v2 in
Table II. In addition, its binary weight size is only 1.88 MB,
and therefore, it can be stored entirely in block RAMs in
an FPGA. Even though it is three times more complex than
Tiny YOLO-v2, a high throughput is achieved by virtue of its
streaming architecture. To provide detailed information about
the network topology, the architecture of the implemented
network is described in Table IV.

B. Implementation Result

The analysis in Section IV-D defines the guidelines to
achieve balanced pipelining. The parallelism factors for each
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Fig. 9. Live demo of the proposed work on the VC707 FPGA board.

Fig. 10. Throughput improvement with batch processing.

layer are empirically chosen according to these guidelines.
These factors satisfy the FPGA resource constraints and the
target operating frequency (i.e., 200 MHz). The detailed par-
allelism factors for each layer are listed in Table IV.

The framework in Fig. 3 is used to verify the operation
of the proposed design. Input images and control commands
from the host PC are sent to the accelerator through peripheral
component interconnect (PCI) Express port. After the com-
putation, the detection results are sent back to the host PC
for postprocessing. Fig. 9 demonstrates the real-time object
detection of the YOLO network using the proposed design on
VC707 Evaluation board. The detector can detect 20 objects
in the PASCAL VOC data sets at 30 frames/s.

The batch processing increases the throughput significantly,
as it improves the utilization of each convolutional layer.
The experiments at 200 MHz show that T = 7.5 ms,
D = 8.975 ms, and L = 1.43 ms. According to (20),
the dependence of the speedup on the batch size is shown
in Fig. 10. The speedup is almost saturated at 1.8 with a
batch size of 30. Table V shows the performance of the
proposed hardware design with (batch size = 30) and without
batch processing. Owing to the intermediate data reuse, the
DRAM bandwidth is below 100 MB/s for batch processing
mode. A low-cost single-data-rate SDRAM is sufficient for

TABLE V

IMPLEMENTATION RESULTS OF THE PROPOSED DESIGN
WITH AND WITHOUT BATCH PROCESSING

high performance. The utilization of DSPs is below 10%.
Most DSPs are consumed by the last layer that requires
multiplications between weights and input activations. With
batch processing, the throughput is observed to be as efficient
as 1.877 TOPS with a power consumption of 18.29 W.

Table VI shows the comparison of the proposed design
with the previous works about the YOLO hardware imple-
mentation. The performance of the proposed design running
the Tiny YOLO-v2 significantly outperforms the Tincy YOLO
presented in [21] in terms of throughput, accuracy, and
power efficiency. Compared with the performance of Sim-
YOLO-v2 running on GTX Titan X GPU in [3], the pro-
posed design with batch processing exhibits higher throughput
(1.24 times) and much better efficiency in power consump-
tion (11.54 times). The design in [22] combines the binary
CNN (for feature extraction) with parallel SVM (for refined
detection) to achieve an accuracy of 3.46% higher than the
proposed design. However, the number of classes used for
accurate calculation for the work in [22] is not clear. The
proposed design achieves 3.1 times higher throughput (with a
higher resolution) at 1.5 times slower frequency and 2.68 times
better efficiency (GOPS per LUTs). It is notable that deeper
network can result in the more efficient proposed architecture.

The comparison between the proposed design and other
recent works on CNN hardware implementations is presented
in Table VII. For a fair comparison, both small-scale networks
in [19] and [30] and large-scale deep networks in [18], [20],
and [29] are selected. In the case of low-precision design for
small-scale networks, small input size (32×32) and simple net-
work structure result in high throughput and efficient resource
utilization. Therefore, most of the previous FPGA designs for
binary neural networks (BNNs) are validated using just tiny
data set, such as Cifar-10 or MNIST [19], [20], [30], [31].
To legitimately compare to the previous works, the con-
volutional layers of VGG-16, in this paper, are quantized
using 1-bit weight and 2-bit activation because this paper
is not optimized for the fully binarized network. The low-
precision model of VGG-16 runs on the proposed FPGA
design to estimate the accuracy performance. Consequently,
as shown in Table VII, the proposed design achieves a
throughput of 4420 GOPS with a batch size of 32. In the case
of [19], despite the small size of CNN (i.e., 0.1125 GOP) and
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TABLE VI

COMPARISON OF THE PROPOSED DESIGN WITH THE PREVIOUS WORKS FOR YOLO CNN HARDWARE

TABLE VII

COMPARISON OF THE PROPOSED DESIGN WITH THE PREVIOUS WORKS FOR OTHER CNN HARDWARE

validation by small images, the power efficiency is much lower
than the proposed design. In the case of [30], the proposed
design outperforms [30] in terms of efficiency (i.e., throughput
per LUTs), despite [30] achieving the highest throughput
owing to its BNN structure. However, it should be noted
that the design in [30] is operated on the Ultrascale’s family
FPGA (20 nm), which is more than two times larger than
the FPGA board used in this paper, and the BNN structure
in [30] cannot support the large input size owing to its simple
structure. It proves that the proposed work outperforms other
short bit-width CNN implementations.

