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Abstract—In recent years, light detection and rang-
ing (LiDAR) sensors have been widely utilized in various
applications, including robotics and autonomous driving.
However, LiDAR sensors have relatively low resolutions, take
considerable time to acquire laser range measurements, and
require significant resources to process and store large-scale
point clouds. To tackle these issues, many depth image sam-
pling algorithms have been proposed, but their performances
are unsatisfactory in complex on-road environments, espe-
cially when the sampling rate of measuring equipment is rel-
atively low. Although region-of-interest (ROI)-based sampling
has achieved some promising results for LiDAR sampling in
on-road environments, the rate of ROI sampling has not been
thoroughly investigated, which has limited reconstruction performance. To address this problem, this article proposes a
solution to the budget distribution optimization problem to find optimal sampling rates according to the characteristics of
each region. A simple yet effective mean absolute error (MAE)-aware model of reconstruction errors was developed and
employed to analytically derive optimal sampling rates. In addition, a practical LiDAR sampling framework for autonomous
driving was developed. Experimental results demonstrate that the proposed method outperforms all previous approaches
in terms of both the object and overall scene reconstruction performances.

Index Terms— Autonomous driving, LiDAR sampling, on-road environment, ROI-based sampling.

I. INTRODUCTION

AUTONOMOUS driving has recently attracted attention;
with the goal of reducing traffic accidents, conges-

tion, and pollution. Moreover, when autonomous driving is
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integrated with emerging drive-sharing services, it elimi-
nates the enormous cost of owning personal vehicles [1]–[3].
Autonomous driving, which is considered to be the future of
driving, is actively being developed in both academia and
industry [4]–[6]. In autonomous driving, sensors, such as
grayscale/color camera sensors, inertial and GPS navigation
sensors, radio detection and ranging (RADAR) sensors, and
light detection and ranging (LiDAR) sensors are installed in
the vehicle to imitate the complex natural sensing system of
humans [7], [8]. Among these sensors, the LiDAR sensor is
based on range sensing, which measures the time interval
between the emission of light from the sensor and the arrival of
light reflected from distant objects to estimate the distance to
them. Therefore, a LiDAR sensor can provide rich information
over a wide field of view (FOV) [9]–[12]. Since LiDARs
are becoming the most popular sensor in environment per-
ception [13], development of a real-time simultaneous local-
ization and mapping (SLAM) solution based on 3D LIDAR
measurements that can work in large-scale environments, is of
great importance. By scanning at specified spatial intervals and
directions within a surface through a series of observations,
a topography that represents a 3D data cloud can be readily
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obtained. Various scanning patterns have been designed and
used; for example, the uniform raster scan or circular scan
trajectories [14]. Although a LiDAR sensor detects obstacles
on the road in autonomous driving, there are many challenges
to real-time application. First, the quality of LiDAR measure-
ments strongly depends on the reflective properties and angle
of the reflecting surface. In practice, measurements may be
lost because the reflected laser beams are not returned during
the distance measurement process. As a result, it is necessary
to increase the laser power, which leads to a reduction in
the number of measurements for safety. Second, although a
LiDAR sensor is capable of constructing a high-definition map
of objects, it requires considerable resources to process and
store large-scale point clouds. Therefore, it is critical to limit
the number of measurements while maintaining the captured
information. Many applications such as SLAM have modern
3D laser-range scanners, such as LiDAR, that are computation-
ally intensive owing to their high data rates [15], [16]; this may
be a barrier for real time processing while preserving precision
up to a certain level. Third, LiDAR sensors require significant
time to acquire laser range measurements.

A. Related Work
To address the issues of quality of measurement from

LiDAR and the limitation of resources to process and store
large-scale point clouds, fast and accurate sampling methods
have recently been proposed [12], [17]–[21]. However, these
methods have some shortcomings. Hawe et al.’s [17] approach,
which is motivated by the property of wavelet transforms,
i.e., relevant coefficients coincide with discontinuities, sug-
gested that a data acquisition system should pick samples
at the discontinuities or along the gradients. However, this
method is not practical owing to the lack of gradients in the
disparity map prior to sampling and the difference between
the gradient of color images and that of disparity maps.
Therefore, it is challenging to infer the disparity gradient
from the color image. Schwartz et al. [18], [20] proposed a
saliency-guided sampling approach to perform sampling in a
two-stage manner. First, approximately 10% of the samples are
randomly sampled, and an approximate depth map is derived
from the sampled data. Following this, object information or
saliency is extracted from the estimated depth to select better
locations with the remaining sample budget. The approach
proposed by Liu et al. [19] is analogous to two-stage sampling.
In the first stage, during the pilot stage, half of the sample
budget is allocated randomly or along the gradients of a color
image. Second, the refinement stage is used to estimate a round
disparity map and then compute locations for the remaining
sample budgets. Liu and Nguyen [21] proposed a motion
compensation-assisted sampling (MCAS) scheme for recon-
structing depth video sequences from a subset of samples.
By exploiting the temporal information and corresponding
RGB images, the proposed MCAS scheme achieves efficient
one-stage sampling. However, this approach relies on motion
compensation and motion vector estimation, which entails
heavy computational loads, and is accompanied by problems
related to fast-moving and thin objects, such as occlusion
and disocclusion, brightness change, and motion blur [22].

In conclusion, these approaches require time-consuming rough
disparity estimations and are consequently inappropriate for
autonomous driving in on-road environments owing to the
complexity of the background in an outdoor environment,
the reliability of the gradient image of a scene in outdoor
scenarios, and the reduced focus on object and road areas,
which are significantly important for autonomous driving in
on-road environments.

