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An Efficient Sampling Algorithm With a K-NN
Expanding Operator for Depth Data

Acquisition in a LiDAR System
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Abstract— The spatial resolution of a depth-acquisition device,
such as a Light Detection and Ranging (LiDAR) sensor, is limited
because of the slow acquisition. To accurately reconstruct a
depth image from limited spatial resolution, a two-stage sampling
process has been widely used. However, two-stage sampling uses
an irregular sampling pattern for the sampling operation, which
requires complex computation for reconstruction and additional
memory space for storage. A mathematical formulation of a
LiDAR system demonstrates that two-stage sampling does not
satisfy its timing constraint for practical use. To overcome the
drawbacks of two-stage sampling, this paper proposes a new
sampling method that reduces the computational complexity and
memory requirements by generating the optimal representatives
of a sampling pattern in down-sample data. A sampling pattern
can be derived from a k-NN expanding operation from the down-
sampled representatives. The proposed algorithm is designed
to preserve the object boundary by restricting the expansion-
operation only to the object boundary or complex texture.
In addition, the proposed algorithm runs in linear-time complex-
ity and reduces the memory requirements using a down-sampling
ratio. The experimental results demonstrate that the proposed
sampling outperforms grid sampling by at most 7.92 dB. Con-
sequently, the proposed sampling achieves reconstructed quality
similar to that of optimal sampling, while substantially reducing
the computation time and memory requirements.

Index Terms— Compressive and non-uniform sampling, com-
pressive sensing, depth data acquisition, light detection and
ranging (LiDAR), sparse representation.

I. INTRODUCTION

DEPTH-DATA-ACQUISITION devices have been a focus
of intensive study in recent years, owing to vast

Manuscript received August 22, 2019; accepted December 23, 2019. Date of
publication January 1, 2020; date of current version December 4, 2020. This
article was recommended by Associate Editor V. Monga. This work was sup-
ported in part by the Institute for Information and communications Technology
Promotion grant through the Korea Government (MSIT) under Grant 2017-0-
00721-001 (Development of intelligent semiconductor technology for vision
recognition signal processing for vehicle based on multi-sensor fusion) and in
part by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education under Grant
NRF-2019R1A6A1A03032119. (Corresponding author: Hyuk-Jae Lee.)

Xuan Truong Nguyen is with the Department of Electrical and Com-
puter Engineering, College of Engineering, Seoul National University,
Seoul 151-744, South Korea.

Hyun Kim is with the Department of Electrical and Information Engi-
neering, Seoul National University of Science and Technology, Seoul 01811,
South Korea.

Hyuk-Jae Lee is with the Inter-University Semiconductor Research Cen-
ter, Seoul National University, Seoul 151-744, South Korea, and also
with the Department of Electrical Engineering, Seoul National University,
Seoul 151-744, South Korea (e-mail: hyuk_jae_lee@capp.snu.ac.kr).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2019.2963448

applications in autonomous driving [1], [2], remote sensing
[3], and robotics [4]. The two major classes of depth acqui-
sition techniques include computational procedures and hard-
ware solutions. The class of computational methods known
as disparity-estimation algorithms [5]–[7] estimate depth by
computing the disparities in stereo images using their cor-
responding matching features. Disparity-estimation methods
generally function optimally under specific conditioned envi-
ronments. However, they are sensitive to illumination, noise,
and other related factors. Dense disparity estimation is a highly
complex computational task, and therefore sampling of input
data is critical to accelerating the estimation procedure and
selecting the effective number of reliable features. On the
other hand, an alternative solution is to use scanning systems
equipped with active sensors such as time-of-flight camera
[8] and Light Detection and Ranging (LiDAR) sensors [9].
While being capable of producing high-quality depth maps,
the data-acquisition time is relatively long, which limits the
capturing speed. For example, the frame rate of a LiDAR
is 10 fps as opposed to 60 fps in a standard camera [10].
Accelerating the data-acquisition time involves a trade-off
with spatial resolution [11]. Efficient and accurate sampling
is eventually required to reduce the spatial resolution of such
scanning systems.

For a broad use in depth-data acquisition systems, a sam-
pling method should have the following properties:

1. Perceptually capture groups or regions that generally
reflect the global aspects of a depth image. Given a
sample budget, a sampling method should be capable of
capturing details in the object boundary while omitting
details in the smooth areas. The definition of sampling is
formulated to represent these properties for an enhanced
understanding of the method and to facilitate the com-
parison of different techniques.

2. Being computationally efficient implies having a compu-
tational complexity of O(n), where n is the number of
image pixels. For practical use, sampling methods must
run at a speed that is similar to that of gradient com-
putation or other low-level visual-processing methods,
implying approximately linear time with low constant
factors.

Uniform random or grid sampling is the most straightfor-
ward approach that is highly efficient and satisfies the second
property [9], [11]. However, this method is generally inef-
ficient in capturing perceptually critical non-local properties
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of an image such as the object boundary. Therefore, recon-
struction quality is relatively poor and does not satisfy the
quality requirements in several applications. On the other hand,
a non-uniform sampling strategy can significantly enhance the
signal to noise ratio (SNR) [12]–[16]. An effective sampling
approach is proposed in [12] under the assumption that the
global properties of a depth image (e.g. its gradients) are
available. This method efficiently samples the depth image
along edges. Unfortunately, the gradient is not available prior
to sampling, which renders the assumption unrealistic in
practical uses. Nonetheless, the sampling method provides
strong evidence of the feasibility of a more effective sampling
method to capture the global aspects of an image; thereby
enhancing the SNR or reconstruction quality. To obtain the
global properties, several sampling schemes are proposed
in [13]–[15] according to which the sampling operations are
performed in two stages. In the first stage, the scheme adopts
a uniform strategy using only a part of the sample budget. The
sampled data are used to reconstruct an image and then extract
global information such as gradient map [13] and object
saliency map [14], [15]. Non-uniform sampling approaches
are used in the refinement stage, and then the sampling result
is merged into those of the first one.

Although previous two-step sampling methods significantly
enhance the SNR, they exhibit two drawbacks. First, they
invoke an intermediate reconstruction that is complicated,
which makes it challenging to reconstruct an image in real
time even though numerous approaches for efficient recon-
struction such as convex optimization and greedy meth-
ods [12], [13], [16]–[20] have been extensively studied. Sec-
ond, an irregular sampling pattern usually requires additional
storage space or transmission bandwidth, which must be
included in the budget of samples and therefore reduces the
number of feasible samples. These two challenging issues limit
the use of a two-step approach to practical applications such as
data acquisition or laser measurement systems, which strictly
require an efficient sampling method.

