1772

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

Integration and Boost of a Read-Modify-Write
Module in Phase Change Memory System

Hyokeun Lee

Hyun Kim™, Member, IEEE, and Hyuk-Jae Lee

, Student Member, IEEE, Moonsoo Kim™, Hyunchul Kim,

, Member, IEEE

Abstract—Phase-change memory (PCM) is a non-volatile memory device with favorable characteristics such as persistence, byte-
addressability, and lower latency when compared to flash memory. However, it comprises memory cells that have limited lifetime and
higher access latency than DRAM. The row buffer size of a PCM is preferred to be larger than 128B to fill the latency gap between two
memories and to reduce the metadata overhead incurred by wear leveling. As the cache line size in a general-purpose processor is
64B, a read-modify-write (RMW) module is required to be placed between the processor and the PCM, which in turn induces a
performance degradation. To reduce such an overhead and enhance the reliability of a device, this paper presents a new RMW
architecture. The proposed model introduces a DRAM cache in the RMW module, which minimizes redundant read operations for write
operations by pre-fetching the entire transaction unit instead of merely caching the 64B requested data. Furthermore, a typeless merge
operation is performed with the proposed cache by gathering multiple commands accessing consecutive addresses, irrespective of
whether they are READ or WRITE. Simulation results indicate that the proposed method enhances the speed by 3.2 times and the

reliability by 49 percent as compared to the baseline model.

Index Terms—Phase-change memory, non-volatile memory, read-modify-write, command merging

1 INTRODUCTION

WING to its characteristics of non-volatility, byte

addressability, and relatively low latency, a phase-
change memory (PCM) device is gaining attention as the
next-generation non-volatile memory (NVM) device,
along with ReRAM and STT-MRAM [1], [2], [3]. These
characteristics allow new non-volatile memories to
replace an existing main memory or storage by adding a
flexible new memory layer for the current computer
architecture hierarchy. In recent years, 3D-XPoint has
been proposed as a gap filler between memory and con-
ventional storage systems [4], [5], and software-defined
persistent memory (SDPM) has been proposed to utilize
non-volatile memory as fast storage or expanded main
memory [6], [7], [8]. Additionally, with the growing
demand for high-performance server systems in the
future, an increasing amount of main memory is further
desired, such as an in-memory database. Furthermore, an
in-memory database needs to let application data be per-
sistent in storage, which incurs substantial performance

o H.Lee, M. Kim, and H.]. Lee are with the Department of Electrical and
Computer Engineering, Seoul National University, Seoul 08826, South
Korea. E-mail: {hklee, kimms213, hyuk-jae-leej@capp.snu.ac.kr.

e H. Kim is with SK Hynix Inc., Icheon, Gyeonggi-do, South Korea.

E-mail: hyunchul3 .kim@sk.com.

e H. Kim is with the Department of Electrical and Information Engineering,
Research Center for Electrical and Information Technology, Seoul National
University of Science and Technology, Seoul 01811, South Korea.

E-mail: hyunkim@seoultech.ac kr.

Manuscript received 18 Nov. 2018; revised 17 July 2019; accepted 28 July
2019. Date of publication 8 Aug. 2019; date of current version 5 Nov. 2019.
(Corresponding author: Hyun Kim.)

Recommended for acceptance by Z. Shao.

Digital Object Identifier no. 10.1109/TC.2019.2933826

overheads [9], [10]. A PCM is an adequate candidate for
the purposes mentioned above because it is a low latency
non-volatile memory device. Therefore, exploiting these
technologies is highly crucial to attaining a high-speed
and large-capacity memory system in the future.

Despite its characteristics of non-volatility and high
endurance, which make it superior to NAND flash memory,
PCM is not ready to be prevalently commercialized owing
to two well-known problems. The first problem is a large
latency for a write operation that requires no less than
1000ns, which is much slower than that of DRAM [11], [12],
[13], [14]. The large latency can be compensated for by the
improved throughput that is achieved by increasing the
size of a memory transaction (i.e., row buffer size) rather
than using the conventional 64B as in [2]. In [2], it is pointed
out that a 512B row buffer offers a good trade-off between
delay and energy consumption. Furthermore, doubling bit
width has been widely adopted for enhancing the band-
width in high bandwidth memory (HBM) or flash memory
devices [15], [16], [17], [18], [19].