Nguyen et al. [12] proposed a LiDAR sampling method
to distribute samples in an on-road environment based on
semantic segmentation information from the region of interest
(ROI). Given a fixed number of samples, sampling budgets
are moved from the background into road areas, signifi-
cantly enhancing the quality of object reconstruction. How-
ever, the ratio between the sampling rates of objects, roads,
and background areas has not been thoroughly investigated.
Therefore, the overall reconstruction quality is degraded.

B. Contributions
To complement the drawbacks of existing studies and

develop the most suitable sampling method for autonomous
driving, this article presents a LiDAR sampling framework
to minimize the mean average error (MAE) of the object
and overall regions. The key concepts are to build an MAE
model reflecting the characteristics of the object, road, and
background regions in an autonomous driving environment
and to find optimal sampling rates for each region based
on its characteristics (i.e., MAE model). Because MAE
models are not available prior to sampling, the proposed
framework exploits temporal information to efficiently predict
MAE functions.

The three contributions of this article are as follows:
1) ROI-Based Sampling (Section III-A). An efficient sam-

pling strategy to maximize reconstruction performance
is proposed. We demonstrate that for a given sampling
budget, a sampling pattern can be obtained by allocating
random samples in object, road, and background regions
with different sampling rates. In particular, each region’s
sampling optimization problem is solved independently
by allocating random samples with probabilities propor-
tional to the magnitudes of the depth gradients. This
makes it possible to solve the problem that the sampling
process of existing studies is time-consuming.

2) MAE-aware Budget Distribution Optimization
(Section III-B). While the sampling rates for the
ROI were not well-defined in the previous research
done by Nguyen et al. [12], we propose an optimization
scheme that determines the optimal sampling rates for
the object, road, and background regions by minimizing
the overall reconstruction error. Both hard and soft
optimization schemes are presented. This enables
the most accurate sampling of the proposed method
compared to existing state-of-the-art studies.

3) MAE Modelling and Practical Considerations
(Section IV).A simple yet efficient MAE model is
presented. Moreover, the sampling budget optimization
is simplified, and its analytical solution is derived.
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In practice, MAE models depend on sample data;
thus, prior sampling cannot be used, which is the
main drawback of the existing studies in [18] and
[20]. To address this problem, the MAE models were
predicted by exploiting temporal samples from a
previous frame. Moreover, by predicting MAE models,
the time-consuming process of estimating disparity
maps in the existing studies [17]–[21] can be eliminated.
Finally, the efficiency and robustness of the proposed
framework are demonstrated.

The remainder of this article is organized as follows.
Section II describes the background of this study, the prob-
abilistic model of the sampling problem, and ROI-based
LiDAR sampling. Sections III and IV introduce the proposed
MAE-aware sampling framework and its practical considera-
tions, respectively. The experimental results are presented in
Section V, and conclusions are presented in Section VI.

II. BACKGROUND

A. Probabilistic Model of Sampling Problem
In [19], a probabilistic model was used to represent the

sampling problem. For N locations in an FOV, a diagonal
matrix S ∈ RN×N represents the sampling operation with the
(i, i)th entry of S as follows:

Sii =
�

1 with probability pi

0 with probability 1- pi
(1)

where {pi}N
i=1 is a sequence of predefined probabilities, and for

each i = 1, . . . , N , pi must be bounded such that 0 ≤ pi ≤ 1.
Given S, the sampled data b ∈ RN×1 is defined as follows:

b = Sx (2)

where the i th entry bi is zero if Sii = 0. The target budget
is defined by the target sampling ratio ξ as an alternative to
minimizing the number of sampled data with 0 < ξ < 1,
which is used to represent the average sampling frequency.
Then, the following constraint is derived:

1

N

N�
i

pi = ξ (3)

For large N , the standard concentration inequality guarantees
that the average number of entries in S is approximately ξ N
(i.e., ξ N = M) [19].

Let a = [a1, . . . , aN ]T be a vector representing the magni-
tude of the gradient of the depth map. The intuition underlying
Liu et al.’s [19] method is that the average gradient computed
from all N samples is similar to the average gradient computed
from a subset of ξ N samples.

Let {pi}N
i=1 be the optimal sampling probability, which can

be determined by solving the following optimization problem:

min
p1,...,pN

1

N

N�
i=1

a2
i

pi
(4)

subject to 1
N

�N
i=1 pi = ξ and 0 ≤ p j ≤ 1. The solution for

this optimization is formulated as follows:
pi = min(τai , 1) (5)

where τ is the root of the equation g(τ ) = �N
i=1

min(τai , 1) − ξ N .

B. ROI-Based LiDAR Sampling
In [12], Nguyen et al. proposed an ROI-based sampling

algorithm for an on-road environment for autonomous driving.
With the aid of a state-of-the-art object and road detection
method based on convolutional neural networks [5], [23], this
sampling method utilizes semantic information, as shown in
Fig. 1. A scene is assumed to be segmented into three regions:
road, object, and background. Let SO , SR , and SB be the
index sets of points in the object, road, and background areas,
respectively. The union of the three sets is the set of positions
in the FOV, and the intersection of any two sets is an empty
set as follows:

SO ∪ SR ∪ SB = {1, 2, . . . , N} (6)

SO ∩ SR = SO ∩ SB = SR ∩ SB = ∅ (7)

Because the road, object, and background areas have differ-
ent characteristics, as shown in Fig. 2, the sampling problem
can be reformulated with two weighting parameters:

min
p1,...,pN

1

N
(
�
i∈SB

a2
i

pi
+ α

�
j∈SR

a2
j

p j
+ β

�
k∈SO

a2
k

pk
) (8)

subject to 1
N

�N
j=1 p j = ξ and 0 ≤ p j ≤ 1, where α and

β are the weights of the road and object areas, respectively.
Although Nguyen et al. [12] significantly enhanced the quality
of object reconstruction, the ratio between the sampling rates
of the object, road, and background areas has not been thor-
oughly investigated, and solving this problem was an important
motivation for this study.