To address the above two drawbacks, this paper proposes
a new mathematical formulation of the constraints for a
practical sampling method in a LiDAR system. Based on the
proposed mathematical formulation, it is shown that existing
two-stage sampling approaches are not suitable for a practical
LiDAR system. Therefore, this paper presents a novel sam-
pling method to efficiently perform non-uniform random sam-
pling. The proposed algorithm extends the two-step method
in the previous designs [13]–[15] to reduce the computational
complexity and the requirements of additional storage or band-
width while still achieving high SNR quality. The proposed
method performs uniform sampling at the pilot stage and non-
uniform sampling at the refinement stage. However, unlike
in the previous methods, the proposed technique efficiently
derives non-uniform sampling based on the gradient of the
down-sampled image. Consequently, the proposed method
follows implicit global properties notwithstanding decision-
making using a greedy approach. More critically, the proposed
method for computing the gradient and refinement-sampling
map is substantially faster than other methods because it
does not require intermediate reconstruction. Consequently,

it is computationally efficient with O(n) complexity for n
image pixels. In addition, the proposed method reduces the
requirement of additional memory (or bandwidth) to store
(or transmit) the sampling pattern. To this end, the proposed
method outperforms grid sampling by at most 7.92 dB. As a
result, the proposed sampling achieves a reconstructed quality
that is similar to the optimal sampling in the previous design,
while substantially reducing the computation time and memory
requirements.

The rest of this paper is organized as follows. Section II
briefly introduces a sampling model, a sampling optimization
problem, and the previous approaches. In Section III, tim-
ing and memory-space constraints in the LiDAR system are
presented and three variations of the sampling problem are
described. Section IV presents a graph-based representation of
a down-sampling operator, including the definition of a new k-
expanding operator and a description of the proposed sampling
algorithm and its properties. Experimental results are presented
in Section V, and Section VI concludes the paper.

II. SAMPLING PROBLEM AND RELATED WORKS

This section briefly describes the definition of a sampling
problem and introduces previous studies on gradient-based
sampling and two-step sampling [12], [13], which are the most
relevant sampling approaches.

A. Sampling Problem Definition

Let x ∈ RN be a N ×1 vector representing the depth map of
an entire scene in a field of view (FOV) of a capturing device
such as LiDAR. For straightforwardness, x is normalized such
that 0 ≤ xi ≤ 1 for i = 1, . . . , N . In general, a sensor
device cannot acquire data for all the locations in the FOV
such that the depth map of the entire FOV is reconstructed
from the sampled data. Let M denote the number of samples
that a sensor device can acquire. The sampling problem is
an optimization problem of selecting the samples in the FOV
to minimize the reconstruction error with the constraint that
the number of the samples satisfies the target budget M .
For mathematical formulation, let {1, . . . , N} denotes the
set of indexes that correspond to the locations of the entire
FOV, while {i1, . . . , iM} represents the set of the indexes that
correspond to the sample locations among {1, . . . , N}.

Problem 1 (Sampling Problem): The sampling problem is
to derive {i1, . . . , iM} to minimize the following objective
function

min
i1,...,iM

1

N

N∑
j=1

(
x j − x̃ j

)2 (1)

where x1, . . . , xN are real values and x̃1, . . . , x̃N are the values
that are estimated from M measurements xi1 , . . . , xiM .

Because it is not feasible to obtain a solution in a brute-force
search manner, a heuristic method is most likely used. The next
subsection presents a heuristic algorithm called Oracle random
sampling or gradient-based sampling, which is derived in [13].
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B. Gradient-Based Sampling

In [13], a probabilistic model is used to represent the
sampling problem. For N locations in an FOV, a diagonal
matrix S ∈ RN×N is used to represent the sampling operation
with the (i, i)th entry of S being

Sii =
{

1, with probability pi ,
0, with probability 1 − pi ,

(2)

where 0 ≤ pi ≤ 1 for i = 1, . . . , N is a sequence of
predefined probabilities.

Given S, the sampled data b ∈ RN×1 is defined by:

b = Sx (3)

where the i th entry bi is zero if Sii = 0.
The target budget is defined by the target sampling ratio ξ

with 0 < ξ < 1, which represents the average sampling fre-
quency. The following constraint is then obtained as follows:

1

N

N∑
i=1

pi = ξ. (4)

For a large N , the standard concentration inequality guarantees
that the average number of ones in S is approximately ξ N (i.e.,
ξ N = M) [13].

Similar to [13], this paper uses the gradient-based sampling
method (called Oracle random sampling in [13]) to identify the
edges or the highly textured areas of a given depth image. Let
a = [a1, . . . , aN ]T be a vector that represents the magnitude
of the gradient of the depth map:

a = ∇x =
√

(Dx x)2 + (
Dy x

)2
. (5)

The intuition of the gradient-based sampling method is that the
average gradient computed by all N samples is similar to the
average gradient computed from a subset of ξ N samples [13].
Let

{
p j

}N
j=1 be the optimal sampling probability for defining

the sampling map S. For a specified sampling ratio ξ and a
gradient map, the derivation of the optimal sampling prob-
ability

{
p j

}M
j=1 is formulated as the following optimization

problem:

min
p1,...,pN

1

N

N∑
j=1

a2
j

p j
(6)

subject to 1
N

∑N
j p j = ξand0 ≤p j ≤ 1. In [12], the solution

is formulated as follows:

p j = min
(
τa j , 1

)
. (7)

where τ is the solution of g (τ ) = 0 and g (τ ) can be calculated
as follows:

g (τ ) =
N∑
j

min (τa j , 1) − ξ N. (8)

Note that g(τ ) is a piecewise linear and monotonically increas-
ing function, with g (+∞) = N(1 − ξ) and g (0) ≤ 0 [21].
Therefore, τ can be uniquely determined as the root of g(τ ).
Moreover, an efficient solution for the derivation of τ is
available (see Appendix for details). As the gradient map of
an image is not available prior to sampling, practical sampling
is generally performed in two stages as described in Section I.

Fig. 1. Block diagram of a LiDAR system.

III. SAMPLING PROBLEM IN LIDAR IMAGING WITH NEW

TIMING AND MEMORY-SPACE CONSTRAINTS

The sampling model in Section II-A is intuitive. However,
it over-simplifies a practical LiDAR system because a timing
constraint is not fully considered. The reason is that the
derivation of an optimal sampling pattern is time-consuming,
which consequently increases the overall data acquisition time
even though the number of sampling points is reduced. Fur-
thermore, a practical LiDAR system demands the minimal use
of hardware resources such as memory footprint. To address
these issues in the design of a practical LiDAR system, this
section discusses the constraint required by a LiDAR system
and presents a modified formulation of the sampling problem
discussed in the previous section.