The second problem that prevents a PCM from commer-
cialization is the limited write endurance of 1E8 per cell. As
a result, wear leveling is required to maintain uniformity in
write access across memory spaces [20], [21], [22], [23], [24].
A wear leveling algorithm, such as start gap or security
refresh, divides the entire memory space into several sub-
regions and maintains metadata like gap pointers and swap
keys for each sub-region to prevent it from Repeated Address
Attack [22], [23]. Therefore, the size of this sub-region should
be large to reduce resource overheads while maintaining
the reasonable degree of write uniformity. As a result, a
large number of the wear leveling algorithms for a PCM

0018-9340 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0002-0824-6238
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0003-4142-3475
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0002-7962-657X
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
https://orcid.org/0000-0001-6811-9647
mailto:
mailto:
mailto:

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

EREEREESEL L

Top electrode

Top electrode

i

[
(]
-
©
(3]
I

[Bottom electrode | [Bottom electrode |
(a) (b)

Fig. 1. Cell structure of phase-change memory. (a) amorphous state, (b)
crystalline state.

select the size of the sub-region larger than 128B instead of
64B [18], [19].

The conventional general-purpose processor typically
adopts a 64B cache line, which is also the basic access unit of a
main memory system for each transaction. Therefore, a read-
modify-write (RMW) operation is essential to handle the size
gap between a PCM (i.e., larger than 128B) and a cache line
size (i.e., 64B) [25]. The redundant read operation in RMW for
write access causes performance degradation. As no efficient
RMW scheme for a PCM has been studied so far, the RMW
schemes proposed for other devices can be applied for PCM
access. In [26], a coalescing operation gathers write requests
in RMW for a GPU, which is highly effective because write
access patterns of most GPU applications are sequential, and
hence suitable for coalescing write requests. However, adopt-
ing this method for a general-purpose system is ineffective
because the access patterns of general-purpose applications
are generally read-dominant and randomly accessed. In [27],
RMW with command combining has been proposed for effi-
cient error correction coding (ECC), but it assumes that the
ECC codeword length (i.e., eventually decided transaction
unit) is equal to the cache line, so it does not consider the case
for a larger row bulffer size of the memory device. For design
simplicity, experiments in previous PCM-related researches
assume that the cache line size and the row buffer size are
identical without considering the non-symmetric case [2],
[21], [22], [28], [29]. The RMW should be carefully optimized
in the design of a practical PCM-based system because the
RMW for a PCM may cause a performance degradation
owing to the redundant read operations and the frequent
read operations to a specific cell cause read disturbance errors
as discussed in [30].

In this research, a novel RMW method is proposed to min-
imize the physical burden on PCM devices by usinga DRAM
cache between the PCM and processor. Previous researches
have been conducted to improve the performance of PCM-
based main memory system. The proposed method uses the
DRAM cache for data pre-fetching so that it can further
reduce the number of read-modify-write operations. As a
result, the use of cache reduces the direct access to PCM devi-
ces, and thus, enhances the read reliability. For further opti-
mization, multiple commands are merged into a single
memory command regardless of the types of operations,
generating consecutively aligned addresses constituting the
memory row buffer size. Consequently, for a PCM with a
row buffer size of 512B and a 2 MB cache between the PCM
and the processor, the combination of two contributions
increases the speed by nearly 3.2 times when compared to
the baseline system. The read reliability is also improved by

1773

49 percent on average. In summary, the major contributions
of this paper are as follows:

e An RMW integrated into a PCM-based system is pre-
sented to provide a practical place-holder reference
for upcoming new processor architecture. This is the
first attempt to adopt RMW in the design of a PCM-
based memory system.

e A method of integrating DRAM cache and RMW
module in a PCM-based system is introduced. The
proposed method is cost effective because it utilizes
the existing DRAM cache, which is quite common
for a PCM-based system as shown in prior work.

e The proposed architecture is additionally optimized
with a novel and simple merge operation regardless
of the types of commands, which maximizes the per-
formance and reliability of the system.

