
1588 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

An Approximate Memory Architecture for Energy
Saving in Deep Learning Applications

Duy Thanh Nguyen , Nguyen Huy Hung, Hyun Kim , Member, IEEE, and Hyuk-Jae Lee , Member, IEEE

Abstract— DRAM devices require periodic refresh operations
to preserve data integrity. Slowing down the refresh rate can
reduce the energy consumption; however, it may cause a loss
of data stored in the DRAM cell. This paper proposes a new
memory architecture of soft approximation for deep learning
applications, which reduces the refresh energy consumption while
maintaining accuracy and high performance. Utilizing the error-
tolerant property of deep learning applications, the proposed
memory architecture avoids the accuracy drop caused by data
loss by flexibly controlling the refresh operation for different bits,
depending on their criticality. For data storage, the approximate
DRAM architecture reorganizes the data so that these data are
sorted according to their bit significance. Critical bits are stored
in more frequently refreshed devices while non-critical bits are
stored in less frequently refreshed devices. In addition, for further
reduction of the DRAM energy consumption, this paper combines
hard approximation, which reduces the number of accesses to
DRAM, with soft approximation. Simulation results show that
the refresh energy consumption is reduced by 69.71%, and the
total energy consumption is reduced by 26.0 % for the hybrid
memory with a negligible drop in both training and testing phases
on state-of-the-art deep networks.

Index Terms— Approximate DRAM, deep learning, energy-
efficient, row-level refresh, transposed memory.

I. INTRODUCTION

DEEP learning applications have been widely used in
various fields. For achieving high performance in terms

of accuracy, they require large amounts of computation with
excessive data traffic from the memory [1]. Furthermore, with
the increase in the number of layers in neural networks for
obtaining better performance, there has been an increase in
the complexity of deep learning algorithms. For instance,
AlexNet [2], which was proposed in 2012, uses 8 layers,

Manuscript received July 17, 2019; revised November 15, 2019 and
December 12, 2019; accepted December 12, 2019. Date of publication Janu-
ary 13, 2020; date of current version May 1, 2020. This work was supported
in part by the Samsung Research Funding Center, Samsung Electronics, under
Project SRFC-IT1602-03. This article was recommended by Associate Editor
P. K. Meher. (Corresponding author: Hyun Kim.)

Duy Thanh Nguyen, Nguyen Huy Hung, and Hyuk-Jae Lee are with
the Inter-University Semiconductor Research Center, Department of Elec-
trical and Computer Engineering, Seoul National University, Seoul 08826,
South Korea (e-mail: thanhnd@capp.snu.ac.kr; hungnh@capp.snu.ac.kr;
hyuk_jae_lee@capp.snu.ac.kr).

Hyun Kim is with the Research Center for Electrical and Information
Technology, Department of Electrical and Information Engineering, Seoul
National University of Science and Technology, Seoul 01811, South Korea
(e-mail: hyunkim@seoultech.ac.kr).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2019.2962516

whereas ResNet [3], which was proposed in 2015, is imple-
mented with 152 layers. Accordingly, memory bandwidth has
become one of the biggest bottlenecks for speeding up deep
learning applications [1]. The increased memory bandwidth
results in significant memory energy consumption. Therefore,
extensive research efforts have been undertaken to reduce the
number of memory accesses [1], [4], [5].

In addition to the energy consumed by the data access
operation, a large portion of the energy consumption is due
to the refresh operation, which involves periodically reading
out the data and then written back into the same memory
cells. This refresh operation is necessary because DRAM cells
cannot retain the stored data permanently, and is performed
for all cells in a DRAM, irrespective of whether they store
significant data or not. Therefore, this refresh operation results
in significant energy consumption even though certain DRAM
cells do not store the data that are accessed by an active
process in the processor. Furthermore, as the DRAM density
increases, the energy consumed by the refresh operation also
increases. The ratio of the refresh energy consumption to
the total energy consumption of the DRAM increases in
proportion to the density of the DRAM [6]. In future 64 Gb
DRAM devices, the refresh operation is expected to account
for up to 50% of the total energy consumption [6]. Therefore,
the refresh energy consumption should be considered as one
of the most critical parameters in computing system design.

Various techniques have been proposed to reduce the
energy consumption in memory access and refresh opera-
tions [6]–[13]. In previous studies, [12] and [13], several
cache compression algorithms were presented for reducing
the memory accesses in order to achieve memory energy
saving and system performance enhancement. However, these
compression methods are sophisticated and require non-trivial
cache block management. On the other hand, in three studies,
[6]–[8], the operating system (OS) is requested by default to
figure out the retention time information for each DRAM row,
and a DRAM controller uses this information to selectively
perform refresh operation for each row. These techniques
significantly reduce the refresh energy consumption by skip-
ping unnecessary refresh commands. However, with increasing
memory sizes, it is neither cost-effective nor scalable to
store the retention time information of all the rows of the
DRAM. Moreover, profiling the retention time information
of all DRAM cells requires a significant amount of effort,
and incorrect results may be obtained, as it has to deal with
Variable Retention Time and Data Pattern Dependencies [14].

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3448-0618
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-6811-9647

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1589

Two studies, [9] and [10], proposed another approach to
reduce the energy consumption by allowing the possibility
of occurrence of a small amount of errors in DRAM cells.
In [9], Flikker provides a software solution for the approximate
memory by partitioning data into critical and non-critical data.
It leverages the Partial-Array Self-Refresh Mode (PASR) [15],
which supports different refresh rates for the different sections
of the same DRAM bank. However, since all the bits of
data are unprotected from errors, in the case of floating data,
an erroneous most significant bit (MSB) may change the data
to very large value, which causes overflow in computation.
For providing a finer-grained refresh control than [9], in [10],
Sparkk uses varying refresh periods for different bits based
on their importance. However, it lacks in software support
and does not provide energy measurement and performance
evaluation based on architectural simulation. The concept of
bit criticality is derived from approximate computing, and has
been applied to SRAM cell design in order to optimize the
energy consumption in video applications [16], [17]. Based
on the bit importance analysis, the study in [11] proposed
a precision-aware DRAM restore scheduling approach. This
approach maps important data bits to fast row segments and
unimportant data bits to slower row segments. The purpose of
this mapping is to reduce the restore time in order to obtain
improved performance at a low application error rate. This
method requires the OS to store the restore profiling results for
all the row segments in the DRAM. However, the problem with
this method is that the DRAM restores characteristic changes
randomly during DRAM operation [14].

To overcome the shortcomings of the previous studies, this
paper proposes an approximate memory for deep learning
applications with finer-grained refresh control. It is widely
known that deep learning applications are error tolerant.
To leverage this property, this paper proposes approximate
memory architectures, which allow different error probabili-
ties for different bits of data. Based on the analysis of the
significance of each bit, the proposed architectures refresh data
at bit granularity in order to reduce the refresh frequency for
insignificant bits considerably. As a result, the refresh energy
consumption is significantly reduced while the non-critical bits
of data may cause errors due to the delayed refresh opera-
tions. In addition, to further reduce the energy consumption
by memory accesses while maintaining accuracy and high
performance, this paper proposes a new memory architecture
based on hard approximation for deep learning applications.
Hard approximation flexibly reduces the memory data words
to reduce the memory bandwidth and the corresponding energy
consumption. Different from low-bit quantization (such as
4-bit or 8-bit quantization), hard approximation does not
require fine-tuning or re-training to preserve the accuracy of
networks at the inference phase. Finally, a combination of soft
approximation (i.e., slowing down refresh operations) and hard
approximation (i.e., non-critical bit truncation) is presented.
In a system that requires a large memory space and high mem-
ory bandwidth, a combined approach efficiently facilitates the
reduction of both the static energy and dynamic energy, which
cannot be solved by soft approximation or hard approximation
alone. In order to evaluate the proposed approximate memory,

this paper evaluates various aspects of the proposed approxi-
mate memory, such as energy breakdown, system performance,
and accuracy degradation in some state-of-the-art deep convo-
lutional neural networks (CNN). The simulation results with
these CNNs in both the inference and training phases show that
the proposed approximate memory can significantly reduce the
refresh energy consumption by up to 69.71% with negligible
degradation in accuracy. Accordingly, the total energy con-
sumption for the proposed hybrid memory is reduced by up
to 26.0%. These results show that the proposed memory with
soft approximation and hard approximation is highly suitable
for deep learning applications.