A. Timing Constraint in a Practical LiDAR System

A LiDAR system usually operates by performing multiple
point-wise measurements in a FOV. A block diagram of a
LiDAR is illustrated in Fig. 1. A typical measuring procedure
of the LiDAR system is described as follows. A controller
in the LiDAR system starts by computing a target location
in the FOV, which requires a computation time t pos . In the
next step, the target position is transmitted to a mechanical
scanner that controls motors and mirrors to direct the emitted
light. This step requires the communication and motor control
time, which is denoted by tscan .After the mirror is aimed at the
target, the laser diode in the LiDAR system emits a laser beam
in time temit . Next, the LiDAR waits until the laser reaches
an object and its reflected signal arrives at a photodetector.
The time interval between the emitted and detected signals is
generally referred to as time of flight (TOF) and is denoted
as tT O F . Finally, the measurement of tT O F is converted to an
electric signal and transmitted to the optical device controller
that calculates the TOF from the signal. This time is denoted
by tcalc . In the last step, the result is transmitted to the main
controller that reads the signal in time tread . For a given
position, qk , in an FOV, let tk denote the time required to
measure its distance. Therefore, tk is a function f (.) of the
variables t pos, tscan, temit , tT O F , tcalc, and tread .Obviously,
the upper bound of tk is the summation of all variables when
all steps are operated in a sequential manner. Meanwhile,
the lower bound of tk is the maximum among all variables
assuming that all steps are operated in a pipelined manner.
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To this end, tk must satisfy both upper and lower bounds.

tk = f
(

t pos
k , tscan

k , temit
k , tT O F

k , tcalc
k , tread

k

)
(9-a)

tk ≥ max
{

t pos
k , tscan

k , temit
k , tT O F

k , tcalc
k , tread

k

}
(9-b)

tk ≤ t pos
k + tscan

k + temit
k + tT O F

k + tcalc
k + tread

k (9-c)

Three variables temit
k , tcalc

k and tread
k are likely to be fixed as

their operations are the same for all measurements. Therefore,
tk usually depends on three remaining variables, t pos

k , tscan
k ,

and tT O F
k .

The derivation of a sampling pattern affects t pos
k , which

indicates the time to determine the sampling point. If a
sampling pattern is predetermined, it does not require the time
to compute a target location (or t pos

k = 0 for all k). On the
other hand, the derivation of a complex sampling pattern might
require a considerable amount of time so that t pos

k becomes
very large.

When the LiDAR system measures at M locations corre-
sponding to indexes i1, . . . , iM , the total time is expressed as
follows:

t M∑ =
M∑

k=1

f
(

t pos
ik

, tscan
ik

, temit
ik

, tT O F
ik

, tcalc
ik

, tread
ik

)
. (10)

Given a time budget T for scanning M locations, the following
constraint must be satisfied:

t M∑ =
M∑

k=1

f
(

t pos
ik

, tscan
ik , temit

ik , tT O F
ik , tcalc

ik , tread
ik

)
≤ T . (11)

In practice, a LiDAR captures an image frame by frame,
and therefore, the time budget T is usually set for a single
frame. For example, T is 33 milliseconds if 30 frames are
captured for every second. For the two-stage sampling in [13],
the M/2 samples in the first stage are predefined so that they
do not require time to calculate their locations. Meanwhile,
the M/2 remaining samples require complex computation to
derive their patterns, which results in longer computation times
to generate the pattern (i.e., 20 seconds as reported in [13]).
Therefore, this sampling does not satisfy the timing constraint:

t M∑ ≥
M∑

k=1

max
(

t pos
ik

, tscan
ik , temit

ik , tT O F
ik , tcalc

ik , tread
ik

)

≥
M∑

k=1

t pos
ik

≥ 20s. (12)

Obviously, t M∑ becomes much larger than the time budget T
that is, in general, a fraction of second in practice. Conse-
quently, the two-stage sampling in [13] cannot be used for
practical LiDAR sampling with the timing constraint consid-
ered.

B. Memory-Space Constraint in a Practical LiDAR System

This subsection presents an analysis of memory and band-
width in a LiDAR system. Consider the practical case in which
LiDAR is integrated in a system and a sampling method must
satisfy the memory or bandwidth constraint of the system.

In particular, let C denote the available memory capacity (or an
available transmission bandwidth) for storing (or transmitting)
LiDAR data. Meanwhile, let G(.) be a function that represents
the amount of stored/transferred data. Therefore, G(.) depends
on the sampling budget ξ , depth resolution n, and a sampling
pattern S.

G (ξ, n, S) = G(M, n, i1, . . . , iM }. (13)

In addition, the amount of data G (ξ, n, S) must satisfy the
following inequality:

G(ξ, n, S) ≤ C (14)

The straightforward derivation of G(ξ, n, S) for a given
non-uniformly random sampling (i.e., two-stage sampling
in [13]) is described as follows. Because each pixel in b
consists of n bits, the amount of data becomes n × ξ × N
bits. In addition, the sampling pattern S is also stored and/or
transmitted because it is non-uniform and irregular. Because
one bit is necessary for each pixel in the input image of size
N , the amount of data for S is N . Therefore, the total amount
of data G (ξ, n, S) is derived as follows:

G (ξ, n, S) = n × ξ × N + N (15)

Generally, for a practical capturing device, the memory space
inside the device and/or the transmission bandwidth to the
external system is limited. Therefore, it is necessary to select
the sampling ratio to satisfy the memory and/or bandwidth
requirement. By combining (14) and (15), with a given
memory and/or bandwidth capacity C , the amount of data
G (ξ, n, S) must satisfy the following inequality:

n × ξ × N + N ≤ C (16)

From (16), the target sampling ratio ξ is limited by the
available memory space C , resolution n, and image size N :

ξ ≤ C − N

n × N
(17)

A new terminology target compression ratio, χ , is defined to
represent the ratio of the size of the available memory space C
to the size of the input image (n × N):

χ = C

n × N
(18)

The compression ratio represents the extent to which the
original data should be compressed to satisfy the available
memory capacity. The relationship between the sampling ratio
ξ and compression ratio χ can be obtained from (17) and (18)
and can be expressed as follows:

ξ ≤ χ − N/(n × N) (19)

Uniform grid sampling does not require the storage of the
sampling map S because the pattern is fixed. Therefore,
the required memory space G(ξ, n, S) is modified as follows:

G (ξ, n, S) = n × ξ × N ≤ C (20)

where the second term in (16) is removed. In this case, the
sampling ratio becomes

ξ ≤ C

n × N
= χ (21)
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Example 1: A depth image of size 512 × 512 with
8-bit resolution (data size = 256KB) is sampled and stored
in memory of size 64 KB (i.e., N = 32 KB, n = 8, and
C = 64 KB). This implies that 32 KB (=64 KB - 32 KB)
is used to store the sampled depth map b. If b is obtained
from the non-uniform sampling presented in Section II-B,
the sampling ratio ξ is limited to the following value:

ξ = C − N

n × N
= 64 − 32

8 × 32
= 12.5% (22)

On the other hand, the uniform grid uses 64 KB to store b,
thereby resulting in the following value of ξ

ξ = C

n × N
= 64

8 × 32
= 25% (23)

This result demonstrates that the uniform grid stores twice as
many samples as the non-uniform grid does. This implies that
the uniform grid is likely to achieve higher image quality than
that of the non-uniform grid when memory space is limited,
which is true in numerous real-world applications.