The rest of this paper is organized as follows. Section 2
presents the background and the baseline system. In
Section 3, the baseline RMW is described in details. In
Sections 4 and 5, both DRAM cache-based RMW and type-
less merge operation are proposed, respectively. The evalu-
ation of the speed and error reliability with various
parameters is given in Section 6. Finally, the last section
presents the conclusions.

2 BACKGROUND AND MOTIVATION

2.1 Introduction to Phase-Change Memory
Phase-change memory is a type of resistive memory device
that exploits two inter-changeable phases (i.e., the crystal-
line state and the amorphous state) of a Ge2Sb2Te5 (i.e.,
GST). The amorphous state of a device is obtained by heat-
ing the bottom electrode of the device (see Fig. 1) until the
temperature exceeds 600 degrees Celsius, which increases
the resistance of the device. On the other hand, the crystal-
line state, or SET logic level, is reachable by supplying a
temperature of 300 degrees Celsius to the material [12].
Therefore, this process makes the write operation of the
PCM slower than reading the cell resistance by supplying
the sensing voltage [31].

Because PCM has lower latency than NAND flash mem-
ory, it is considered as one of the most next-generation mem-
ory technologies for high-performance data servers, such as
in-memory databases [9], [10]. It can also endure more writes
than NAND flash memory, typically a maximum of 1E7 1E8
writes per cell which makes the device more attractive than
other non-volatile memory elements.

However, PCM still has a relatively higher latency than
DRAM, and hence the throughput of the system is
enhanced by increasing the transaction size of PCM [2], or
by performing read operations under write operations [32].
Additionally, PCM has lower reliability than DRAM. This is
because the frequent read operations to a specific cell would
lead to read disturbances [30], so both aspects need to be
considered simultaneously while designing the system.

2.2 Previous Research

There are some previous works for enhancing the perfor-
mance of PCM-based main memory system. Basically, incor-
porating a DRAM cache into a PCM-based memory system

1774
Command
GEMS5 trace file
© (5
Core||Core|[> @ _
9 5[_.Command |——
— @© T —
o 3| [Cycle[Type| | ——
Core || Core 5 Address|Data] D
| Interconnect ml
NVMain *648 data
Read-Modify-Write |
DRAM
256B dat
Cache I aa
Memory Controller

PCM Cell Array

Fig. 2. Baseline system environment.

are made to build a hybrid memory system and enhance the
lifetime and performance by utilizing the DRAM as a carrier
of dirty pages in [31] and [33], respectively. In [11], the SET
operation of a write command, which has a longer latency
than RESET operation, is issued ahead from the memory
controller when the memory becomes idle, and thereby only
RESET operation is required for that write command because
a PCM adopts differential write scheme in the device. In [32],
it shows that the latency of write operation can be hidden by
adopting reads-under-write method with the introduction of
write-status hold register (WSHR) in a memory controller
and four row buffers for read commands (based on the
LPDDR?2 standard). It leverages the stabilization time of
write operations on PCM device to hide the latency by
accessing multiple row buffers in a non-blocking way. In
[12], a non-blocking PCM bank design is proposed in which
the roles of a sense-amplifier and a write driver in a bank are
separated. Therefore, they can work concurrently through
write-precedence scheduling policy. Additionally, a device
design that enables multiple activations at tile-level, called
Fine-Grained NVM (FgNVM), is proposed to exploit paral-
lelism for hiding more latencies in [34]. Thus, both a write
command and a read command can be processed in more
fine-grained ways than bank interleaving to improve the

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

performance of the memory system. Similarly, devices in a
rank of a DIMM is designed to work independently to
accommodate fine-grained commands for higher command
processing throughput [35].

Both the mentioned works generally assume that the
cache line size of a processor and the transaction unit of a
PCM system are equal. Although [32] mentions the problem
that the speed performance degrades with increasing write
units, it does not put further effort on read-modify-write
processes (see details in Section 2.5). Therefore, a compati-
ble RMW is desirable for matching these two different sizes.

2.3 Baseline System and Its Configurations

Fig. 2 depicts the baseline system where a PCM is a part of
the heterogeneous main memory system that includes a
DRAM cache as in previous research [21], [22], [28], [29],
[31], [33]. An FTL-like controller is equipped with the cur-
rently available NVDIMM [36], [37]. The RMW can be
included as a part of the memory controller or as an individ-
ual entity separated from the controller [26], [27], [38], [39].
In this paper, the RMW module is separated from the con-
troller for implementation simplicity and functional exten-
sion in the future.