In particular, compared to the precedent research in [18],
this paper has several improvements. In [18], the concepts
of the transposed memory and row-level refresh algorithm
are presented and the refresh power savings on CNN infer-
ence phase are derived mathematically. However, it lacks
the detailed implementation of the bit transposed unit in the
memory controller and the performance evaluation. Hence,
there are no energy breakdowns and system performance
of the transposed memory. On the other hand, this paper
presents the design of the bit transposed unit, partitions
the data of deep network applications into approximate data
and non-approximate data, and runs multi-core architec-
tural simulation for various design configurations. Moreover,
this paper proposes a combination of soft approximation
(i.e., slowing down the refreshment) and hard approximation
(i.e., non-critical data truncation) to further reduce the energy
consumption without performance loss. It also provides the
system performance and energy breakdowns regarding the
area/energy overhead of the bit transposed unit. Furthermore,
the performance of the proposed scheme compared to the
reduced precision version and how the proposed scheme
effects the inference phase of sparse deep networks are thor-
oughly discussed. In addition, an inference test on the real
approximate DRAM is conducted to verify the practicality of
the bit injection model used in simulation. Finally, a training
example using the approximate memory is added to see
whether the approximate memory can be applied on training
phase.

The rest of this paper is organized as follows. Section II
presents the transposed approximate memory architecture,
which is partly presented in [18]. Section III describes the pro-
posed combination of hard and soft approximation schemes.
In Section IV, the design of the bit transpose unit, which sup-
ports the approximate memory, is presented. Sections V and VI
describe the evaluation methodology and the experimental
results. Finally, the conclusions are provided in Section VII.

II. APPROXIMATE MEMORY DESIGN

A. Memory Architecture

The main idea of an approximate memory is that data
are stored in a DRAM in a different manner from that of
the conventional way, as shown in Fig. 1. Fig. 1(a) shows
the conventional storage scheme whereas Fig. 1(b) shows the
proposed approximate memory scheme. In Fig. 1(a), data[0] =
11001010 is stored at the memory location addressed 0 while

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1590 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 1. Approximate memory architecture. (a) Conventional storage scheme.
(b) Approximate storage scheme. (c) Hybrid architecture to support approxi-
mate memory.

data [1] = 10110110 is stored at address 1 and so on.
As shown in Fig. 1(b), the approximate memory stores the data
in a transposed manner such that all the MSBs from data[0]
to data[7] are stored in the memory location at address 0.
The second MSBs of data[0], data[1],…, data[7] are all stored
at address 1, and so on. When address 0 is accessed by a host
processor, only the MSBs are delivered to the processor.

One of the main goals of this data distribution is to give
a different refresh rate (i.e., soft approximation) and truncate
some data (i.e., hard approximation) depending on the sig-
nificance of the row. In the example shown in Fig. 1(b), the
data stored at address 0 are the MSBs that are, in general,
the most important bits of data. Therefore, any occurrence
of errors in these data may severely affect the outcome of
computation using these data. On the other hand, the data at
address 7 consist of the least significant bit (LSB) of data.
Because these data may be relatively insignificant, a loss
of these data may not badly affect the result. In a deep
learning application for object classification, for example,
the accuracy of the classification may not be significantly
degraded. In this case, the refresh period at address 7 may
be prolonged, which can reduce the energy consumption for
refreshment, or the data at address may be truncated, which
can reduce the energy consumption for data access. In this
manner, the new data distribution shown in Fig. 1(b) allows the
approximation to be controlled depending on the significance
of data. In other words, for less significant data, the energy
consumption is reduced by prolonged refresh period or data
truncation, whereas for significant data, the data are preserved
and the normal refresh period is maintained to avoid any
occurrence of errors. The soft and hard approximations are
explained in detail in Section III.

As mentioned above, for both soft and hard approximations,
the transposed data storage shown in Fig. 1(b) requires the
DRAM to be accessed in a blocked manner. To access one
byte of data[0], a host needs to request the data stored
from addresses 0 to 7. This means that the host needs eight
memory accesses to access a single byte of data. Therefore,
this memory architecture is inefficient when a single byte of
data is accessed. On the other hand, this inefficiency can be
avoided if a block of data is accessed together. For example,

TABLE I

MEMORY FOOTPRINT PROFILING

when a block of data from data[0] to data[7] is accessed
together, eight data accesses are necessary for the eight bytes
of data. Therefore, no unnecessary data request is required in
this case. In order to support the data storage scheme shown
in Fig. 1(b), a computer system requires a memory controller
that converts the data format when it fetches the data from
the memory and delivers them to the host. For this, a memory
controller requires a hardware unit, called the “bit transpose
unit” (shown in Fig. 1(c)), which is responsible for the data
format conversion. The bit transpose unit is explained in detail
in Section IV.

B. System Architecture Support for Approximate DRAM

The memory architecture shown in Fig. 1(c) is dedicated to
deep networks computing systems. To leverage this approx-
imate memory in a real system, a hybrid architecture is
required. In the hybrid architecture, critical data such as
instruction codes, integers, and non-approximate data are
stored in the precise memory. On the other hand, non-critical
data for the deep neural network (DNN) are stored in the
approximate memory. The instruction set architecture (ISA),
OS, and compiler support for systems with approximate mem-
ory are well described in [9] and [19]. For the experiments in
this study, a custom memory allocator is built to allocate the
approximate data to the approximate memory. Similar to that
in [9], the critical data partitioning is done by the programmer.
As mentioned above, in deep learning applications, if slight
errors occur in the weights and feature maps, the perfor-
mance might not degrade significantly. Therefore, they are
categorized as non-critical data and can be stored in the
approximate memory. This study uses the aforementioned
memory allocator to allocate these data to the approximate
memory. The memory footprint profiling results of some deep
networks are listed in Table I, and they show that the portion
of critical data in the total memory access is very small.
Therefore, the refresh energy can be considerably reduced
by using the approximate memory. However, the partitioning
of application data potentially affects locality and parallelism.
In this study, to enhance parallelism, a hybrid memory system
may contain multiple channels or multiple ranks, out of which
some are precise devices while the others are approximate
devices, as depicted in Fig. 1(c).

III. PROPOSED SOFT AND HARD APPROXIMATIONS

In order to implement the approximate memory, the single
precision floating-point format (i.e., FP32) is studied further
in this paper, as it is the most popular format used in machine
learning, especially for GPU computation [20]. It should
be noted that each single precision floating-point data has
1 sign bit, 8 exponent bits, and 23 mantissa bits.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1591

Fig. 2. Approximate memory with refresh control and data truncation.