C. New Sampling Problem With Constraints

Based on those two constraints discussed in the previous
two subsections, Problem 1 in Section II-A is modified as
follows:

Problem 2 (New Sampling Problem for LiDAR): The sam-
pling problem is to derive {i1, . . . , iM} to minimize the
following objective function:

min
i1,...,iM

1

N

N∑
j=1

(
x j − x̃ j

)2 (24)

subject to the following two constraints:

a. (timing constraint)

t M∑ =
M∑

k=1

f
(

t pos
ik

, tscan
ik , temit

ik , tT O F
ik , tcalc

ik , tread
ik

)
< T

b. (memory-space constraint)

G(M, n, i 1, . . . , iM ) ≤ C

where x1, . . . , xN are the real values and x̃1, . . . , x̃N are
values that are estimated from M measurements xi1 , . . . , xiM .
Problem 2 is modified into two variations by ignoring either
the timing or memory constraint. Problem 2a is the same
problem as Problem 2 with the removal of the memory-space
constraint whereas Problem 2b is derived from Problem 2 by
removing the timing constraint.

While the use of non-uniform sampling enhances the image
quality of the reconstructed image, it involves considerable
computational complexity and additional memory space. This
illustrates the trade-off between higher image quality and
faster execution time/larger memory requirement. This paper
proposes a novel algorithm that improves image quality while
reducing computational complexity and memory requirements.

IV. THE PROPOSED SAMPLING ALGORITHM

AND ITS PROPERTIES

A. Sampling and k-NN Expanding Operator

To reduce the required memory space, the proposed algo-
rithm attempts to reduce the second term on the right
side in (15). The concept is explained using an exam-
ple illustrated in Fig. 2. Fig. 2(a) illustrates the “Ellipse”
image. The down-sampled image of Fig. 2(a) (by 3:1 yields)
is illustrated in Fig. 2(c) (i.e., one ninth of the original
image). Notwithstanding the down-sampling operator, the
down-sampled image still perceptually captures object bound-
aries and textured patterns. These characteristics are shown
in Figs. 2(b) and 2(d), which present their gradients of
Figs. 2(a) and (c), respectively. It should be noted that in the
down-sampled image, object boundaries and textured patterns
are perceptually captured in most regions. Fig. 2(e) demon-
strates a sampling map generated from the “down-sampled”
gradient image in Fig. 2(d) in which sampled points are
densely located in objects boundary. It suggests that a “down-
sampled” sampling map in Fig. 2(e) can be considerred as an
indicator to detect texture areas in a scene.

The proposed algorithm captures the gradient information
∇x from the down-sampled image and then derives sampled
depth map b from the down-sampled gradient information.
If the image is down-sampled by 3:1 in both the horizontal
and vertical directions, the size of the sampled depth map is
reduced to 1/9 of the original image. The second term of the
right side in (15) is also decreased to N /9. On the other hand,
the down-sampling results in aliasing artifact in the highly
textured or boundary regions. This implies that image quality
will likely degrade because of the loss of information by
down-sampling. Increasing the number of samples facilitates
the capture of more information (e.g., details of the bound-
ary object or highly textured areas). To reduce this artifact,
the proposed algorithm uses additional samples in the textured
region. In case that a pixel is in a highly textured region, its
neighboring pixels are also likely to be in the highly textured
region because of the non-local image characteristic. Utilizing
this characteristic, the proposed algorithm selects samples in
the neighbors of the sampled data observed in a highly-texture
region. To achieve this, the algorithm uses the k-NN expanding
operation, which is explained in Fig. 3.

Example 2: Figs. 3 (a) and (b) demonstrate a 12×12 image
and its sampled points, respectively. Each node in Fig. 3(b) is
mapped to a pixel marked with a “gray” color in Fig. 3(a)
that can be considered as a representative node of its eight
neighbor nodes. The proposed k-NN expanding sampling
operator functions as follows. In Fig. 3(c), the central node
is marked with label 0, indicating that it is in a smooth
area. The proposed k-NN operator predicts that all eight
neighbors of this node are also in the smooth area by
assigning zero to their labels; and eventually those pixels are
skipped during sampling. On the other hand, the central nodes
in Figs. 3(d), (e), and (f) are marked as one, indicating that they
are in a highly textured area or on the boundary of an object.
The k-NN expanding operator sets theirs neighbors as “1” to
predict them to be in a highly textured area. In particular, four
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Fig. 2. Example of a down-sampling operator and its graph representation.
(a) –(b) “Ellipse” image and its gradient; (c)-(e) a down-sampled image (1:3),
its gradients, and its gradient-based sampling map.

Fig. 3. An example of the k-NN expanding operator: (a)-(b) a 12×12 image.
(b) sampled points of the 12×12 image. (c) all neighbors are ‘0’ if center is
‘1’, (d) four neighbors (k = 4) forming a square is ‘1’ and four others are
‘1’ if center is ‘1’, (e) four neighbors (k = 4) forming a diamond is ‘1’ and
four others are ‘1’ if the node is ‘1’, and (f) eight neighbors (k = 8) are ‘1’
if center is ‘1’.

of eight neighbors (k = 4) are predicted as in a highly texture
area and marked with “1” in Figs. 3(d) and (e), while eight
neighbors (k = 8) are marked with “1” in Fig. 3(f). To this
end, the pixels marked with “1” are sampled during sampling.

The sampling map is constructed as follows: The sampling
map consists of all the representatives and their neighbors
marked by non-zero labels. In Fig. 3(c), the four neighbors
have not been included in the sampling map as they are marked
zero. Meanwhile, the four neighbors marked with one in Figs.
3(d)-(e) and the eight neighbors in Fig. 3(f) are added to the
final sampling set.

The following subsection presents the proposed sampling
method using the k-NN expanding sampling operator.

B. The Proposed Sampling Scheme

The proposed sampling procedure consists of two stages:
a pilot stage to obtain a coarse regular sampling map and
a refinement stage to enhance the sampling map. The pilot
stage selects the partial ratio α (0 < α < 1) from the budget.
A uniform grid sampling is used in this stage, resulting in
sampling map S(1) with α × ξ × N non-zero elements. The
sampling period is identical in both the horizontal and vertical
directions such that it is straightforwardly defined by step as
follows:

step =
√

1

α × ξ
(25)

For a specified image, let W and H denote its width and
height, respectively. Then, N = W × H can be obtained.
In uniform sampling with the step expressed in (25), Sii = 1
if and only if the index i satisfies the following condition:

i = �iH × step� × W + �iW × step� (26)

where �.� represents the floor operation, and iH and iW are
integer numbers such that the corresponding �iH × step� and
�iW × step� are the coordinates of the pixel in the 2D image.
Apparently, iH and iW satisfy the following conditions, iH ∈{

1, 2, . . . ,
⌊

H
step

⌋}
and iW ∈

{
1, 2, . . . ,

⌊
W

step

⌋}
.