In this paper, two simulators are used to build the base-
line system. First, an out-of-order 4-core processor with L2
last level cache (LLC) having 64B line size is configured in
gemb based on ARM Cortex A53 as shown in Table 1. Subse-
quently, the PCM system with memory controller, banks,
and rank models is built with NVMain [40]. The RMW mod-
ule is additionally implemented for cycle-accurate simula-
tion of RMW operations. For the configuration of timing
parameters in NVMain, tRCD (row-to-column delay) is set
to 50ns and tWP (write pulse time) is set to 1000ns.

Trace-based simulation is conducted to reduce the simu-
lation time. Trace files of workloads are extracted from gem5
in system emulation mode, and the detailed information of
the workloads is described in the next subsection. Each line
of the trace file is extracted from the output path of the LLC.
The trace line consists of a CPU cycle, type, command
address, and command data (both read and write), and each
trace line is recognized as one memory command. Due to the
behavioral differences between gem5 and NVMain even
when the same timing parameters are chosen, the command
cannot flow into the NVMain at the cycle inscribed in the

TABLE 1
Simulation Configurations

gemb5 (trace extractor)

Processor

Caches

L1 Cache

L2 Cache

Out-of-Order, 4-core, 2 GHz I-Cache

2-way set associative, 64 KB

4-way set associative, 64 KB

D-Cache Shared last level cache

16-way set associative, 1 MB, 64B cache line

NVMain

Interconnect 32-entry asynchronous FIFO

Memory information

400 Mhz clock frequency, 8 GB PCM capacity with 2 banks in a rank, all timing parameters are based on

LPDDR?2 (tRCD: 50 ns, tWP: 1us) as defined in NVMain, memory controller with 64-entry buffer and FR-

FCFS scheduler

DRAM Cache
(LRU)

read latency: 10 ns, write latency: 10 ns, write policy: write-back, replacement policy: least recently used

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

TABLE 2
Information of Synthesized Workloads

Name Included benchmarks

mix1 Ibm, leslie3d, astar, gcc

mix2 Ibm, leslie3d, astar, bzip2

mix3 leslie3d, astar, bzip2, gcc

mix4 astar, bzip2, gcc, GemsFDTD
mix> mcf, Ibm, gcc, bzip2

mix6 mcf, gcc, GemsFDTD, povray
pmix1 B-tree, hash-map, queue, skip-list
pmix2 queue, B-tree, RB-tree, skip-list
pmix3 hash-map, queue, RB-tree, skip-list
pmix4 B-tree, hash-map, RB-tree, skip-list

trace file. Therefore, an interconnect module containing a 32-
entry buffer is used to synchronize the behavioral differences
between the two systems as illustrated in Fig. 2.

2.4 Workloads

As shown in Table 2, six out of the ten workloads get mixed,
from the eight benchmarks of SPEC CPU 2006, to fit in the
number of simulated cores. The benchmarks are chosen
according to their MPKIs (cache misses per thousand
instructions) to have a large bandwidth from CPU to PCM to
simulate the case of serving multiple clients in a server as in
[41], [42], [43]. In this study, applications with high MPKIs
lbm, leslie3d, mcf, gcc (with s04 option), and GemsFDTD com-
prise highly stressful workloads for a PCM. The remaining
benchmarks are selected for simulating the general-purpose
system that runs both high and low MPKI applications
simultaneously. Because there are four cores in the simulated
system, as mentioned in Table 1, four benchmarks are mixed
to form a single workload that is executed in a parallel man-
ner. Consequently, both stressful and mild workloads can
cover a wide range of applications.

As shown in Table 3, persistent data structures, B-Tree,
RB-Tree, queue, Hash-map, and skip-list programmed with
cache line flush and memory fence operations, are further
implemented, where each of them contains 128 data struc-
tures and performs random insertion and deletion [5]. These
data structures are similar to those in the previous papers
for persistent operations [5], [44], [45], and skip-list is a basic
data structure of ZSET (or sorted sets)) in Redis [46]. Finally,
the data structures are combined to make four persistent
workloads (prefixed as pmix) for evaluation to simulate
realistic workloads in servers as shown in the shaded rows
of Table 2.