C. Point Cloud and Memory Space in a LiDAR System
1) Point Cloud: Point clouds produced by LiDAR are visu-

alized for the ease of measurement. A point cloud is basically
a set of data points in a 3D coordinate system, commonly
defined by x, y, and z coordinates. They are used to represent
the surface of an object and do not contain data of any internal
features, color, materials, and so on [24]. Normally, in a con-
ventional LiDAR system, LiDAR acquires N locations in the
FOV, but if the sampling algorithm is applied, the number of
locations acquired can be reduced to M = ξ N , as mentioned
in Section II-A.

2) Memory Space: In [25], a G() function was used to
represent the amount of stored/transferred data. Therefore, G()
depends on the sampling budget ξ , depth resolution n, and
sampling pattern S P , and can be expressed as follows:

G(ξ, n, S P) = G(M, n, i1, . . . , iM ) (9)

If the sampling pattern is non-uniform and irregular because
each pixel consists of n-bits, the amount of data becomes
n × ξ × N-bits. In addition, the sampling pattern S P is stored
and/or transmitted. Because one bit is necessary for each pixel
in the input image of size N , the amount of data for S P is N .

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on March 06,2021 at 03:08:34 UTC from IEEE Xplore.  Restrictions apply. 



9392 IEEE SENSORS JOURNAL, VOL. 21, NO. 7, APRIL 1, 2021

Fig. 1. RGB image and segmentation results.

Fig. 2. Sampling patterns at sampling rates ξ = 1� and ξ = 50�.

Therefore, the total amount of data G(ξ, n, S P) is derived as
follows:

G(ξ, n, S P) = n × ξ × N + N (10)

Uniform grid sampling does not require the sampling map to
be stored because the pattern is fixed. Therefore, the required
memory space G(ξ, n, S P) is modified as follows:

G(ξ, n, S P) = n × ξ × N (11)

III. ROI-BASED SAMPLING SCHEME AND MAE-AWARE

SAMPLING BUDGET DISTRIBUTION

This section presents an ROI sampling scheme. Let
{pm}m∈SO , {pn}n∈SR , and {pk}k∈SB be the optimal sampling
probabilities in the object, road, and background areas, respec-
tively. {pm}, {pn}, and {pk} must be bounded such that 0 ≤
pm ≤ 1, 0 ≤ pn ≤ 1, and 0 ≤ pk ≤ 1. In contrast to [12],
three separate sampling ratios, λR , λO , and λB (0 < λO , λR ,
λB < 1) are defined for the road, object, and background
areas, respectively. Eventually, the average of probabilities in
the road, object, and background areas must reach their target
sampling ratios:�

m∈SO
pm

NO
=λO ,

�
n∈SR

pn

NR
=λR,

�
k∈SB

pk

NB
=λB (12)

where NO , NR , and NB are the number of sampling points in
the road, object, and background areas, respectively. The total
sampling budget in the ROI ξ N consisting of the sampling
budget in object λO NO , road λR NR , and background λB NB

must achieve the sampling budget of the scene ξ N :

λO NO + λR NR + λB NB = ξ N (13)

A. ROI-Based Random Sampling Scheme
Inspired by [19], the proposed sampling scheme is derived

by minimizing the variance of the average gradient computed

for the object, road, and background areas, where the variance
of the average gradient for each area is as follows: 1

E[(YO − μO)2] = 1

N2
O

�
m∈SO

a2
m

�
1 − pm

pm

�
(14)

E[(YR − μR)2] = 1

N2
R

�
n∈SR

a2
n

�
1 − pn

pn

�
(15)

E[(YB − μB)2] = 1

N2
B

�
k∈SB

a2
k

�
1 − pk

pk

�
(16)

Similar to [19], the intuition underlying this sampling method
is that the average gradient computed for all N samples is
similar to the average gradient computed for a subset of ξ N
samples. Moreover, in our proposed method, the overall scene
is divided into three different regions. Therefore, the optimal
sampling probabilities {pi}N

i=1 = {pm}m∈SO ∪ {pn}n∈SR ∪
{pk}k∈SB can be determined by minimizing the sum of the
variance of the average gradient computed for the object, road,
and background areas E[(YO − μO)2], E[(YR − μR)2], and
E[(YB − μB)2] as follows:

min
p1,...,pN

⎛
⎝ 1

N2
O

�
m∈SO

a2
m

pm
+ 1

N2
R

�
n∈SR

a2
n

pn
+ 1

N2
B

�
k∈SB

a2
k

pk

⎞
⎠

(17)

subject to 1
NO

�
m∈SO

pm = λO , 1
NR

�
n∈SR

pn = λR ,
1

NB

�
k∈SB

pk = λB , λO NO + λR NR + λB NB = ξ N , 0 ≤
pm ≤ 1, 0 ≤ pn ≤ 1, and 0 ≤ pk ≤ 1.

The optimal sampling probabilities {pi}N
i=1 can be deter-

mined by solving the above optimization problem. From (6),
(7), (12), and (13), it can be deduced that the optimization
problem (17) is equivalent to the optimization problem in each
of the regions.