Given S(1), the sampled depth map b(1) is derived as
follows:

b(1) = S(1)x (27)

and its corresponding down-sampled map x (1) is down-
sampled by the step in (25). The size of x (1) corresponds
to Mα = α × ξ × N , where Mα represents the size of
x (1) hereafter in this paper. It must be noted that this is the
main variation between the proposed study and that in [13].
The map x (1) in the proposed study is straightforwardly a
down-sampled image of a substantially smaller size than that
of the original image. Fig. 4 illustrates a visual comparison
between the proposed sampling scheme and that of [13].
Fig. 4(a) illustrates the proposed sampling scheme where x (1)

is directly derived by down-sampling operation. Meanwhile,
the x (1) in [13] is the reconstructed image derived from S(1)

as illustrated in Fig. 4(b).
In the second stage, the down-sampled image x (1) is

used as a guide to compute the gradient ∇x (1). The gra-
dient map ∇x (1) = [

a1, . . . , aMα

]T is derived as explained
in Section II-B. By formulating the optimization problem
of (6), the optimal probability and sampling map Sβ are
obtained. By applying the k-NN expanding operator to Sβ,
where Sβ is used as the set of representatives for the original
image, S(2) can be obtained. The sampling ratio β is separate
from ξ , and it is derived as follows.

Recall that the size of Sβ, the set of representatives for
the original image, is equal to that of down-sampled image
x (1). Based on the k-NN expanding operator in Section IV-A,
for each representative, k neighboring points are added into
the final sampling map. Note that the number of remaining
samples is (1 − α)× ξ × N because Mα = α × ξ × N samples
are used in the pilot stage. Using the k-NN expanding operator,
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Fig. 4. Comparison of two sampling algorithms: (a) the proposed sampling
algorithm and (b) two-stage algorithm in [13].

each of the representatives are extended to their k neighboring
pixels. Consequently, the number of representatives added in
this refinement stage can be derived by dividing the remaining
samples by k and can be expressed as follows:

(1 − α) × ξ × N

k
(28)

This results in the sampling ratio β for the down-sampled
image x (1), which can be expressed as follows:

β =
(1−α)×ξ×N

k

Mα
= (1−α) × ξ × N

k × α × ξ × N
= 1 − α

k × α
(29)

Given Sβ, the proposed k-NN expanding operator in
Section IV is applied for the derivation of the refined sampling
map S(2). As each representative expands only to its neighbors,
S(1) and S(2) are exclusive. Therefore, the final sampling
map S, is obtained by S = S(1) + S(2). The algorithm is
summarized in Fig. 5.

Example 3: Assume that the target sampling ratio is 20%
(ξ = 0.2) and half of the budget is used at the first stage
(α = 0.5). Then, the size of the down-sampled image in
the first stage includes 10% of the original image’s size. The
refinement stage applies the straightforward four-node pattern
(k = 4). To obtain the remaining 10% of the samples, 2.5% of
the representatives must be selected from the down-sampled
image. From (28), the sampling ratio β in the down-sampled
image is selected as 25%.

β = 1 − 0.5

4 × 0.5
= 0.25. (30)

Fig. 5. Proposed sampling algorithm with a k-NN expanding operator.

Fig. 6. An example of the operation results by the proposed algorithm:
(a) S(1) (b) x(1) (c) ∇x(1) (d) Sβ (e) S = S(1) + S(2) and (f) the grid
sampling.

C. An Example Using Synthetic Data

An example of the implementation of the proposed sampling
algorithm is illustrated in Fig. 6. The synthetic image has
25 × 25 pixels, and the sampling ratio is 20% (ξ = 0.2).
Fig. 6(a) illustrates the sampling map S(1) when 10% is used
by a uniform grid sampling (α = 0.5). From (25), the sampling
period is derived as step = √

10. Without loss of generality,
the starting index is selected as 2 (=1 + step/2) such that
a pattern is derived (see Fig. 6(a)). Therefore, the 8 × 8
down-sampled image x (1) is obtained in Fig. 6(b). For conve-
nience, x (1) exhibits a straightforward shape having a smooth
4 × 4 square in its center. The gradient ∇x (1) is illustrated
in Fig. 6(c). The refinement stage applies the straightforward
4-NN pattern (k = 4) in Section IV. 16 representatives are then
selected from the available 8 × 8 gradient image. The feasible
solution of (6) is displayed in set Sβ in Fig. 6(d), wherein
the black pixels represent highly-textured areas, and the white
pixels indicate smooth ones. It is random in a general case.
However, a feasible solution is selected as an example because
the randomness is not likely to be true if the number of samples
is substantially small. The use of a random solution will likely
result in bias such that the selected samples are not located on
the object boundary. Finally, an expanding operator is applied
to Sβ and then the derived sampling S(2) is merged to S(1)

to form the final sample S, which is illustrated in Fig. 6(e).
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Fig. 7. Example of sampling patterns with the proposed k-NN expanding sampling operator. (a) Grid sampling pattern, (b), (c), (d) Sampling patterns by
adding 5% sampling points along gradients into the pattern in (a). Similar to Fig. 3, the expanding patterns in (b), (c) and (d) are “4-NN, square”, “4-NN,
diamond” and “8-NN”, respectively. Figs. (e), (f), (g), and (h) are reconstructed images corresponding to sampling patterns in (a), (b), (c) and (d), respectively.

In S, the white squares are omitted while the remaining ones
are sampled. Meanwhile, the uniform grid-sampling pattern is
illustrated in Fig. 6(f) as the entire sampling budget is used to
derive the pattern. The sampling pattern in Fig. 6(e) preserves
more points in the boundary area than that in Fig. 6(f).
Note that the difference between S(1) and S(2) is that S(1)

is the representative obtained from Sβ and S(2) represents the
pixels expanded from S(1), which does not include S(1). For
example in the figure below, S(1) represents the shaded pixels
in Fig. 6(a) and S(2) represents the neighboring pixels around
the shaded pixels in Fig. 6(e). Because S(2) does not include
the shaded pixels, S(2) is exclusive to S(1).