A. Soft Approximation: Row-Level Refresh Control for
Deep Learning Applications

The significance of each bit is important for designing
the approximate memory. The sign bit is obviously the most
critical bit. The bit errors in the exponent bits may result in
a relatively large amount of error. For instance, a bit error
occurring in the LSB of the exponent bits may double the value
of the data. On the other hand, the bit errors at the MSB of the
mantissa bits cause a relative small change in value. Therefore,
in the single precision floating point data, (1) the sign bit and
the 8 exponent bits are very critical and should be protected
from bit error, because errors in these bits may significantly
degrade the performance of the deep learning applications,
(2) the mantissa bits are relatively non-critical as they may not
affect the performance badly. For simplicity, only 32 rows per
bank of a DRAM device are displayed in Fig. 2. As explained
above, there are 9 significant bits (i.e., 1 sign bit + 8 exponent
bits), which are refreshed at the normal rate (tRET = 64 ms)
and stored in rows 0 to 8, respectively. The 23 mantissa
bits are less important, and therefore they are stored in the
approximate rows from 9 to 31. These rows are refreshed with
prolonged periods. The period increases as the row number
increases, which implies that the less significant bits are stored
in rows with higher error probabilities. The refresh period (in
milliseconds) increases linearly as the row number increases,
as follows:

RP(n) =
{

64 f or 0 ≤ n ≤ 8

(n − 9) ∗ incr + of f set f or 9 ≤ n ≤ 31
(1)

where RP(n) represents the refresh period of the n-th row and
the two parameters, incr and offset, are chosen experimen-
tally. It should be noted that the RP(n) must be a multiple
of 64 ms so that the proposed row-level refresh algorithm can
be applied.

The adjustment of the refresh rate requires a slight change
in the logics inside the DRAM device. For this, there are
23 additional counters for storing the current tRET round for
23 refresh rates (each tRET round is 64 ms) and additional
logics for deciding whether the current row needs to be
refreshed or not so that the DRAM device skips the refresh
operation for the rows that are approximated. Since the maxi-
mum bit width of round counters is 6 bits, the additional gate
count for the round counter is at most 6×10×23 = 1380 gates,
assuming that each bit needs 10 gates. The proposed row-level

Fig. 3. Row-level refresh algorithm.

refresh algorithm is illustrated in Fig. 3. In the normal refresh
operation of a DRAM device, a memory controller issues 8K
Auto-Refresh commands. For a DRAM device having 8K rows
per bank, one Auto-Refresh command refreshes a single row
per bank in a refresh interval tREFI = 64 ms/8K = 7.8 µs. The
proposed row-level refresh operation differs from the original
Auto-Refresh in that there are additional logics, as shown in
the shaded boxes and diamonds in Fig. 3. For (offset, incr) =
(1024 ms, 128 ms), the operation of additional logics to decide
which row needs to be refreshed can be explained as follows:
Rows 0 - 8 are always refreshed regardless of the current tRET
round. Row 9 (whose refresh period is 1024 ms or 16× tRET)
is only refreshed when the tRET round is 15. Similarly,
rows 10, 11, …, and 31 are refreshed when tRET is 17,
19, …, and 59, respectively. While the DRAM device skips the
refresh operation for approximate rows, the external memory
controller still sends 8K refresh commands periodically at the
normal rate for every tRET round.

For applying the proposed row-level algorithm for soft
approximation, some buffers are required for supporting the
bit transpose, as shown in Fig. 2. The size of the buffer in the
transposed unit is calculated as follows. To avoid additional
data transfer, 64 bits of data are transferred together as a block.
In order to support the data transfer, the transpose unit uses
an additional buffer for temporarily storing the data to be
transposed. Assuming that the burst length of a DRAM is
eight (BL = 8) and the data width is 64 bits, a single data
access to a DRAM transfers 512 bits. It is worth mentioning
that all the data accessed by a single burst are stored in the
same row in a single bank of a DRAM device. For the data to
be stored into different rows according to their significance,

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1592 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

those 512 bits of data should represent the same significance
of 512 different data items. To access all 32 bits of a data,
32 DRAM access commands should be issued. Therefore, the
access of a single data item requires 32 DRAM commands
which result in the data transfer of size 512 × 32 bits. This
implies that the size of the buffer should be also 512×32 bits.

It should be noted that 32 commands to a DRAM demand a
long latency. However, deep networks are normally composed
of basic elements such as convolutional layer, pooling layer,
and so on. Hence, these networks access data in a predictable
pattern and consequently, the temporal locality of the buffer
is leveraged to avoid performance degradation.

B. Hard Approximation: Block Data Truncation for Deep
Learning Applications

The soft approximation can efficiently control the refresh
energy consumption, but it cannot control the dynamic energy
consumption due to memory data accesses. On the other
hand, hard approximation enables a flexible control of the
size of the memory data words, and thus reduces the dynamic
energy consumption efficiently. If the size of the memory
data words is reduced, both the memory bandwidth and the
resulting energy consumption are reduced. Such hard approx-
imation can be performed by data truncation. As shown in
the above section, the mantissa bits of data are relatively
non-critical, and are hence good candidates for truncation.
Similar to soft approximation, insignificant data (i.e., LSBs
of mantissa bits) can be truncated considering the trade-off
between accuracy and energy saving, as shown in the blue
boxes of Fig. 2. In terms of memory bandwidth and dynamic
energy reduction, block data truncation helps in reducing the
number of commands needed to access a block of data. For
example, when 4 LSBs out of 32 bits of data are truncated,
a 512 × 32-bit block is reduced to a 512 × 28-bit block. As a
result, only 28 commands, instead of 32, are needed to access
this block from the approximate memory. Thus, the memory
bandwidth is reduced by 12.5%. It is noteworthy that the
energy saving by hard approximation is as large as that by soft
approximation because the dynamic energy dominates the total
energy consumption for memory-intensive workloads [21].

The advantage of truncation design is that the same row-
level refresh algorithm shown in Fig. 3 can be applied. This
means that it can achieve the same amount of refresh energy
reduction when the memory bandwidth and the corresponding
dynamic energy are reduced. In other words, by increasing
the refresh period, the energy saving can also be achieved for
the data with intermediate importance, for which truncation
cannot be applied. In the case of rows that are subjected to
truncation, hard approximation can achieve additional refresh
energy reduction since the refreshment of the rows containing
truncated data can be turned off completely, although the
refresh energy of these rows is relatively small (in case of
no truncation) due to the increased refresh period.

C. Combination of Hard and Soft Approximation

As mentioned in the previous subsection, soft and hard
approximations can be applied together for achieving higher

TABLE II

NORMALIZED ACCURACY (%) OF CNNS WITH BIT TRUNCATION

energy savings. The first priority of the combination of these
two approximation schemes is accuracy preservation. Hence,
the goal of this subsection is to show how to combine hard and
soft approximations for maximizing the energy reduction while
preserving the accuracy of deep learning applications. Because
the performance of hard approximation is the upper bound
of the performance of the combined approximation design,
the level of hard approximation is taken into account first.
Experiments are performed for evaluating the effect of hard
approximation by data truncation in DNNs. Pre-trained CNN
models from Caffe library [22] are used in these experiments.
The weights of CNNs are truncated by several bits, and then
used for ImageNet classification [23]. Table II shows that the
loss of accuracy due to data truncation varies for different
CNNs. It should be noted that the accuracy in this table
is normalized to the floating point model. The number of
truncated bits increases until the error rate is recognizable,
and 8-bit and 16-bit truncations are represented as examples
in Table II. This table shows that data can be truncated by
18 bits with negligible loss of accuracy (i.e., within 1% loss)
in GoogLeNet [24] and ResNet [3], whereas in VGGNet [25],
data can be truncated even further (i.e., 20 bits) with very
small loss of accuracy. Therefore, the truncation level can be
larger than 16 bits on all networks while maintaining high
accuracy. In that case, the size of a single-buffer reduces by
half. The design of the bit transpose unit is presented in detail
in Section IV. After hard approximation with the transposed
buffer design, the soft approximation level can be optimized
to maximize the refresh energy reduction without any change
in accuracy.