1For consistency, in the variance E[(Y − μ)2], we use 1
N2 instead of 1

N ,
as in [19]. See Appendix for derivation.
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First, the optimization problem for the object area is as
follows:

min
p1,...,pNO

1

N2
O

�
m∈SO

a2
m

pm
(18)

subject to 1
NO

�
m∈SO

pm = λO and 0 ≤ pm ≤ 1. The solution
to this optimization is

pm = min(τam, 1) (19)

where τ is the root of the equation g(τ ) =�
m∈SO

min(τam, 1) − λO NO .
Second, the optimization problem for the road area is as

follows:
min

p1,...,pNR

1

N2
R

�
n∈SR

a2
n

pn
(20)

subject to 1
NR

�
n∈SR

pn = λR and 0 ≤ pn ≤ 1. The solution
to this optimization is

pn = min(τan, 1) (21)

where τ is the root of the equation g(τ ) = �
n∈SR

min(τan, 1) − λR NR .
Third, the optimization problem for the background area is

as follows:

min
p1,...,pNB

1

N2
B

�
k∈SB

a2
k

pk
(22)

subject to 1
NB

�
k∈SB

pk = λB and 0 ≤ pk ≤ 1. The solution
to this optimization is

pk = min(τak, 1) (23)

where τ is the root of the equation g(τ ) =�
k∈SB

min(τak, 1) − λB NB . See Appendix A-A and A-B for
the derivation.

B. Optimal ROI-Based Sampling Budget Distribution
1) Hard Optimal ROI-Based Sampling Budget Distribution:

Given the information about the characteristics of the MAEs
of the ROI, as indicated in Section IV-A, the sampling budget
distribution can be formulated as an optimization problem
whose goal is to minimize the total MAEs of the ROI.
Mathematically, we consider the following problem:

min
λO ,λR ,λB

(M AEO + M AER + M AEB) (24)

subject to λO NO + λR NR + λB NB = ξ N , 0 ≤ λO ≤ 1,
0 ≤ λR ≤ 1, and 0 ≤ λB ≤ 1.

2) Soft Optimal ROI-Based Sampling Budget Distribution:
Thus far, we have assumed that the object, road, and back-
ground regions contribute equally to the optimization prob-
lem (24). In reality, however, object and road areas are more
important in on-road environments. Moreover, in different
scenarios, the object and road regions will have different levels
of importance. Therefore, we must modify the optimization
problem (24) to reflect the different roles of the object, road,
and background areas in minimizing MAEs in the ROI and

Fig. 3. Average MAEs according to sampling rates.

the trade-off between M AEO , M AER , and M AEB . To do
so, we introduce �O > 0, �R > 0, and �B > 0, which
are the weighted parameters denoting priorities for the object,
road, and background regions. Consequently, we modify the
optimization problem as follows:

min
λO ,λR,λB

(�O M AEO + �R M AER + �B M AEB) (25)

subject to λO NO + λR NR + λB NB = ξ N , 0 ≤ λO ≤ 1,
0 ≤ λR ≤ 1, and 0 ≤ λB ≤ 1.

IV. PRACTICAL MAE MODELING

A. Practical Models of MAEs
Unlike in [12], this article presents a simple yet effective

method to model MAEs. Fig. 3 demonstrates the average
MAEs of the object, road, and background areas at sampling
rates from 0.01 (=1%) to 0.5 (=50%). First, it is clearly
shown that the MAEs gradually decrease as the sampling rates
increase. In particular, the MAEs decrease steeply in the range
of ξ = (0, 0.1) and decrease gradually in the range of ξ =
(0.1, 0.5). This numerical example demonstrates that MAEs
are likely to be modeled as rational functions with similar
behaviors. In particular, the MAEs of the object, road, and
background are modeled with three separate models because
they have different characteristics. By applying numerical
interpolation to these sets of data points, it can be deduced
that the MAEs are modeled as functions fO (λO ), fR(λR),
and fB(λB) such that fO : [0, 1] �→ R+, fR : [0, 1] �→ R+,
and fB : [0, 1] �→ R+.

M AEO = fO (λO ) = aO + bO

cO + λO
(26)

M AER = fR(λR) = aR + bR

cR + λR
(27)

M AEB = fB(λB) = aB + bB

cB + λB
(28)

where λO , λR , and λB are the sampling rates for the object,
road, and background regions, respectively.

Reconsider Fig. 3, where the MAEs of the object, road, and
background areas are shown by blue circle, red square, and
black diamond lines, respectively, and each point represents an
MAE at a sampling rate. Meanwhile, the interpolated points
estimated by rational functions are represented by dashed blue,
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red, and black lines, respectively. It is clearly shown that the
rational functions well represent the MAE characteristics of
the object, road, and background areas.

B. Analytical Solution of Sampling Budget Distribution
Problem

To solve the optimization problem in (25) with the practical
models shown in IV-A, the Lagrangian of the above equation
can be expressed as follows:

L(λO, λR, λB, γ , ηO , ηR, ηB , νO , νR , νB)

= �OaO + �O
bO

cO + λO
+�RaR + �R f racbRcR + λR,

+�BaB + �B
bB

cB + λB
+γ (λO NO + λR NR + λB NB − ξ N)

−ηOλO − ηRλR − ηBλB

+νO (λO − 1) + νR (λR − 1) + νB (λB − 1) , (29)

By solving (29), the optimal solution of (25) with the practical
models in IV-A can be expressed as follows:

λO = max(min(

�
�O bO

γ NO
− cO , 1), 0) (30)

λR = max(min(

�
�RbR

γ NR
− cR, 1), 0) (31)

λB = max(min(

�
�BbB

γ NB
− cB , 1), 0) (32)

where γ is chosen based on the primal feasibility λO NO +
λR NR + λB NB = ξ N . See Appendix B-A for the derivation.