D. Impact of the Proposed k-NN Expanding Operator

This subsection demonstrates the impact of the proposed
k-NN expanding operator. Fig. 7 illustrates an example of
patterns with the k-NN expanding sampling operator. The
grid-sampling pattern at ξ = 0.1 (i.e., 10%) is shown in
Fig. 7(a). Patterns in Figs. 7(b), (c), and (d) are derived by
adding 5% sampling points along gradients into the sampling
pattern in Fig. 7(a) with the k-NN expanding operator. Similar
to Fig. 3, expanding patterns in Figs. 7 (b), (c) and (d) are
“4-NN, square”, “4-NN, diamond,” and “8-NN”, respectively.
Figs. 7(e), (f), (g), and (h) demonstrate the reconstructed
images corresponding to the sampling patterns in Figs.7(a),
(b), (c) and (d), respectively. It is clearly shown that in all
three cases, the k-NN expanding sampling operator creates
additional sampling points in the texture region along gradient,
and consequently enhances the reconstruction quality. Visually,
thanks to the proposed k-NN expanding sampling operator,
the texture regions along gradient of the reconstructed images

Fig. 8. Comparison of the reconstruction quality among sampling patterns.
The construction methods are an alternating direction method of multipliers
(ADMM) with wavelet dictionary.

in Figs. 7(f), (g), (h) are nicely captured. The detail recon-
struction performance is reported in Fig. 8. The experiment
environment is built as follows. The sampling procedure starts
with 10% samples in a grid sampling pattern, which is the
pilot stage in the algorithm in Fig. 5. By using the k-NN
expanding operator, it creates additional sampling points in
the texture region along gradient. The percentage of additional
sampling points is set from 1% to 10%. The experimental
results demonstrate that adding only 1% sampling points along
gradient by the proposed method can significantly enhance the
reconstruction performance. For example, compared to the grid
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Fig. 9. Comparison between four sampling patterns. (a) Uniform grid, (b) Two-stage sampling in [13]; (c) Proposed sampling with a 4-NN square-expanding
operator; (d) Proposed sampling with a 4-NN diamond-expanding operator. A Monte-Carlo simulation with 32 independent trials is conducted. The averages
of PSNRs are presented in the Table II.

sampling at the pilot stage, the sampling with the proposed
k-NN expanding operator has about 1.58 dB improvement with
1% additional sampling points, and can be further improved
by almost 8.45 dB with 10% additional sampling points. It is
observed that “4-NN, squared” sampling consistently performs
slight better than “4-NN, diamond” with 0.54 dB improvement
on average, ranging from 0.23 dB to 0.82 dB. Moreover, it is
also observed that the reconstruction performance of “4-NN,
diamond” and “4-NN, square” methods become saturated dur-
ing creating additional sampling points. In particular, for two
cases, no clear improvement is observed after the percentage
of adding points is over 6%. Meanwhile, it is observed that the
8-NN case enhances the performance almost linearly when the
percentage of adding points is up to 12%. Different from 4-NN
expanding cases, the 8-NN case takes advantages of both pat-
terns of “4-NN, diamond” and “4-NN, square”. Consequently,
it is observed that its performance keeps increasing when the
percentage of adding points increases. To this end, because of
the k-NN expanding sampling operator, the text region along
gradient is sampled more frequently than the other region,
which significantly improves the reconstruction performance.

E. Timing and Memory Constraints

This subsection discusses the memory requirements and the
time complexity of the proposed algorithm to test whether the
proposed algorithm satisfies the two constraints in Problem 2.

1) Timing Constraint: Among the timing parameters dis-
cussed in Section III-A, t pos indicates the time for generating
a refinement sampling pattern S(2). The derivation of x (1)

in the pilot stage (lines from 3 to 6 in Fig. 5) is not time-
consuming because it is a result of uniform grid sampling.

TABLE I

AVERAGE RUNNING TIME OF PROPOSED ALGORITHM IN MILLISECONDS.
A MONTE-CARLO SIMULATION WITH 100 INDEPENDENT TRIALS IS

CONDUCTED

TABLE II

COMPARISON OF THE AVERAGE PSNRS

Next, the operation in line 8 in Fig. 5 is a simple derivation
of a gradient and takes less than 10 cycles in most hard-
ware circuits. In addition, this computation can be executed
on-the-fly if the input is received in the raster-scan order. The
computation of the line 9 in Fig. 5 aims to obtain a root of
g(τ ) that is a piecewise linear and monotonically increasing
function, with g (+∞) = N(1 − ξ) and (0) ≤ 0. Therefore,
the root is unique and its derivation is performed in an iterative
way. This step, in practice, is likely to obtain a root within a
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TABLE III

THE PSNR OF THE RECONSTRUCTED IMAGE

small number of iterations (i.e., 64 iterations) and therefore,
it can be processed within 1,000 cycles in most hardware.
For more information, a flowchart of the iterative algorithm
is given in Appendix B. Note that experimental results also
demonstrate that the number of iterations is less than 32 for
all locations to be derived. The last step in Line 10 is simply
an expanding operator. Given a sampling pattern in line 9 in
Fig. 5, it is straightforward that this step can executed within
a single hardware cycle. In summary, the proposed algorithm
can be implemented in hardware within 1,000 cycles, taking
less than 10 microseconds for an operating clock frequency
of 100MHz.

In general, the time complexity of the proposed algorithm
can be analyzed as follows. A sequential visit of sampling
points with the steps defined above permits the simultaneous
derivation of S(1), b(1), and x (1). This stage is executed in
linear time, O(M), with respect to the number of pixels. In the

refinement stage, the gradient computation and the gradient-
based optimization are executed in linear time, O(M). These
steps are performed using the down-sampled image, which
further reduces the complexity. The expanding step is also fast
and executes in linear time, O(M). In summary, the proposed
sampling algorithm satisfies the timing constraints of the
LiDAR system.

2) Memory-Space Constraint: The memory space (or com-
munication bandwidth) required in the proposed algorithm can
be analyzed in a manner similar to that in Section III-B. The
sampling map, S(1) in the pilot stage is uniform grid such that
it does not require a memory space for storage. Meanwhile,
the sampling map, Sβ, in the refinement stage must be stored
because it is a non-uniform pattern. The size of Sβ is equal to
that of the down-sampled image, which requires α×ξ×N bits.
In addition, the sampled depth map requires memory space of
size, n × ξ × N , where n indicates the resolution of the depth
map. Therefore, the total memory space can be expressed as
follows:

G (ξ, n, S) = n × ξ × N + α × ξ × N (31)

Given the available memory space C , as the sampling ratio is
limited, it can be expressed by the following inequality:

ξ ≤ C

(n + α) × N
(32)

When compared with the sampling ratio ξ in (17), the value
in (31) is significantly bigger because α is substantially
smaller than n, and N is substantially larger than n and α.
This analytical comparison demonstrates that the proposed
algorithm has a sampling ratio ξ , which is substantially larger
than that of the previous algorithm in [13]. This illustrates that
the proposed algorithm has a larger number of pixels in the
sampled depth map, thereby resulting in higher reconstruction
quality.