The next comparison is for the large-scale deep network.
Liang et al. [20] run AlexNet on their own design. The average
throughput is reported as 1964 GOPS, which is 2.25 times
lower than the throughput in this paper. Owing to the frequent
off-chip accesses, the first layer (i.e., 210 GOPS) is the

bottleneck of their design. The research in [18] does not count
the first layer of the first group for the average throughput
owing to the similar problems. In this layer (183 MOPs),
to achieve the stated throughput of 2735 GOPS, the corre-
sponding frame rate is 14 754 frames/s. It is assumed that
the output feature-maps use 8-bit data. The average mem-
ory bandwidth is 47 GB/s, which is much higher than the
maximum bandwidth (19.2 GB/s) that the ZCU102 FPGA
board can provide [32], whereas the proposed design requires
a very small memory bandwidth (i.e., 85 MB/s) owing to
the streaming design and data path optimization. Thus, it
achieves much higher performance in terms of both throughput
and power efficiency. In conclusion, considering the tradeoff
between the hardware resource, CNN size, throughput, and
power, the proposed design outperforms the previous works
irrespective of the precision.
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VI. CONCLUSION

This paper presents a high-performance hardware-efficient
streaming architecture for real-time object detection by quan-
tizing the network and optimizing the data path to eliminate the
off-chip access for intermediate data. With batch processing
of streaming, the proposed design achieves a throughput
of 1.877 TOPS without increasing the hardware cost, which
outperforms the most previous designs. It is worth mention-
ing that the deeper the network is, the more efficient its
architecture. Therefore, the proposed design is expected to
significantly contribute to the real-time object detection.

REFERENCES

[1] W. Liu et al. (Dec. 2015). “SSD: Single shot multibox detector.”
[Online]. Available: https://arxiv.org/abs/1512.02325

[2] S. Ren, K. He, R. Girshick, and J. Sun. (Jun. 2015). “Faster R-CNN:
Towards real-time object detection with region proposal networks.”
[Online]. Available: https://arxiv.org/abs/1506.01497

[3] J. Redmon and A. Farhadi. (Dec. 2016). “YOLO9000: Better, faster,
stronger.” [Online]. Available: https://arxiv.org/abs/1612.08242

[4] C. Zhang, P. lI, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015,
pp. 161–170.

[5] H. Sharma et al., “From high-level deep neural models to FPGAs,” in
Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2016,
Art. no. 17.

[6] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, Oct. 2016, Art. no. 22.

[7] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate
memory architecture for a reduction of refresh power consumption in
deep learning applications,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2018, pp. 1–5.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. (Mar. 2016).
“XNOR-Net: ImageNet classification using binary convolutional neural
networks.” [Online]. Available: https://arxiv.org/abs/1603.05279

[9] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. (Feb. 2016). “Incre-
mental network quantization: Towards lossless CNNs with low-precision
weights.” [Online]. Available: https://arxiv.org/abs/1702.03044

[10] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
(Feb. 2016). “Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or −1,” [Online].
Available: https://arxiv.org/abs/1602.02830

[11] F. Sun et al., “A high-performance accelerator for large-scale convo-
lutional neural networks,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process. Appl. Int. Conf. Ubiquitous Comput. Commun., Dec. 2017,
pp. 622–629.

[12] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelerator
efficiency through resource partitioning,” in Proc. ACM/IEEE
44th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2017,
pp. 535–547.

[13] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring heteroge-
neous algorithms for accelerating deep convolutional neural networks on
FPGAs,” in Proc. 54th ACM/EDAC/IEEE Design Automat. Conf. (DAC),
Jun. 2017, pp. 1–6.

[14] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A
high performance FPGA-based accelerator for large-scale convolutional
neural networks,” in Proc. 26th Int. Conf. Field Program. Log. Appl.,
Aug./Sep. 2016, pp. 1–9.

[15] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “An automatic RTL compiler
for high-throughput FPGA implementation of diverse deep convolutional
neural networks,” in Proc. 27th Int. Conf. Field Program. Log. Appl.,
Sep. 2017, pp. 1–8.