Fig. 4 shows the objective function on various planes and
the minimum value of the objective function projected on
various planes. Figs. 4a, 4b, and 4c illustrate the objective
function �O M AEO +�R M AER +�B M AEB on coordinates
(λO , λR), (λB , λO ), and (λB, λR), respectively. In Fig. 4a, λB

is formulated as a function of (λO , λR). Similarly, in Fig. 4b,
λO is formulated as a function of (λB , λR), and in Fig. 4c,
λR is formulated as a function of (λB , λR). Figs. 4d, 4e, and
4f indicate the optimal solutions of λO , λR , and λB , respec-
tively. In fact, these figures show the projections of objective
functions, λO , λR , and λB , on the plane (�O M AEO +
�R M AER + �B M AEB), respectively.

C. Prediction MAEs From Two Consecutive Frames
To utilize the temporal information from the previous frame,

we examine the characteristics of two consecutive frames. The
input data of RGB and LiDAR images at time t and t + �t
are shown in Fig. 5. It can be seen that within �t , the scenes
at two times t and t + �t are slightly different. The MAEs
of the object, road, and background areas at time t + �t are

Fig. 4. Objective function on various planes and its optimal solution.

Fig. 5. Input data for the proposed sampling scheme.

defined as follows:
M AEO,t+�t = fO,t+�t (λO,t+�t )

= aO,t+�t + bO,t+�t

cO,t+�t + λO,t+�t
, (33)

M AER,t+�t = fR,t+�t (λR,t+�t )

= aR,t+�t + bR,t+�t

cR,t+�t + λR,t+�t
, (34)

M AEB,t+�t = fB,t+�t(λB,t+�t)

= aB,t+�t + bB,t+�t

cB,t+�t + λB,t+�t
, (35)

Fig. 6 shows the MAE difference between time t and t+�t ,
and TABLE I lists the parameters of these characteristics in
detail. It is evident that the characteristics of the MAEs at
times t and t + �t are likely to be similar [26]. The profiling
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Fig. 6. Example of prediction MAEs of the object, road, and background areas from two consecutive frames with MAEO, t and MAEO, t+Δt, MAER, t
and MAER, t+Δt, and MAEB, t and MAEB, t+Δt.

TABLE I
PARAMETERS OF MAEO,t, MAEO,t+Δt , MAER,t,

MAER,t+Δt , MAEB,t, AND MAEB,t+Δt

results in Fig. 6 and TABLE I indicate a useful fact: for a
certain time interval �t , the characteristics of the MAEs at
time t can be used as the characteristics of the MAEs at time
t + �t without the need to examine the characteristics of the
MAEs at time t + �t . In other words, it can be expressed as
follows:

M AEO,t+�t ≈ M AEO,t (36)

M AER,t+�t ≈ M AER,t (37)

M AEB,t+�t ≈ M AEB,t (38)

Section IV-E demonstrates how this fact plays a pivotal role
in dealing with the time constraint issue of sampling.

D. Prediction MAEs Using Partial Sampling
As discussed in Subsection IV-A, the MAE functions are

estimated from the sample data, which are not available prior
to sampling. Obviously, the accuracy of the MAE estimation
depends on the number of acquired data or the sampling rate.
The more data points are acquired, the more accurate the
prediction MAEs are. However, acquiring many data certainly
results in significant resource requirements to process these
data. This subsection further considers the trade-off between
the sampling rate for prediction and its MAEs.

Fig. 7 illustrates the sampling data points up to 10%, 15%,
20%, and 50%. Figs. 7b, 7d, and 7f are zoomed-out views
of the prediction MAEs for the object, road, and background
areas, respectively. These figures show that there are differ-
ences in the MAEs functions when using different sampling
rates for the prediction stage. These differences in the MAE
functions may affect the optimal solutions. In other words,
the more sampling points in the prediction stage lead to the
more accurate MAE functions. However, by using a small
sampling rate to interpolate the MAEs of the object, road, and
background areas, the resource requirements for data storage
and processing can be considerably reduced.

Fig. 7. Prediction MAEs of object, road, and background regions for
sampling rates of 50�, 20�, 15�, and 10�.

E. MAE-Aware Sampling Framework
Fig. 8 illustrates the proposed sampling framework con-

sisting of four stages. First, object and road detection algo-
rithms are performed. Using a convolutional neural network,
the object and road areas can be extracted fast and accurately,
resulting in masks of the object, road, and background areas.
Secondly, the MAE functions are estimated by utilizing the
sample data from the previous frame. In particular, equations
(36), (37), and (38) are applied. Thirdly, the optimal sampling
budget optimization is solved, and the sampling rates of
the object, road, and background areas are derived. Finally,
the sampling pattern is derived by solving the sampling
optimization problems for the object, road, and background
regions separately, as in (19), (21), and (23), respectively.
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TABLE II
MAE COMPARISON (M) BETWEEN THE PREVIOUS SAMPLING ALGORITHMS AND THE PROPOSED METHOD USING SAMPLING RATES IN THE

PREDICTION STEP ON THE OBJECT AREA, ROAD AREA, AND OVERALL SCENE, 10�, 15�, AND 20�, RESPECTIVELY WITH 64 CHANNELS

Fig. 8. Practical sampling scheme.

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed sampling scheme
with existing sampling methods from [12], [19], and [21], and
examine the proposed method using different sampling rates at
the prediction MAEs stage in the framework. To evaluate the
various schemes, we utilize the well-known public KITTI [7]
dataset.

A. Data Preparation
The KITTI dataset [7] was recorded from a moving vehicle

using a variety of sensor modalities, such as high-resolution
color and grayscale stereo cameras, a Velodyne 3D laser
scanner, and a high-precision GPS/IMU inertial navigation
system while driving in and around Karlsruhe, Germany.
According to [7], the cameras are triggered by a LiDAR 3D
scanner at 10 frames per second, so the time interval �t
between two consecutive frames Q and Q+1 is 0.1 s, as shown
in Fig. 5. We selected nine pairs of 2D images that correspond
to nine pairs of LiDAR images. Each pair has two images
captured at t and t + �t , where �t = 0.1 s.