2.5 Read-Modify-Write

In the darkly shaded region of Fig. 2, the RMW behaves as a
front-end module and processes the command from the
CPU. 1t first reads multiple data blocks as a transaction unit
(or a row buffer size) of the PCM for each access, where each
data block has a length of 64B. If the type of the input com-
mand is read, it directly responds to the desired block with
the block offset indicated by the transaction address. On
the other hand, the write command requires to overwrite the
desired block in the prior read data first, and then writes
the whole row buffer sized data back to the demanding phys-
ical address. From the output of the RMW, the controller

1775
TABLE 3

Implemented Persistent Data Structures

Name Description of behavior

Queue Enqueue and de-queue nodes among 128 queues
randomly

Hash-map Insert and delete hashed keys among 128 hash tables
randomly

B-tree Insert and delete tree nodes among 128 trees
randomly

RB-tree Insert and delete tree nodes among 128 trees
randomly

Skiplist Insert and delete list nodes among 128 lists randomly

converts the command into atomic commands for device
access, such as pre-charge, activation, read, and write.

Besides, the maintenance of consistency in the case of
power-off failure or a system crash is not considered further
as it is beyond the scope of this paper [5], [9], [13], [45], [47].
This paper assumes that the control system of the PCM and
the queues in RMW are supported by a super-capacitor as
in previous works. This allows the in-flight data can be
flushed in the case of a system crash [5], [45].

2.6 Motivation

Clearly, the RMW module in the PCM-based system results
in a performance degradation and substantially lowers the
reliability due to read disturbance introduced by redundant
read operations [30]. Furthermore, many experiments held in
previous PCM-related studies assume that the cache line
size, commonly 64B for a general-purpose processor, matches
the row buffer size of the PCM device without considering
the non-symmetric case for practical usage. Thus, it is crucial
to taking both factors into account to show a practical PCM-
based system equipped with RMW. To resolve the above-
mentioned problems, an architecture incorporating the
private DRAM cache of the PCM as a part of the RMW is pro-
posed and to further boost-up the performance with a simple
operation to minimize the read-modify-write operations.

3 BASELINE OF RMW

The baseline model of the RMW is depicted in Fig. 3a with
details. Fig. 3b shows 3 bits of flags used in this paper,
READ, WRITE, and WAS WRITE. For READ and WRITE,
these are used to indicate types of commands which are car-
ried on command lines to signal read-enable and write-
enable in DDR interface, respectively. For WAS WRITE, it
means that the original command is WRITE after the type
conversion (see step-1 in the next paragraph). When a com-
mand from the LLC is delivered to the RMW, the following
steps are conducted:

1) The command is first delivered to the read request
generator, which converts the types of all the incom-
ing requests to READ. According to the original type
of the command:

e If the type is READ, a newly defined flag, WAS
WRITE, is set to 0 (See 64-bit defined flags in Fig. 3b
which can be overloaded on a memory transaction).

o If the type is WRITE, WAS WRITE is set to 1 to
remember its original command as WRITE.

1776

Read-Modify-Write

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

Read
» request D% blﬁer Modifier
generator (4)
o I12) T 1
@ InputQ RespQ ModifyQ
% 63th-entry |||| 63t-entry |||| 63t-entry
e
1st-entry 1st-entry 1st-entry
Oth-entry Oth-entry Oth-entry
A 76 8
Arbiter (FCFS) | [nxe4B
nx64B
A 4

PCM controller

nx64B : row buffer size of PCM
(a)

WAS
READ | WRITE ||\ o=
< 3-bit -
(b)

Fig. 3. (a) Baseline RMW module, and (b) flags bits of memory command
in this paper.