Example 1 (Continued): For an equivalent memory space
and the depth image specified in Example 1, the proposed
algorithm is used to derive the sampled depth map. If half
of the samples is selected in the first stage (i.e., α = 0.5),
the sampling ratio is derived from (31):

ξ ≤ 64

(8 + 0.5) × 32
= 23.5% (33)

This value is much larger than that for [13] in Example 1
(ξ = 12.5%) and is close to the value for the uniform grid
sampling (ξ = 25%).

V. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed sampling
method in comparison to three reference algorithms, uni-
form grid sampling, gradient-based optimal sampling in [12],
and two-stage sampling in [13]. Section V-A presents the
results for the conventional sampling problem without con-
sidering both the memory-space and timing constraints.
Section V-B shows the results for Problem 2b, which is
derived from Problem 2 by maintaining the memory space
constraint but ignoring the timing constraint. On the other
hand, Section V-C compares the proposed and uniform grid
sampling approaches that satisfy the timing constraint.
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A. Evaluation for the Conventional Sampling Problem

The conventional sampling problem is formulated to find
a sampling pattern without timing and memory-space con-
straints. This section compares the running time to output a
sampling pattern of the proposed sampling scheme and the
two-stage sampling [13]; and then check how the proposed
sampling can close the performance gap between the grid
sampling and the two-stage sampling [13].

1) Run-Time Evaluation: For fair evaluation, both algo-
rithms are tested under the same platform of MATLAB 2018b
/ 64-bit Windows 10 / Intel core I5 / CPU 3.2 GHz (single
thread) / 8 GB RAM. Because the hardware setting in the
proposed method is different from that in [13], it is observed
that the two-stage sampling method takes approximately
90 seconds due to the reconstruction time to derive a rough
image. Meanwhile, for the proposed sampling, a Monte-Carlo
simulation by repeating 100 independent trials is conducted,
and the averages of running time are reported in Table I.
The average running time of six test images is only about
6.327, 8.121, 10.627, 12.301, and 13.762 milliseconds for
sampling ratios of 5%, 10%, 15%, 20%, and 25%, respectively.
By eliminating time-consuming reconstruction and using a
simple yet effective k-NN expanding operator, the proposed
scheme only consumes a few milliseconds, which can meet a
timing constraint in a LiDAR system.

2) Subjective Comparison: As a comparison between
sampling patterns, this experiment considers a disparity
map shown in Fig. 9. Setting ξ = 0.1 (i.e., 10%), four
sampling patterns including two versions of the proposed
method are evaluated. A Monte-Carlo simulation by repeating
32 independent trials is conducted, and the averages of peak
signal-to-noise ratio (PSNR) values are reported in Table II.
The results shown in Fig. 9(c) are generated using the sampling
scheme with a 4-NN square expanding operator, whereas the
results shown in Fig. 9(d) are generated by using a 4-NN
diamond-expanding operator. These results indicate that for the
same sampling ratio ξ , the choice of the sampling pattern has
a strong influence to the reconstruction quality. For example,
as compared to the grid sampling, the two-stage sampling [13]
has about 3.50 dB improvement. It is noteworthy that this
performance gap is achieved by using a reconstructed image to
derive a sampling pattern, which usually consumes a consider-
able amount of time. Meanwhile, the k-NN sampling method
gives a simple yet effective way to create additional sampling
points in the text region, and consequently enhances the
reconstruction performance. Compared to the grid sampling,
the proposed sampling has about 1.17 dB improvement with a
4-NN diamond expanding sampling operator, and can be
further improved by 2.84 dB using a 4-NN square expanding
operator. Especially, compared to the sampling scheme [13],
the sampling with a 4-NN square expanding operator
only degrades by 0.66 dB while substantially reducing the
computation time.

3) Quantitative Evaluation: The experiments for quantita-
tive evaluation are conducted using the six testbeds in the
Middlebury datasets: Aloe, Art, Baby2, Moebius, Dolls, and
Rocks [22], [23]. Table III shows the PSNR values at different

TABLE IV

THE SAMPLING RATIO (ξ) MATHEMATICALLY DERIVED
FROM (17), (21), AND (32) FOR A GIVEN TARGET

COMPRESSION RATIO (χ )

sampling ratios and sampling methods. For this evaluation,
the alternating direction method of multipliers with the wavelet
and contourlet dictionaries is used as the reconstruction algo-
rithm. The details of this method are available in [13], and
the toolbox1 of [13] is publicly provided by the authors. The
proposed sampling scheme is evaluated in three expanding
patterns as described in Fig. 3: (1) k =4, square, (2) k =4,
diamond, and (3) k =8. For fair evaluation, the PSNR results
of the two-stage sampling method in [13] are reported in
two cases: 1) use a half of sampling budget to sample
along the gradient of an RGB image in the first sampling
stage as reported in [13] (marked with “RGB”)2; and 2) do
uniformly random sampling in the first stage. Experimental
results demonstrate that the proposed methods outperform the
grid sampling3 with a large margin. In particular, compared
to the grid, the proposed method marked with “k =4, square”
improves PSNR by 0.93, 2.24, 3.58, 3.76, and 3.87 (dB) cor-
responding to percentage of samples of 5%, 10%, 15%, 20%,
and 25%, respectively. Furthermore, the proposed sampling
method marked with “k = 8” achieves 0.34, 1.88, 3.63, 5.03,
and 6.53 (dB) improvements when being compared with the
grid. Even compared to the state-of-art two-stage ones in [13],
the proposed method degrades PNSRs by 2.04, 2.20, 2.35,
2.09, and 2.46 dB for sampling ratios of 5%, 10%, 15%, 20%,
and 25%, respectively.

B. Evaluation for the Sampling Problem in a LiDAR System
With a Memory-Space Constraint

This subsection evaluates the sampling patterns when the
memory-space constraint is considered.

1) Sampling Ratio: The depth images of Middlebury dataset
are represented in 8-bit resolution (n = 8). The target
compression ratios, χ , in (18) are selected as 5%, 10%,
15%, 20%, and 25% of the size of the original image.
The sampling ratio, ξ , is derived from (17), (21), and (31),
and the results are presented in Table IV. The first column
presents the sampling methods. From the second to the sixth
columns, the sampling ratios are reported for various target
compression ratios (χ). For the uniform grid sampling, ξ and
χ are equivalent because no additional data is necessary to
store the sampling pattern. On the other hand, the previous
sampling methods in [12] and [13] require memory space for
their sampling patterns. As discussed in Section II.C, these

1http://videoprocessing.ucsd.edu/∼leekang/projects.html
2This method is named “ADMM+WT+CT (two-stage) in [13].
3This method is named “ADMM+WT+CT Grid” in [13].
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Fig. 10. Subjective comparison of the ground truth (first row), the uniform grid sampling (second row), and the proposed method (third row) on (a) “Aloe”,
(b) “Art”, and (c) “Moebius” test images.