Since the spatial resolution of LiDAR applications appar-
ently plays the most critical role in the MAE and quality
of 3D images, we create several LiDAR images with various
spatial resolution of 64, 32, and 16 channels. Based on the
public KITTI dataset [7], the Velodyne HDL-64E is set up
as a rotating 3D laser scanner with the following settings:
10 Hz, 64 beams, 0.09◦ angular resolution, 2 cm distance
accuracy, 360◦ horizontal, and 26.8◦ vertical FOV, 120 m
range. In addition, with reference to Velodyne HDL-32E [27]
and Velodyne PUCK [28], to acquire the LiDAR datasets
with different spatial resolutions, we modified the KITTI
dataset with the following settings: 1) 32 beams, 0.09◦ angular
resolution, 360◦ horizontal and 26.8◦ vertical FOV, range:
100 m, and 2) 16 beams, 1◦ angular resolution, 360◦ horizontal
and 26.8◦ vertical FOV, range: 100 m. Fig. 9 shows the point
cloud images of LiDAR with the different spatial resolutions.

Fig. 9. RGB image and point cloud images with the different resolution.

B. Performance Comparison
1) Mean Absolute Error: This subsection presents compari-

son results between the proposed method and three previous
approaches: two-stage [19], ROI-based [12], and MCAS [21].
In addition, three variations of the proposed method, (�O = 1,
�R = 1, �B = 1), (�O = 2, �R = 1, �B = 1), and
(�O = 1, �R = 2, �B = 1), are presented. In particular,
the first variation considers the case in which the MAEs of
the object, road, and background regions can be considered
equally by setting �O = 1, �R = 1, and �B = 1.
This constraint is suitable for achieving a good overall perfor-
mance. Meanwhile, the MAEs of object or road areas can be
emphasized in the objective function by setting their weights
to larger than unity (i.e., �O = 2 or �R = 2) in order to
achieve optimized performance for a specific area.

The results in Table II show that the proposed method
outperformed the previous approaches in the object areas and
overall scenes when using LiDAR with 64 channels. The
proposed method performed much better than those from [12],
[19], and [21] in terms of object area, where the proposed
method reduces the error by up to 45.6%, 20.9%, and 66.6%,
respectively. For the overall image, the proposed method’s
MAEs are reduced by up to 8.7%, 9.9%, and 43.9%, respec-
tively. With the setting of 32 channels in Table III, the pro-
posed method outperforms those from [12], [19], and [21]
in terms of object area, where the proposed method reduces
the error by up to 48.5%, 27.8%, and 67.3%, respectively.
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TABLE III
MAE COMPARISON (M) BETWEEN THE PREVIOUS SAMPLING ALGORITHMS AND THE PROPOSED METHOD USING SAMPLING RATES IN THE

PREDICTION STEP ON THE OBJECT AREA, ROAD AREA, AND OVERALL SCENE, 10�, 15�, AND 20�, RESPECTIVELY WITH 32 CHANNELS

TABLE IV
MAE COMPARISON (M) BETWEEN THE PREVIOUS SAMPLING ALGORITHMS AND THE PROPOSED METHOD USING SAMPLING RATES IN THE

PREDICTION STEP ON THE OBJECT AREA, ROAD AREA, AND OVERALL SCENE, 10�, 15�, AND 20�, RESPECTIVELY WITH 16 CHANNELS

Fig. 10. Sampling maps and reconstructed results by various sampling methods with sampling rate ξ = 0.1.

For the overall image, the MAEs of the proposed method are
reduced by up to 2.7%, 8.1%, and 50.2%. With the setting
of 16 channels in Table IV, the proposed method outperforms
those from [12], [19], and [21] in terms of object area, where
the proposed method reduces the error by up to 32.8%, 32.2%,
and 57.2%, respectively. For the overall image, the proposed
method’s MAEs are reduced by up to 1.1%, 5.9%, and 50.2%.
It is notable that the higher weights assigned to the specific
areas lead to a better performance in these areas. In other
words, with increasing �O and �R , the MAEs in the object
and road areas decrease, respectively.

Figs. 10a, 10b, 10c, and 10d show the sampling maps deter-
mined by the MCAS [21], two-stage [19], ROI-based [12], and
proposed method, respectively. It is notable that the proposed
method distributes more sampling budget to the object and
road areas than the background area. By using the ROI
technique, the proposed method can know the area with more
important information with certainty. Moreover, with MAE
optimization, the proposed method also performed better in
sampling in the road area and overall compared to the con-
ventional ROI method [12]. Figs. 10e, 10f, 10g, and 10h show
the maps reconstructed by the MCAS [21], two-stage [19],
ROI-based [12], and proposed method, respectively. It is

obvious that the proposed sampling method yields the best
performance in the object area. Meanwhile, the reconstruction
errors for the road areas are visually similar among all
methods.

2) Memory Consumption: We compare the memory con-
sumption when the proposed method is applied and the
sampling algorithm is not used. In LiDAR applications that
do not use a sampling algorithm, a depth image with an
image input size of N and a resolution of n-bits can be
considered as having a sampling rate of 100% and a uniform
sampling pattern. Therefore, the required memory space can
be calculated as follows:

G(ξ = 100%, n, S) = n × ξ × N = n × N (39)

On the other hand, for the proposed method, the required
memory space is as follows:

G(ξ, n, S) = n × (λO NO + λR NR + λB NB) + N

= n × ξ × N + N (40)

By comparing (39) and (40), the maximum memory savings
achieved by the proposed method can be calculated as follows:

χ = 1 − nξ + 1

n
(41)
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TABLE V
MEMORY SAVING OF THE PROPOSED METHOD

ACCORDING TO VARIOUS SAMPLING RATES

TABLE V shows the memory saving ratio according to the
various sampling rates when a depth image of size N with
8-bit resolution is sampled and stored in memory. We can see
that our method saves up to 77.5% memory as compared to
conventional LiDAR systems.