From the normalized accuracy results in Table II, it is note-
worthy that the combination of hard and soft approximation
is necessary. Some bits in the LSBs can be truncated without
compromising accuracy as shown in Table II. However, for the
bits between the MSBs and LSBs, it is necessary to obtain
power reduction effect through soft-approximation because
they cause too much accuracy drop when they are truncated.
Soft-approximation is based on the stochastic method and
consequently, it has much less impact on the performance
degradation than deterministic hard-approximation. For exam-
ple, in Table II, 16-bits can be truncated with almost no perfor-
mance degradation, but 21-bits truncation results in significant
performance degradation on all networks. However, as shown
in the later section (i.e., evaluation section), even if 16-bits
are truncated and soft-approximation is additionally applied

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1593

Fig. 4. Design of bit transpose units in the memory controller. (a) Single buffer design. (b) Multi-buffer design. (c) 2-D Block data in approximate DRAM.

to the rest of the mantissa bits (i.e., 7-bits), the performance
degradation is negligible. It should be noted that if all of
mantissa bits (i.e., 23 bits) are truncated, the performance
degradation will be very severe. The appropriate level of soft
approximation is detailed in Section VI.

IV. DESIGN OF A MEMORY CONTROLLER FOR THE

PROPOSED APPROXIMATE MEMORY

A. Design of the Bit Transpose Unit

This study proposes two kinds of bit-transpose unit designs,
as shown in Fig. 4: (a) a single buffer design and (b) a
multi-buffer design. The multi-buffer design is an extension
of the single buffer design. The operation of the single buffer
mode is described in Fig. 4(a). It operates like a large line of
cache with a special hit or miss condition. When there is a
read or write request from the cache to the command queue,
the memory controller checks whether the address corresponds
to an approximate space or a precise space. If the requested
address is in the precise space, the memory controller sends
access commands as in the conventional design. On the other
hand, if the requested address is in the approximate space,
the memory controller accesses the approximate DRAM.
Firstly, the buffer hit/miss condition is checked. The hit/miss
condition is explained in detail in Section IV-B. If the hit
condition is satisfied, the memory controller just needs to
access the buffer and return the data. In the case of buffer miss,
a new block containing the requested data needs to be loaded
to the buffer. Similar to a cache, the buffer includes a flag bit
indicating whether this block is dirty or not. The block is dirty
if it has been modified by the memory controller and has not
yet been written in the approximate DRAM. If the buffer is
miss and dirty, the block is flushed back to the approximate
memory. Then, a new block is loaded to the buffer and the
flag bit is cleared. On the other hand, if the buffer is miss

and not dirty, the memory controller only needs to load the
new block containing the requested data to the buffer. Finally,
the memory controller accesses the buffer and returns the data.
If the access is a write operation, the flag bit is set to dirty.
It is noteworthy that it requires 32 commands to load a buffer
from the approximate DRAM on a miss. This may cause long
latency, and hence system performance degradation. However,
thanks to the high access locality of CNNs, the design of the
bit transpose unit leverages this property to alleviate the effect
of long-latency block accesses.

To further improve the hit rate of the transposed buffer when
running the CNN on multi-core system, this paper proposes a
multi-buffer design as depicted in Fig. 4(b). The multi-buffer
design operates as a Least Recently Used (LRU) transposed
cache. Each cache line is a bit transposed buffer described
in Fig. 4(a). When applying hard approximation, the size of
the LRU transposed cache can be reduced 2×, thereby saving
standby energy and area.

B. Data Mapping to Approximate Memory and Hiss/
Miss Condition

This section discusses in detail how the transposed storage
scheme is applied to the proposed approximate memory, and
when an access request from the cache is considered as a
hit or miss. This is critical for the correctness of the design
of the memory controller with bit transpose unit. Fig. 4(c)
shows how 512 × 32 bit blocks are stored in the approximate
storage scheme. A DIMM consists of 8 DRAM devices, and
therefore, each DRAM device stores 2,048 bits. Inside each
DRAM device, a single byte of data are stored in 8 subarrays
of a single bank. Therefore, each subarray stores 256 bits.
The 256-bit data are stored in 32 rows depending on the
significance of each bit. Thus, the 256-bit data are stored as
shown in Fig. 4(c) such that each block size is 8 × 32. In this

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1594 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

TABLE III

SYSTEM CONFIGURATION

figure, only the 32 first rows of a DRAM device are shown
assuming that the DRAM device has 1024 columns per row.

The entire block is accessed together, and therefore,
the address of the first element of the block can represent the
entire block. When an access request is generated from the
cache with the address denoted by req_address, the first
element of the block including req_address has its address
equal to ((req_address/8) & (∼0xFF)). The address is denoted
by req_addr_first hereafter. Suppose that the buffer stores
the data block of which the address of the first element is
req_addr_first. Then, the condition of buffer hit is given as
follows:

req_addr_ f irst ≤req_address ≤req_addr_ f irst+255

(2)

In the case of buffer miss, req_address is converted to
(row_req_addr, col_req_addr) which represents the top-left
element of the data block. This conversion is carried out
by a memory controller which generates 32 DRAM access
commands in sequence to access the entire block. This address
satisfies the following condition:

row_req_addr × 1024 + col_req_addr × 32

= req_addr_ f irst (3)

where row_req_addr and col_req_addr are multiples of 32 and
8, respectively. Therefore, (row_req_addr, col_req_addr) that
satisfies (3) is obtained from the following equations:

row_req_addr = 32× f loor(req_addr_ f irst/(32×1024))

col_req_addr = req_addr_ f irst/32−32×row_req_addr

(4)

After deciding the row address and column address
using (4), the memory controller sends 32 commands with
the corresponding address to access a 512 × 32-bit data block
that contains the requested data.

V. EVALUATION METHODOLOGY

A. Architectural Simulation Environment

To estimate the performance and energy consumption of
the proposed system on deep learning applications, a cycle-
accurate memory simulator called DRAMSim2 [26] is inte-
grated into the event-driven McSimA+ simulator [27] based
on Pin [28] binary instrumentation for achieving fast simula-
tion and detailed results of the micro-architecture and DRAM
memory subsystem [29]. The system configuration is described
in Table III. The system has 8 out-of-order processor cores

Fig. 5. Hardware platform for CNN testing on the real approximate DRAM.

sharing the L2 cache, and each core has its own L1 instruction
cache and data cache. A single memory channel is connected
to an 8 GB Micron DDR3-1600 memory module consisting
of ×16 16 Gb devices.

The bit transpose unit is implemented inside of the memory
controller of McSimA+. The memory controller of McSimA+
works as an interface between the two simulators. Its role
is to send read/write requests to the memory controller of
DRAMSim2. It should be noted that the access scheduling
is done in the memory controller of DRAMSim2. The Verilog
model of bit transpose unit is used to estimate the gate
count with Synopsys Design Compiler. The bit transpose unit
requires 16,384 bits resulting in a gate count of 243K gates.
It consumes 0.918 mW of standby leakage power. According
to [30], it consumes 1 pJ to access a 32-bit register file.
Therefore, one 64-byte cache line access to the buffer con-
sumes 16 pJ and one buffer write back or buffer load spends
16 × 32 = 512 pJ. These numbers of energy consumption
are used to estimate the dynamic energy overhead of the
bit transpose unit. It is noteworthy that the energy overhead
of the bit transpose unit is added to non-refresh energy of
approximate DRAM in Section VI.

B. Simulation of Deep Learning Inference and Training
Phase With Bit Error Injection

The most recent research in [31] has shown that the reten-
tion time is not equal for all DRAM cells. Instead, most cells
have high retention time (called strong cells) while only a
few cells (called leaky cells) have low retention time. This
research also shows that DDR3 DRAM cells can hold their
values longer than 64 ms. Based on the bit error probability
given in [31], the error rates for the custom refresh periods are
linearly interpolated. For each bit in the approximate data, it is
injected with an error having a corresponding error probability
depending on its criticality.