TABLE V

THE MEASURED SAMPLING RATIO (ξ) AVERAGED OVER SIX TEST

IMAGES FOR A GIVEN TARGET COMPRESSION RATIO (χ )

methods require 12.5% of the space required by the original
image when the depth uses 8-bit resolution. Therefore, it is
not feasible to use those methods if the target compression
ratio is either 5% or 10%. When the target compression ratios
are 15%, 20%, or 25%, their sampling ratios are 2.50%, 7.5%,
and 12.5%, respectively. The sampling ratios of the proposed
sampling method are presented in the last row of Table III,
which evidently illustrates that the sampling ratio approaches
the available memory space because the amount of data needed
to store the sampling pattern is significantly smaller than that
for the previous sampling methods.

Because of the randomness in the selection of data samples
in (1) and (2), the amount of sampled data may not be equal
to the target-sampling ratio ξ . Therefore, the experiment is
conducted to demonstrate the extent to which the sampling
operation satisfies the target sampling ratio ξ . Table V presents
the sampling ratio ξ measured by experiments with Middle-
bury six test images for a specified target compression ratio.
The measurement results are averaged over six images. The
numbers in Table V are comparable to those in Table IV. This
demonstrates that the sampled data ratios are approximately
equal to the target sampling ratios.

2) Reconstruction Quality: When a memory-space con-
straint is considered, for a same memory space, a non-
uniformly sampling method (i.e., two-stage sampling in [13])
requires an additional storage for storing a sampling map; and
therefore a sampling ratio decreased. Eventually, the recon-
struction quality of all non-uniformly sampling methods,
including the proposed method, decreases. However, thanks
to the k-NN expanding sampling operator, the sampling map
of the proposed method has a small size (i.e., a down-sampled
image’s size). Consequently, the proposed method only slight
degrades the performance when a memory-space constraint is
considered. In addition, the Oracle random sampling in [12]
is also included. Table VI demonstrates that the proposed
sampling method is superior to grid sampling in terms of
the PSNRs at most target compression ratios for all three k-
NN expanding patterns. Compared to Table III, the results
with the method in [13] are adjusted to solve Problem 2b.
Particularly, the results are obtained with the target-sampling
ratio ξ instead of target compression ratios (χ), such that they
are different from those reported in [13]. For example, given
the target memory space of 15%, 20%, and 25% (convert to
the sampling ratios of 2.5%, 7.5%, and 12.5% in [13]), ‘Rock’
image has PSNRs of 27.34, 32.54, and 36.68 dB, respectively.
Meanwhile, in [13], ‘Rock’ image reported PSNRs of 30.7662,
35.3975, and 37.5056 dB for sampling ratios of 5%, 10%, and
15%, respectively.

C. Evaluation for the Sampling Problem in a LiDAR System
With a Timing Constraint

Recall that the two-stage sampling scheme [13] consumes
a considerable amount of time so that it does not satisfy
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TABLE VI

THE PSNR OF THE RECONSTRUCTED IMAGE
FOR SPECIFIED MEMORY SPACE

the timing constraint of Problem 2. Therefore, the sampling
method in [13] is not compared in this subsection, and only the
grid sampling and the proposed two-stage sampling are com-
pared. The experiments are conducted with 24 disparity images
from the Middlebury datasets [22], [23]. The reconstruction
methods4 in [24] and [25] are selected for the sake of running
time and reconstruction quality. The proposed sampling with
4-NN square is used on this experiment.

Fig. 10 demonstrates a comparison of reconstructed images
that are obtained from the uniform grid and the proposed
sampling schemes with Aloe, Art, and Moebius from the Mid-
dlebury sets at a sampling rate of 20%. For each set, the first,
second, and third rows present the ground truth images and
the reconstructed images obtained from the uniform grid and
the proposed samplings, respectively. In the “Art” image,
especially in the regions of face and sticks, the proposed
sampling pattern produces much better reconstruction quality
than in the case of uniform grid sampling. In particular,
the region surrounding the face in the reconstructed image
of the uniform grid sampling suffers from large artifacts.

4https://github.com/sparse-depth-sensing/sparse-depth-sensing

Fig. 11. PSNR improvements of the proposed method over the uniform grid
sampling on Middlebury datasets. (a) Grid sampling; (b) Proposed sampling;
and (c) Comparison.

On the contrary, the proposed sampling efficiently includes
more samples in the same area so that its reconstructed image
looks better.

Fig. 11 presents the PSNR comparison between the pro-
posed and the uniform grid samplings with the Middlebury
datasets. Figs. 11(a)-(b) demonstrate the PSNR results of the
uniform grid and the proposed samplings, respectively, while
Fig. 9(c) presents the PSNR enhancement by the proposed
sampling. Experimental results demonstrate that the proposed
sampling consistently outperforms that of the uniform grid for
all test images and at all five sampling rates. The best PSNR
improvement of about 16 dB is achieved for “Wood2” image
at a given sampling rate of 25%. At the sampling rates of 5%,
10%, 15%, 20%, and 25%, the proposed sampling achieves
the averaged PSNR improvements of 1.16, 1.50, 2.54, 3.79,
and 6.27 dB, respectively.

VI. CONCLUSION

The proposed sampling algorithm includes three main con-
tributions. First, it formulates a new sampling problem for a
LiDAR system by considering both timing and memory space
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Fig. 12. MATLAB code to find a sampling pattern for a given gradient map.

Fig. 13. Flowchart of an efficient solution for the gradient-based sampling.

constraints. Second, it achieves a convenient albeit efficient
graph-based representation of a depth image and then proposes
the k-NN expanding operator. Third, it proposes an efficient
method for selecting samples. The proposed scheme achieves
high-quality reconstruction results at a specified sampling
budget, and more importantly, it is remarkably rapid in the
complexity of linear time. This study also provides the space
and time analysis of various sampling methods to be used
by the practical LiDAR system. This provides a better under-
standing of the structures of depth images captured by the
LiDAR system in the context of sampling. This study also
reveals the underlying relationships between time/memory-
space complexity and the reconstruction quality of different
sampling techniques. The new sampling scheme proposed in
this study is applicable to numerous depth-data-processing
tasks for data acquisition, compression, and enhancements
applications.

APPENDIX A

Fig. 12 presents the MATLAB code for finding a sampling
pattern for a given gradient map.

APPENDIX B

A detailed flowchart is illustrated in Fig. 13. In general,
the flow chart presents an iterative binary search. Inputs are

the number of pixels N , the sampling rate ξ and the number
of iterations. To compute an output P , two variables A and
B are firstly initialized as a lower bound and an upper
bound. On every iteration, a variable C is computed by
averaging A and B; and P is computed from C as (35). Note
that this flowchart does not include any multiplication so that
it can be efficiently implemented in hardware at high clock
speed (i.e. 100MHz).
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