[16] S. Winograd, Arithmetic Complexity of Computation, vol. 33.
Philadelphia, PA, USA: Siam, 1980.

[17] U. Aydonat S. O’Connell, D. Capalija, A. C. Ling, and
G. R. Chiu, “An OpenCL deep learning accelerator on arria 10,” in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2017,
pp. 55–64.

[18] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms for
convolutional neural networks on FPGAs,” in Proc. IEEE 25th Annu. Int.
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr./May 2017,
pp. 101–108.

[19] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. IEEE Int. Symp. Field-Program.
Custom Comput. Mach., Feb. 2017, pp. 65–74.

[20] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN: Binarized
neural network on FPGA,” Neurocomputing, vol. 275, pp. 1072–1086,
Jan. 2018.

[21] T. B. Preußer, G. Gambardella, N. Fraser, and M. Blott, “Inference of
quantized neural networks on heterogeneous all-programmable devices,”
in Proc. Des., Automat. Test Eur. Conf. Exhib., Mar. 2018, pp. 833–838.

[22] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight
YOLOv2: A binarized CNN with a parallel support vector regression
for an FPGA,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate
Arrays, Feb. 2018, pp. 31–40.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., Jun. 2015, pp. 448–456.

[24] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in Proc. Int. Conf. Mach. Learn.,
Jun. 2016, pp. 2849–2858.

[25] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks,”
IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[26] 7 Series DSP48E1 Slice, Xilinx, San Jose, CA, USA, 2018.
[27] Darknet Deep Learning Framework. Accessed: Oct. 10, 2018. [Online].

Available: https://github.com/pjreddie/darknet
[28] K. Simonyan and A. Zisserman. (Sep. 2015). “Very deep con-

volutional networks for large-scale image recognition.” [Online].
Available: https://arxiv.org/abs/1409.1556

[29] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on FPGA,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 7, pp. 1354–1367,
Jul. 2018.

[30] N. J. Fraser et al. (Jan. 2017). “Scaling binarized neural net-
works on reconfigurable logic.” [Online]. Available: https://arxiv.org/
abs/1701.03400

[31] Y. Li, Z. Liu, K. Xu, H. Yu, and F. Ren, “A GPU-outperforming FPGA
accelerator architecture for binary convolutional neural networks,” ACM
J. Emerg. Technol. Comput. Syst., vol. 14, no. 2, Jul. 2018, Art. no. 18.

[32] Zynq Ultrascale+ MPSOC Datasheet, Xilinx, San Jose, CA, USA, 2018.

Duy Thanh Nguyen received the B.S. degree in
electrical engineering from the Hanoi University of
Science and Technology, Hanoi, Vietnam, and the
M.S. degree in electrical and computer engineering
from Seoul National University, Seoul, South Korea,
in 2011 and 2014, respectively, where he is currently
working toward the Ph.D. degree in electrical and
computer engineering.

His current research interests include computer
architecture, memory systems, and SoC design for
computer vision applications.

Tuan Nghia Nguyen received the B.S. degree
in electronics and telecommunications from the
Hanoi University of Science and Technology, Hanoi,
Vietnam. He is currently working toward the M.S.
degree in electrical and computer engineering at
Seoul National University, Seoul, South Korea.

His current research interests include computer
vision, deep learning applications, and computer
architecture.



NGUYEN et al.: HIGH-THROUGHPUT AND POWER-EFFICIENT FPGA IMPLEMENTATION OF YOLO CNN 1873

Hyun Kim (M’12) received the B.S., M.S., and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2009, 2011, and 2015, respectively.

From 2015 to 2018, he was a BK Assistant
Professor with the BK21 Creative Research Engi-
neer Development for IT, Seoul National University.
In 2018, he joined the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, where he is
currently an Assistant Professor. His current research

interests include algorithm, computer architecture, memory, and SoC design
for low-complexity multimedia applications and deep neural networks.

Hyuk-Jae Lee (M’04) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, USA, in 1996.

From 1996 to 1998, he was with the faculty
of the Department of Computer Science, Louisiana
Tech University, Ruston, LS, USA. From 1998 to
2001, he was a Senior Component Design Engineer
with the Server and Workstation Chipset Division,

Intel Corporation, Hillsboro, OR, USA. In 2001, he joined the School of
Electrical Engineering and Computer Science, Seoul National University,
where he is currently a Professor. He is a Founder of Mamurian Design,
Inc., Seoul, a fabless SoC design house for multimedia applications. His
current research interests include computer architecture and SoC design for
multimedia applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