To verify the practicality of the proposed DRAM error
injection model, a platform is built as shown in Fig. 5. The
memory controller in FPGA chip is customized to study the
behavior of real approximate DRAM. The FPGA board runs
at 200MHz and DDR3 DRAM module operates at 800 MHz.
The role of the approximate DRAM on the FPGA board is
to inject errors into the CNN model at run time. For each
test, the CNN model is temporarily saved in the approximate
DRAM for a refresh period, then copied back to the host PC
to run the classification. The similar performances of the deep
networks when using the real approximate DRAM and bit
error injection are presented in Fig. 6. The experimental results
show that the performance of the real approximate DRAM is

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1595

Fig. 6. Comparison of CNN test results on real approximate DRAM and bit
injection simulation. (a) FPGA test. (b) Bit injection simulation.

slightly better than that of the error injection. This is because
the error probabilities used in the bit injection are the worst-
case values measured in the real approximate DRAM [31].
At room temperature (i.e., 25 ◦C), the refresh period can be
prolonged to tens of seconds with very small performance loss.

This study uses the pre-trained model from the Caffe
library [22] of deep networks, such as GoogLeNet [24] and
VGGNet [25] for analyzing the accuracy effect of the approxi-
mate memory. In this paper, it is assumed that the CNN models
are stored in the proposed approximate memory. For inference
phase simulation, a set of 10,000 test images from ImageNet
2012 dataset [23] is used to measure the accuracy of the
CNNs using the proposed approximate memory. The inference
accuracy of each test is presented as Top-1 accuracy and
Top-5 accuracy normalized to the FP32 without using memory
approximation. The experiments are conducted with various
(offset, incr) values under different working temperatures.
In each test, the DRAM error map is randomly generated to
simulate the time-dependent of DRAM bit error. Each test
result is presented by a mean value and a standard deviation.
For training phase simulation, a custom deep network, which
includes three convolution layers and one fully-connected
layer, is trained using Cifar-10 dataset [32]. In training large
networks, such as GoogLeNet and VGGNet, the use of a huge
dataset, e.g., ImageNet, consumes substantial amounts of time.
On this account, the Cifar-10 dataset is selected in this study
for training and testing, and the network is trained on the Caffe
library using multiple step size for about 140 epochs.

VI. EVALUATION

A. Performance and Refresh Energy Reduction

The DRAM energy consumption is calculated by following
the method described in [33]. The refresh energy reduction
is measured by calculating the portion of refresh commands
that are skipped. For the normal working condition, the refresh
period is 64 ms. Therefore, the reduction of refresh energy is
derived mathematically from the following equation:

Psave = 1 −
9 +

22∑
n=0

64/(n ∗ incr + of f set)

32

= 0.71875 −
22∑

n=0

2

(n ∗ incr + of f set)
(5)

where n, incr, and offset are the parameters used in (1).
Fig. 7 shows the refresh energy reduction with respect to these

Fig. 7. Refresh power reduction with regard to (offset, incr).

parameters. The refresh energy reduction is almost saturated
at about 71% when the offset is 4,096 ms. Thus, for the
approximate device, the refresh period needs not be longer
than 4,096 ms.

Large convolutional (CONV) layers (with 2.36 million
parameters) and large fully-connected (FC) layers (with
75.5 million parameters) of VGGNet are selected for studying
the effect of the proposed design on system performance.
Figs. 8 and 9 show the results of multi-core simulation of
the CONV layer and the FC layer, respectively. The baseline
represents the results of the inference programs running on
the conventional memory, whereas the others represent the
results of the programs running on the proposed approximate
memory with varying numbers of transposed buffers. The
notation 1 BTU+16 represents a single buffer with 16-bit
truncation (hard approximation). Experiments with a 16-bit
fixed point model are also presented. As shown in Fig. 8(a),
the single buffer (1 BTU) or double buffer (2 BTU) results
in a low hit rate, thereby slowing down the system. On the
other hand, as the number of transposed buffers increases
(such as 4 BTU, 8 BTU, and 16 BTU), the hit rate also
increases. Consequently, there is no instruction per cycle (IPC)
loss, in comparison to the baseline. The hard approximation
(16-bit truncation) and the 16-bit fixed point (int16) do not
have significant impacts on the IPC, because in convolutional
computations the portion of the DRAM accesses is relatively
small compared to that of the computations. It is noteworthy
that the hit rate is saturated when the number of buffers
becomes larger than 16. Fig. 8(b) illustrates the DRAM
energy consumption of the proposed design. One major factor
that the effective energy reduction of the proposed design
can bring is the refresh energy saving (soft approximation),
as the DRAM dynamic energy is relatively small due to the
high hit rate. The simulation results show that the design
of the 16BTU+16 achieves 17% and 12.8% energy savings
compared to the baseline and int16, respectively. It should be
noted that one buffer access to the approximate DRAM causes
32 row misses. This potentially increases the energy overhead
and degrades the performance. However, owing to small miss
rate of the bit transpose unit, the proposed scheme does not
degrade the system performance or energy efficiency.

Next, the impact of the approximate memory on the multi-
core FC layer is illustrated in Fig. 9. In FC computations, the
amount of memory accesses is considerably large (hundreds
of MBs), compared to the CONV computations. Therefore,
the IPC is very sensitive to the hit rate of the transposed cache,

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1596 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 8. 8-core simulation of CONV layers: (a) System performance. (b) DRAM Energy + Energy overhead of buffers.

Fig. 9. 8-core simulation of FC layers: (a) System performance. (b) DRAM Energy + Energy overhead of buffers.

Fig. 10. 8-core simulation of sparse CONV layers: (a) System performance. (b) DRAM Energy + Energy overhead of buffers.

as shown in Fig. 9(a). The designs with 1, 2, and 4 buffers
(i.e., 1 BTU, 2 BTU, and 4 BTU) degrade the IPC dramati-
cally. On the other hand, when the number of buffers increases
to 16 (16 BTU), there is almost no loss of IPC, even though
hard approximation is not applied. It should be noted that
similar to the CONV layer, the buffer hit rate gets saturated
when the number of buffers is larger than 16. However, unlike
the CONV layer, the IPC is significantly boosted up when hard
approximation is applied. For example, the 16 BTU+16 design
achieves 1.6× higher IPC compared to the baseline, owing to
hard approximation. The breakdown of DRAM energy for the
FC layer is depicted in Fig. 9(b). It can be seen that for the
FC layer, the refresh energy accounts for a small portion of
the total energy. The designs of 1, 2, and 4 BTUs cause a
large energy overhead because of excessive DRAM accesses.
However, the 16 BTU + 16 performs the best, saving 41%
of total DRAM energy, compared to the baseline, due to both

refresh skipping and memory access reduction. Compared to
the 16-bit fixed point results, 16BTU+16 is still more energy
efficient (approximately 1.1×).

In recent years, there have been extensive influential studies
on sparse CNNs [34], [35] majorly preoccupied with reducing
the computation, memory accesses, and energy consumption
of the CNNs. Therefore, the next experiments are conducted
for the purpose of studying the effect of the proposed approxi-
mate memory on the sparse CNN inference. According to [34],
it is assumed that the sparsity of the CONV and FC layers is
60% and 94%, respectively. To represent the sparse matrices,
a block memory is used to store non-zero weights, while
another block memory is used to store the coordinates of
non-zero weights. Weight blocks are stored in the approximate
memory, while index blocks are stored in the precise memory.
Figs. 10 and 11 demonstrate the practicality of applying the
proposed scheme to the sparse CNN inference. The baseline is

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1597

Fig. 11. 8-core simulation of sparse FC layers: (a) System performance. (b) DRAM Energy + Energy overhead of buffers.