VI. CONCLUSION

In this article, a sampling framework to minimize the
MAEs of the object and overall regions is presented with
three contributions. First, we provide empirical results for
modeling the characteristics of MAEs in the object, road,
background, and overall areas. Second, by assuming that the
characteristics of each area are known prior to the sampling
process, we propose a method to minimize the MAE in
each region by using weighted parameters for each area. The
weighted parameters can be efficiently selected according to
the environment in which autonomous driving is conducted.
Third, we propose an efficient LiDAR sampling scheme.
The current framework only works for offline processes, but
it can further accelerate the proposed framework by using
GPU implementation to achieve real-time operation and sup-
port LiDAR sampling in on-road environments. Therefore,
the proposed framework can contribute significantly to the
commercialization of autonomous driving systems.
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APPENDIX A
RANDOM SAMPLING SCHEME

A. Proof of the Variance E[(Y − μ)2]

V ar [Y ] = V ar

⎡
⎣ 1

N

N�
j=1

a j

p j
I j

⎤
⎦

= 1

N2

N�
j=1

V ar

�
a j

p j
I j

�

= 1

N2

N�
j=1

a2
j

p2
j

V ar [I j ] (42)

{I j }N
j=1 is a sequence of Bernoulli random variables with

probabilities Pr [I j = 1] = p j , so V ar [I j ] = p j (1 − p j ).

Therefore, (42) is as follows:

V ar [Y ] = 1

N2

N�
j=1

a2
j

�
1 − p j

p j

�
(43)

Also, E[(Y − μ)2] = V ar [Y ].
Thus,

E[(Y − μ)2] = 1

N2

N�
j=1

a2
j

�
1 − p j

p j

�
(44)

B. Auxiliary Results for Optimization Problem

min
p1,...,pN

1

N2

N�
j=1

a2
j

p j
(45a)

subject to
1

N

N�
j=1

p j = ξ, (45b)

δ j ≤ p j ≤ 1. (45c)

The Lagrangian of (45) is

L(p, λ, η, ν) = 1

N2

N�
j=1

a2
j

p j
+ ν

⎛
⎝ N�

j=1

p j − ξ N

⎞
⎠

+
N�

j=1

λ j (p j − 1) +
N�

j=1

η j (δ j − p j ) (46)

where p = [p1, . . . , pN ]T are the primal variables, λ =
[λ1, . . . , λN ], η = [η1, . . . , ηN ], and ν are the Lagrange
multipliers associated with the constraints p j ≤ 1, p j ≥ δ j ,
and

�N
j=1 p j = ξ N , respectively.

The first order optimality conditions imply the following:
• Stationarity: ∇pL = 0. That is, − 1

N2

a2
j

p2
j
+λ j −η j +ν = 0.

• Primal feasibility:
�N

j=1 p j = ξ N , p j ≤ 1, and p j ≥ δ j .
• Dual feasibility: λ j ≥ 0, η j ≥ 0, and ν ≥ 0.
• Complementary slackness: λ j (p j −1) = 0, η j (δ j − p j ) =

0.

λj(pj − 1) = 0 implies that for each j, one of the
following cases always holds: λj = 0 or pj = 1.

• Case 1: λ j = 0:

– If η j = 0, then p j ≥ δ j . Substituting λ j = η j = 0
in the stationarity condition: p j = a j

N
√

ν
, Because

δ j ≤ p j ≤ 1, we must have
a j
N ≤ √

ν ≤ a j
Nδ j

.
– If p j = δ j , then η j > 0. Substituting p j = δ j and

λ j = 0 into the stationarity condition, η j = ν −
1

N2

a2
j

δ2
j
. Because η j > 0, we have

√
ν > 1

N
a j
δ j

• Case 2: p j = 1:

– η j = 0. Substituting p j = 1, η j = 0 into the

stationarity condition λ j = a2
j

N2 − ν. Because λ j > 0,
we have that

√
ν <

a j
N
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1) Combining These Two Cases, We Obtain:

p j =

⎧⎪⎪⎨
⎪⎪⎩

δ j , when a j < Nδ j
√

ν
a j

N
√

ν
when Nδ j

√
ν ≤ a j ≤ N

√
ν.

1, when a j > N
√

ν

(47)

The optimal solution is

p j = max(min(
a j

N
√

ν
, 1), δ j ) (48)

Let τ = 1
N

√
ν

, p j = max(min(τa j , 1), δ j ). Thus,
the desired value of τ can be obtained by finding the root
of the equation g(τ ) = �N

j=1 max(min(τa j , 1), δ j ) − Nξ .
In case δ j = 0, (48) is:

p j = min(τa j , 1) (49)

where τ is the root of the equation g(τ ) =�N
j=1 min(τa j , 1) − ξ N ,

APPENDIX B
MAE OPTIMIZATION

A. Results for Proposed Optimization Problem

min
λO ,λR ,λB

(�O M AEO + �R M AER + �B M AEB) (50a)

subject to λO NO + λR NR + λB NB = ξ N, . (50b)

0 ≤ λO ≤ 1. (50c)

0 ≤ λR ≤ 1. (50d)

0 ≤ λB ≤ 1. (50e)

The Lagrangian of (50) is

L(λO, λR, λB, γ , ηO , ηR , ηB , νO , νR, νB)

= �O aO + �O
bO

cO + λO
+�RaR + �R f racbRcR + λR, (51)

+�BaB + �B
bB

cB + λB
+γ (λO NO + λR NR + λB NB − ξ N)

−ηOλO − ηRλR − ηBλB

+νO (λO − 1) + νR (λR − 1) + νB (λB − 1) . (52)

where λO, λR, λB are the primal variables,
ηO , ηR, ηB , νO , νR , νB are the Lagrange multipliers associated
with the constraints 0 ≤ λO ≤ 1, 0 ≤ λR ≤ 1, 0 ≤ λB ≤ 1,
and λO NO + λR NR + λB NB = ξ N , respectively.