Fig. 12. 8-core simulation results of VGGNet.

the simulation result of sparse CNN layer on the conventional
memory. Others are the simulation results of sparse CNN
layer on various proposed schemes. In Fig. 10, the designs
incorporating 4, 8, and 16 transposed buffers (4 BTU, 8 BTU,
and 16 BTU) record almost no loss of IPC while reducing
the total DRAM energy by 15.6%–16.7%. It should be noted
that the dynamic energy saving achieved by applying hard
approximation is relatively small, but the refresh energy saving
is relatively critical. On the other hand, similar to the dense
CNN inference, the sparse FC layer is more sensitive to buffer
hit rate than the sparse CONV layer, as shown in Fig. 11(a).
It achieves a high buffer hit rate when the number of buffers
is 8 or 16. Because the sparse FC has aggressively eliminated
parameters, the 16-bit truncation does not bring much benefit
to the 16BTU design, compared to the dense CNN; however,
the 16BTU+16 design still saves 26.3% of the total DRAM
energy, as shown in Fig. 11(b).

To evaluate the performance of the proposed scheme on a
whole network, the entire VGGNet, GoogleNet are simulated.
As shown in Fig. 12, the proposed scheme for VGGNet is
compared with an 8-bit fixed point (int8), 16-bit fixed point
(int16), and the baseline running on the conventional memory.
The IPC of the proposed scheme is similar to that of the fixed
point formats, and 9% higher than the baseline. Although
not shown in the figure, the IPC of the proposed scheme
on GoogleNet is also 4.1% higher than that of the baseline.
It should be noted that the number of instructions in the pro-
posed scheme and that in the baseline are the same because the
proposed scheme does not change the inference code of CNNs.
Therefore, the comparison result of throughput between the
proposed scheme and baseline is the same as that of IPC.
Moreover, in the proposed scheme, non-refresh energy and
refresh energy reduce the total energy by 10.4% and 15.6%,
respectively. Overall, the proposed scheme saves 26.0% of

Fig. 13. Accuracy drop of GoogLeNet with regard to (offset, incr) and
temperature.

the DRAM energy consumed by the baseline. Compared to
the 8-bit fixed point network, the proposed scheme consumes
10.6% less energy. It is noteworthy that the energy overhead of
the 16BTU+16 design accounts for 1.8% of the total energy
of the proposed scheme.

Regarding the area overhead of the proposed scheme,
the gate counts of supporting logics and transposed buffers are
2.59K and 243K, respectively. As a result, the area overhead
of the proposed scheme with 16BTU+16 design is 0.93 mm2

at TSMC 40nm technology. This overhead leads to a slight
increase in power consumption, but the dynamic/refresh power
reduction effect on the DRAM device through the proposed
scheme is much greater, resulting in a significant reduction
in overall system power. It should be noted that the proposed
approximate DRAM structure only requires the small change
in the memory controller with small hardware overhead men-
tioned above while keeping DRAM devices unchanged.

B. Simulation of Classification With Bit Error Injection

The experiments in [18] show that the accuracy changes of
VGGNet and GoogLeNet caused by the delayed refresh are
similar. Therefore, in this subsection, GoogLeNet is used to
evaluate the accuracy performance of the proposed scheme.
The accuracy drop of GoogLeNet with various combinations
of (offset, incr) using the proposed approximate memory is
shown in Fig. 13, in which the horizontal axis represents
the operating temperature. At temperatures lower than 60 ◦C,
the accuracy loss is negligible with all (offset, incr) pairs.
However, the accuracy drop is relatively significant for tem-
peratures higher than 60 ◦C.

Accordingly, the next simulation is conducted with the
temperature set higher than 60 ◦C. The accuracy drops of
GoogLeNet at high temperatures (i.e., 80 and 90 ◦C) are

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1598 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 14. Accuracy loss with regard to (offset, incr) at high temperatures.
(a) Accuracy with no truncation. (b) Accuracy with truncation of 16 and
18 bits.

shown in Fig. 14. The columns and error bars denote the mean
values and standard deviations, respectively, of the tests for
each (offset, incr) pairs. Fig. 14 (a) shows the accuracy drop
with respect to various (offset, incr) without bit truncation.
As shown in the figure, offsets of 2048 ms and 4096 ms
degrade the accuracy significantly, especially at extremely high
temperature. However, offsets of 512 ms and 1024 ms can
preserve the accuracy well at any working temperature. For
example, the accuracies of both (512, 256) and (1024, 256)
are 99.71% and 99.4% with a standard deviation of 0.71%
and 0.85%, respectively, at 90 ◦C. Because only the offsets
of 512 ms and 1024 ms preserve the accuracy of the soft
approximation, the next experiment shows the accuracy effect
of combining hard and soft approximations with these offset
values. Fig. 14 (b) illustrates the accuracy loss of hard approx-
imation (16-bit and 18-bit truncation) in combination with soft
approximation for the remaining MSBs. It should be noted that
the level of bit truncation (i.e., 16-bit and 18-bit truncation) is
determined by the analysis given in Section III-C. As can be
seen in this figure, at 90 ◦C, an offset of 1024 ms causes a large
standard deviation. For example, (1024, 64) achieves a high
mean accuracy of 99.5 % with 16-bit truncation. However,
the standard deviation is 0.8 %, which prevents the accuracy
from satisfying the constraint (i.e., within 1% accuracy loss).
On the other hand, an offset of 512 ms preserves the accuracy
well with a small standard deviation for both temperatures.
In addition, in the case of the offset of 512 ms, the increment
parameter does not affect the accuracy significantly. Therefore,
to achieve maximum refresh energy saving while sacrificing

Fig. 15. Normalized accuracy of the proposed scheme on the compressed
AlexNet.

Fig. 16. Cumulative error rate of the proposed scheme for each bit of data
at 90 ◦C.

a small loss of accuracy, (512, 256) is selected because it
can save 69.71% of the refresh energy (compared to conven-
tional DRAM refreshing with a 64-ms refresh period), while
maintaining a very high accuracy of 99.7% with a standard
deviation of 0.69% at even very high operating temperatures
such as 90 ◦C.

Further experiments are performed to show the compati-
bility of the proposed scheme with CNN compression tech-
niques. The deep compression technique in [34] can compress
AlexNet model by 27×. The proposed scheme is applied to
this compressed AlexNet model to evaluate the compatibility
of the proposed scheme with state-of-the-art network compres-
sion techniques. For this purpose, the compressed AlexNet
model is truncated to 16-bits for hard approximation, and
errors are injected to this truncated network with various
(offset, incr) pairs at high temperatures, 80 ◦C and 90 ◦C,
for soft approximation. Fig. 15 shows the performance of the
proposed scheme on the compressed network. The experimen-
tal results show that both of (512, 128) and (512,256) pairs
cause less than 0.7% of Top-1 accuracy loss at any working
temperature. These results prove that the proposed scheme is
well compatible with deep compression techniques.

It is noteworthy that although approximate DRAM can
be efficiently used for only short lifetime data due to the
error propagation, the proposed approximate DRAM struc-
ture is very suitable for DNN processing because data for
DNNs are updated very frequently. For example, RANA
[36] and DaDianNao [37] also use approximate embedded
DRAM (eDRAM) as an internal buffer for CNN accelerator
and thus, all the intermediate data are stored in eDRAM.
This architecture can be implemented because the inference
phase of DNN normally takes very short time (i.e., less
than tens of miliseconds in AI dedicated accelerators) so
new data are loaded before a new refresh cycle. Therefore,

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1599

Fig. 17. Training CNN with (offset, incr) = (512, 256) and 16-bit truncation
with regard to temperatures.

TABLE IV

TESTING ACCURACY OF THESE ABOVE MODELS

the accumulated errors of data can be kept small. Fig. 16 shows
the cumulative error rates for each bit of data with (512,256)
pairs at 90 ◦C. The experimental results show that although the
error accumulates over time, the LSBs approximated by soft
approximation can tolerate errors according to their criticality.
In other words, in the proposed method, less important data
have higher error rates. Therefore, thanks to the memory
structure considering data significance and the fast new data
load in DNN processing, the proposed structure can support
DNN effectively.

C. Training CNN With Approximate Memory

As analyzed in the previous subsection, the operating option
with (512, 256) performs best in terms of both error robustness
and energy efficiency. Therefore, the simulation of the training
phase with error injection is conducted with (offset, incr) =
(512, 256). The training results are shown in Fig. 17, and
the testing results are listed in Table IV. These results show
that the training is also error robust and there is almost
no performance loss (only about 0.7%) at even very high
operating temperatures such as 90 ◦C in testing the models
trained with the approximate memory. Training using the
approximate memory is believed to be a potential way to avoid
overfitting and to improve the stability of the network. The
previous research in [38] injects the Gaussian noise to the
input images for training the GoogLeNet to obtain a more
robust model, whereas that in [39] identifies a very powerful
technique, named Dropout, to avoid overfitting when training
deep networks. However, further research is needed to acquire
more insight into the regularization characteristic and error
robustness of training with approximate memory.

D. Comparison With the Related Works

This study attempts a combined approach that greatly
reduces the DRAM energy consumption by reducing both
dynamic and refresh energy. Previous research efforts on the
approximate memory through the refresh control are presented
in [8]–[10], and [36].

The studies in [8]–[10] are applied for the embedded
system setting. Sparkk in [10] maps different bits of data to

Fig. 18. Block diagram of an AI accelerator with the approximate memory.

different approximate DRAM chips based on their importance.
However, since all bits of data are unprotected from errors,
it works only for integer data (i.e., image pixels). Moreover,
there are not enough implementation details or evaluations of
energy consumption and architectural performance. In [9], the
experiments show a slight reduction of 20–25% self-refresh
power in the idle mode only. Another software technique
proposed in [8] divides approximate DRAM into bins with
different error rates and the data are allocated to a bin based on
their criticality. At ideal room temperature, this scheme works
well by reducing almost refresh energy. However, at higher
temperature, the size of accurate bin (qbin0) reduces signifi-
cantly. Moreover, profiling the retention time information of
all DRAM cells once at the starting up could cause incorrect
results, as it has to deal with Variable Retention Time and Data
Pattern Dependencies [14]. It should be noted that wrong bin
allocation could damage the program.

There have been many works, [37] and [40], that pro-
pose different methods to reuse data on chips for reducing
DRAM access. As the DRAM access decreases by tech-
niques for reusing data, the dynamic power decreases, so the
portion of the refresh power relatively increases. Refresh
operation should always operate regardless of DRAM access
and therefore, the proposed scheme is compatible with many
state-of-the-art technologies that reduce DRAM access and as
a result, the effectiveness of the proposed scheme becomes
more important. It should be noted that the effect from
reducing DRAM access is similar to that from increasing
the capacity of DRAM because the DRAM area that is
not accessed increases. The research in [6] shows that the
refresh power consumption accounts for up to 50% of the
total memory power consumption as the size and density of
DRAM increase. Moreover, DRAM power consumption has
proven to be significant in both specific acceleration systems
and general purpose systems. In the famous AI accelerator,
DaDianNao [37], eDRAM buffer accounts for 38.3% of the
power consumption in the overall system. In addition, in a
general commercial server system with 8-core processors and
128 GB of memory in [41], DRAM power accounts for 41%
of the power consumption in the overall system.

In addition, the proposed method brings some advantages to
the dedicated AI chips. Similar to previous works, RANA [36]
and DaDianNao [37], the feature-maps buffer and weight
buffer of the accelerator are implemented by the eDRAM
as shown in Fig. 18. The research in [36] shows that the
refresh power consumption of the buffer accounts for 36.9%
of the total power consumption of the accelerator. Therefore,
the proposed row-level refresh algorithm can be applied to

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

1600 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

these buffers to further save the power consumption. In addi-
tion, in AI accelerators, data are normally represented as fixed-
point 16-bit (int16). It is noteworthy that fixed-point number
is more error tolerant than floating point number. Hence, all
bits of data in AI accelerators can be efficiently approximate
depending on their criticality. Different from general purpose
processors, the AI accelerator deterministically accesses to
memory block by block in continuous addresses. Therefore,
a single transpose buffer of 16 × 16 bits is sufficient without
changing the eDRAM access latency owing to the high hit
rate of the transpose buffer. Moreover, the study in [36] saves
the refresh energy of the DRAM significantly while applying
the same refresh period to all bits of data. Therefore, it is
possible that the proposed refresh scheme further reduces the
refresh power consumption with minimal hardware overhead
over dedicated AI accelerators.

Finally, with regard to CNN compression and quantization
techniques, there have been many previous works aimed at
reducing the model size of CNNs [34], [42]–[45]. Unlike
existing compression and quantization methods, the proposed
technique has the advantage that it does not require any
extra effort (i.e., fine-tuning, retraining, pruning, etc.), which
causes additional power consumption, to preserve accuracy
of neural networks. In other words, the original floating
point model can be applied directly without any extra task.
Moreover, existing quantization methods could reduce the bits
for computation effectively, but could not finely control the
bits from memory because data placement in memory follows
the conventional way that is only suitable for standardized
data precision, such as INT8, FP16, and FP32. On the other
hand, the proposed memory structure uses the transposed
method, which achieves the fine power saving effect on the
memory bandwidth (i.e., dynamic power) as well as the refresh
operation (i.e., static power) for various data precisions while
maintaining the power saving effect in computing.

VII. CONCLUSION

This paper presents an approximate memory architecture
that can aggressively save both the refresh energy and
dynamic energy consumptions by applying the combination
of soft approximation (i.e., row-level refresh control) and hard
approximation (i.e., block data truncation) to non-critical data
while preserving the accuracy of error-resilient applications
such as DNNs. The experiments show that the approximate
memory architecture is exceptionally energy-efficient in both
training and testing phases.

REFERENCES

[1] Z. Deng, C. Xu, Q. Ci, and P. Faraboschi, Reduced-Precision Mem-
ory Value Approximation for Deep Learning. Accessed: Jan. 3, 2020.
[Online]. Available: http://www.labs.hpe.com/techreports/2015/HPL-
2015-100.html

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 1, 2012, pp. 1097–1105.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” Dec. 2015, arXiv:1512.03385. [Online]. Available:
https://arxiv.org/abs/1512.03385

[4] M. Courbariaux, J. David, and Y. Bengio, “Training deep neural net-
works with low precision multiplications,” Dec. 2014, arXiv:1412.7024.
[Online]. Available: https://arxiv.org/abs/1412.7024

[5] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 1737–1746.

[6] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
intelligent DRAM refresh,” in Proc. 39th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2012, pp. 1–12.

[7] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob, “Flexible auto-refresh:
Enabling scalable and energy-efficient DRAM refresh reductions,” in
Proc. 42nd Annu. Int. Symp. Comput. Archit. ISCA, 2015, pp. 235–246.

[8] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality con-
figurable approximate DRAM,” IEEE Trans. Comput., vol. 66, no. 7,
pp. 1172–1187, Jul. 2017.

[9] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving DRAM refresh-power through critical data partitioning,” in Proc.
16th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2011,
pp. 213–224.