The first order optimality conditions imply the following:
• Stationarity:

– ∇λOL = 0. That is, − �ObO

(cO + λO )2 + γ NO − ηO +
νO = 0.

– ∇λRL = 0. That is, − �RbR

(cR + λR)2+γ NR −ηR+νR =
0.

– ∇λBL = 0. That is, − �BbB

(cB + λB)2+γ NB −ηB +νB =
0.

• Primal feasibility:

– λO NO + λR NR + λB NB = ξ N
– λO ≤ 1, and λO ≥ 0
– λR ≤ 1, and λR ≥ 0
– λB ≤ 1, and λB ≥ 0

• Dual feasibility: ηO > 0, ηR > 0, ηB > 0, νO > 0, νR >
0, νB > 0

• Complementary slackness:

– ηOλO = 0, νO (λO − 1) = 0
– ηRλR = 0, νR (λR − 1) = 0
– ηBλB = 0, νB (λB − 1) = 0

ηOλO = 0 implies that one of the following cases always
holds: ηO = 0 or λO = 1.

• Case 1: ηO = 0:

– If νO = 0, then λO ≤ 0. Substituting ηO = νO = 0

in the stationarity condition: λO =
�

�O bO
γ NO

− cO ,

because 0 ≤ λO ≤ 1, we must have �O bO
NO (cO+1)2 ≤

γ ≤ �O bO
NO cO

2 .
– If λO = 1, then νO > 0. Substituting ηO = 0

and λO = 1 into the stationarity condition, νO =
�O bO

(cO+1)2 − γ NO . Because νO > 0, we have γ <
�O bO

NO (cO+1)2

• Case 2: λO = 0:

– νO = 0. Substituting λO = 0 and νO = 0 into the
stationarity condition ηO = γ NO − �O bO

cO
2 . Because

ηO > 0, we have γ > �O bO
NO cO

2

1) Combining These Two Cases, We Obtain:

λO =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, when γ >
�ObO

NO cO
2�

�ObO

γ NO
− cO when

�O bO

NO (cO + 1)2

≤ γ ≤ �O bO

NO cO
2

1, when γ <
�O bO

NO (cO + 1)2

(53)

The optimal solution is

λO = max(min(

�
�ObO

γ NO
− cO , 1), 0) (54)

ηRλR = 0 implies that one of the following cases always
holds: ηR = 0 or λR = 1.

• Case 1: ηR = 0:

– If νR = 0, then λR ≤ 0. Substituting ηR = νR = 0

in the stationarity condition: λR =
�

�RbR
γ NR

− cR ,

because 0 ≤ λR ≤ 1, we must have �RbR
NR (cR+1)2 ≤

γ ≤ �RbR
NR cR

2 .

– If λR = 1, then νR > 0. Substituting ηR =
0 and λR = 1 into the stationarity condition,
νR = �RbR

(cR+1)2 − γ NR . Because νR > 0, we have

γ < �RbR
NR (cR+1)2
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• Case 2: λR = 0:

– νR = 0. Substituting λR = 0 and νR = 0 into the
stationarity condition ηR = γ NR − �RbR

cR
2 . Because

ηR > 0, we have γ > �RbR
NR cR

2

2) Combining These Two Cases, We Obtain:

λR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, when γ >
�RbR

NR cR
2�

�RbR

γ NR
− cR when

�RbR

NR (cR + 1)2

≤ γ ≤ �RbR

NRcR
2

1, when γ <
�RbR

NR (cR + 1)2

(55)

The optimal solution is

λR = max(min(

�
�RbR

γ NR
− cR, 1), 0) (56)

ηBλB = 0 implies that one of the following cases always
holds: ηB = 0 or λB = 1.

• Case 1: ηB = 0:

– If νB = 0, then λB ≤ 0. Substituting ηB = νB = 0

in the stationarity condition: λB =
�

�B bB
γ NB

− cB ,

because 0 ≤ λB ≤ 1, we must have �BbB
NB (cB+1)2 ≤

γ ≤ �B bB
NB cB

2 .
– If λB = 1, then νB > 0. Substituting ηB = 0

and λB = 1 into the stationarity condition, νB =
�B bB

(cB+1)2 − γ NB . Because νB > 0, we have γ <
�B bB

NB (cB+1)2

• Case 2: λB = 0:

– νB = 0. Substituting λB = 0 and νB = 0 into the
stationarity condition ηB = γ NB − �B bB

cB
2 . Because

ηB > 0, we have γ > �B bB
NB cB

2

3) Combining These Two Cases, We Obtain:

λB =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, when γ >
�BbB

NB cB
2�

�BbB

γ NB
− cB when

�BbB

NB (cB + 1)2

≤ γ ≤ �BbB

NB cB
2

1, when γ <
�BbB

NB (cB + 1)2

(57)

The optimal solution is

λB = max(min(

�
�BbB

γ NB
− cB, 1), 0) (58)

γ is chosen based on the primal feasibility λO NO +λR NR +
λB NB = ξ N
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