[10] J. Lucas, M. Alvarez-Mesa, M. Andersch, and B. Juurlink, “Sparkk:
Quality-scalable approximate storage in DRAM,” Memory Forum,
pp. 1–6, Jun. 2014.

[11] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “DrMP: Mixed
precision–aware DRAM for high performance approximate and precise
computing,” in Proc. 26th Int. Conf. Parallel Archit. Compilation Techn.
(PACT), Sep. 2017, pp. 1–11.

[12] G. Pekhimnko et al., “Linearly compressed pages: A low-complexity,
low-latency main memory compression framework,” in Proc. 46th Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2013, pp. 1–13.

[13] S. Sardashti and D. A. Wood, “Decoupled compressed cache: Exploiting
spatial locality for energy-optimized compressed caching,” in Proc.
46th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2013,
pp. 1–12.

[14] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An experimental
study of data retention behavior in modern DRAM devices: Implications
for retention time profiling mechanisms,” in Proc. 40th Annu. Int. Symp.
Comput. Archit. ISCA, 2013, pp. 60–71.

[15] Micron Technology, Inc. Partial Array Self Refresh (PASR) TN.
Accessed: Jan. 3, 2020. [Online]. Available: https://www.micron.
com/-/media/client/global/documents/products/technicalnote/dram/
e0597e10.pdf

[16] I. J. Chang, D. Mohapatra, and K. Roy, “A priority-based 6T/8T hybrid
SRAM architecture for aggressive voltage scaling in video applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 2, pp. 101–112,
Feb. 2011.

[17] H. Kim, I. J. Chang, and H.-J. Lee, “Optimal selection of SRAM bit-
cell size for power reduction in video compression,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 431–443, Sep. 2018.

[18] D. T. Nguyen, H. Kim, H.-J. Lee, and I.-J. Chang, “An approximate
memory architecture for a reduction of refresh power consumption in
deep learning applications,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2018, pp. 1–5.

[19] A. Samson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in Proc. 32nd ACM SIGPLAN Conf. Program.
Lang. Des. Implement., 2011, pp. 164–174.

[20] N. Whitehead and A. Fit-Florea. Precision & Performance: Floating
Point and IEEE 754 Compliance for NVIDIA GPUs. Accessed:
Jan. 3, 2020. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.231.215

[21] H. Zheng and Z. Zhu, “Power and performance trade-off in contem-
porary DRAM system design for multicore processor,” IEEE Trans.
Comput., vol. 59, no. 8, pp. 1033–1046, Aug. 2010.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, and J. Long, “Caffe:
Convolutional architecture for fast feature embedding,” in Proc. 22nd
ACM Int. Conf. Multimed., 2014, pp. 675–678.

[23] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[24] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, Sep. 2014. [Online].
Available: https://arxiv.org/abs/1409.1556

[26] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett., vol. 10,
no. 1, pp. 16–19, Jan. 2011.

[27] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A manycore
simulator with application-level+ simulation and detailed microarchitec-
ture modeling,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
Apr. 2013, pp. 74–85.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

NGUYEN et al.: APPROXIMATE MEMORY ARCHITECTURE FOR ENERGY SAVING IN DEEP LEARNING APPLICATIONS 1601

[28] C. K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” in Proc. ACM SIGPLAN Conf. Program.
Language Des. Implement., 2005, pp. 190–200.

[29] K. Bick, D. T. Nguyen, H.-J. Lee, and H. Kim, “Fast and accurate
memory simulation by integrating DRAMSim2 into McSimA+,” MDPI
Electron., vol. 7, no. 8, p. 152, 2018.

[30] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 1135–1143.

[31] M. Jung, D. M. Mathew, C. C. Rheinlander, C. Weis, and N. Wehn,
“A platform to analyze DDR3 DRAM’s power and retention time,” IEEE
Des. Test., vol. 34, no. 4, pp. 52–59, Aug. 2017.

[32] A. Krizhevsky, V. Nair, and G. Hinton. The Cifar-10 Dataset.
Accessed: Jan. 3, 2020. [Online]. Available: https://www.cs.toronto.
edu/~kriz/cifar.html

[33] Calculating Memory System Power for DDR3, Micron Technol., Boise,
ID, USA, 2007.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” arXiv:1510.00149. Oct. 2015, [Online]. Available: https://arxiv.
org/abs/1510.00149

[35] S. Han et al., “EIE: Efficient inference engine on compressed deep net-
works,” Feb. 2016, arXiv:1602.01528. [Online]. Available: https://arxiv.
org/abs/1602.01528

[36] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “RANA: Towards efficient
neural acceleration with refresh-optimized embedded DRAM,” in Proc.
ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018,
pp. 1–13.

[37] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. 47th Annu. Int. Sump. Microarchitecture, 2014, pp. 1–14.

[38] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the
robustness of deep neural networks via stability training,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016.

[39] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[40] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[41] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,” IEEE
Comput., vol. 36, no. 12, pp. 39–48, Dec. 2003.

[42] D. T. Nguyen, T. N. Nguyen, H. Kim, and H.-J. Lee, “A high-throughput
and power-efficient FPGA implementation of YOLO CNN for object
detection,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 8, pp. 1861–1873, Aug. 2019.

[43] M. Restegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: Imagenet classification using binary convolutional neural net-
works,” Mar. 2016, arXiv:1603.05279. [Online]. Available: https://arxiv.
org/abs/1603.05279

[44] K. Wang, Z. Lin, Y. Liu, J. Lin, and S. Han, “HAQ: Hardware aware
quantization with mixed precision,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 8612–8620.

[45] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental net-
work quantization: Towards lossless CNNs with low-precision weights,”
Feb. 2017, arXiv:1702.03044. [Online]. Available: https://arxiv.org/abs/
1702.03044

Duy Thanh Nguyen received the B.S. degree in
electrical engineering from the Hanoi University of
Science and Technology, Hanoi, Vietnam, and the
M.S. degree in electrical and computer engineering
from Seoul National University, Seoul, South Korea,
in 2011 and 2014, respectively, where he is currently
pursuing the Ph.D. degree in electrical and computer
engineering.

His research interests include computer architec-
ture, memory system, and SoC design for computer
vision applications.

Nguyen Huy Hung received the B.S. degree in
electrical engineering from the Hanoi University of
Science and Technology, Hanoi, Vietnam, in 2012,
and the M.S. degree in electrical and computer
engineering from Seoul National University, Seoul,
South Korea, in 2018.

His research interests include computer vision,
deep learning, and GPU implementation for com-
puter vision applications.

Hyun Kim (Member, IEEE) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2009, 2011, and 2015, respectively.
From 2015 to 2018, he was a BK Assistant Professor
with the BK21 Creative Research Engineer Devel-
opment for IT, Seoul National University. In 2018,
he joined the Department of Electrical and Infor-
mation Engineering, Seoul National University of
Science and Technology, Seoul, where he is cur-
rently an Assistant Professor. His research interests

include algorithms, computer architecture, memory, and SoC design for low-
complexity multimedia applications and deep neural networks.

Hyuk-Jae Lee (Member, IEEE) received the B.S.
and M.S. degrees in electronics engineering from
Seoul National University, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, USA, in 1996. From 1996 to
1998, he was with the Faculty of the Department
of Computer Science, Louisiana Tech University,
Ruston, USA. From 1998 to 2001, he was a Senior
Component Design Engineer with the Server and
Workstation Chipset Division, Intel Corporation,

Hillsboro, OR, USA. In 2001, he joined the School of Electrical Engineering
and Computer Science, Seoul National University, where he is currently a
Professor. He is the Founder of Mamurian Design, Inc., a fabless SoC design
house for multimedia applications. His research interests include computer
architecture and SoC design for multimedia applications.

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on June 02,2020 at 08:18:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