The command conversion is achieved with a concise bit
flipping logic, spending no more than one clock cycle in the
baseline system.
2) The converted command is stacked to the input
queue (denoted by InputQ) when waiting for the dis-
patch, whereas the command data is stored in the
data buffer if it is WRITE.
3) When the dispatched command in the previous step
comes back with read data as the size of the row
buffer size in the PCM, it is stacked to the modifica-
tion queue (denoted by ModifyQ).
4) Flag WAS WRITE is then checked for proceeding to
the next step according to the original command type:
e If the bit is 1, the modification data in the data
buffer overwrites the read data brought from the
PCM. Subsequently, the flag bits of WRITE and
WAS WRITE are set to “1” and “0”, respectively.

e If the bit is 0, one of the data blocks is selected
according to the transaction address because the
original type of the command is READ.

The command is then passed to the response queue
(denoted by RespQ).

5) The command in the RespQ prepares write-back or
read-response depending on the original command
type. As both the write-back command and the
request from the InputQ access the same input port
of the memory controller, they are arbitrated under
the first-come-first-serve (FCFS) policy.

4 UTiLIZATION OF DRAM CACHE FOR RMW

Motivated from Section 2, an RMW architecture that fully
interacts with the DRAM cache in a PCM-based memory

DRAM cache
il Block 3 | Block 2 | Block 1 | Block 0
T [DATA|T [DATA|T[DATA|T [DATA
Read=Madify-Write ="
Read
request —» RMW cache | Modifier
generator
" T T T
o InputQ RespQ ModifyQ
§. 63Mh-entry 63h-entry 63t-entry
2
1st-entry 1st-entry 1st-entry
T Oth-entry Oth-entry Oth-entry
v x648 Nx64B
| Arbiter (FCFS) |

Fig. 4. Structure of the proposed cache and its position in the RMW
module.

system is proposed. The proposed work is built upon the base-
line RMW described in the previous section. The proposed
architecture is called cache-based RMW hereafter in this paper.

4.1 Architectural Design

Fig. 4 shows an example organization of the proposed
cache-based RMW. A 256B row buffer is used in this design
so that each cache entry consists of four data blocks (.e.,
cache lines from LLC). T-bit implies the type of a command
accessing one of the data blocks, and DATA is a temporal
field storing valid data. Therefore, the proposed cache does
not need the data buffer in Fig. 3. Besides, each entry addi-
tionally requires two flag bits, V-bit and U-bit, for managing
the buffered data:

e V-bit: It shows the data validity of an entry, which
can be indicated with one bit because the whole row
buffer data is fetched together by request.

e U-bit: It means that the entry is under update on the
PCM. It prevents writing or reading to/from the entry
with the addresses having different block offsets.

The repeated field structure in the cache shown in Fig. 4
makes it possible for the RMW to pre-fetch and store neigh-
boring data so that a single command is enough to acquire
the demanding data block when required. Moreover, the
read reliability of the system can be enhanced when the
RMW interacts with the DRAM cache.

Because the cache is implemented with a DRAM, an
address decoder is needed to decode the command address
to the index of the cache. The decoder is built with a lookup
table (LUT), as illustrated in Fig. 5. The LUT receives the
address (except for block offset) as the input and generates
the index to the cache as the output. Thus, the LUT has the
same number of entries as the cache does. The demanding
cache index is determined by comparing the command
address with the Tags in the LUT with a set of XOR gates.
Subsequently, the concatenated output of all the XOR gates

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

Address —1

7
1 %—»found
/i :

—

Index LUT ’/ concatenation

(one-hot)

Tag [Index

o4 ® -

Index

Fig. 5. Address decoder of the cache in RMW.

becomes a one-hot code for index multiplexer, which is con-
tinuously fed to the address port of the cache. Besides, the
existence of the requested data in the cache is confirmed by
summing up the XOR results as the found-flag.

The concept of the RMW described in this section is
somewhat similar to the RMW operations for DRAM access
although there exists a slight difference for handling a PCM
instead of a DRAM. For example, the difference from the
RMW in [27] is as follows:

e RMW in [27]: the system defines DRAM as a main
memory, so it additionally needs a data buffer for
temporarily storing the write-data and flush the data
once the command is processed.

e RMW in the proposed method: it places a PCM as a
main memory and additionally uses a private DRAM
cache for the PCM. It leverages the cache as a table for
the RMW including the data buffer and reuses the data
instead of flushing it right away, by which the area for
the data buffer is saved with the existing resource.

4.2 Algorithm

A pseudo code is presented to show the command process of
the proposed structure as described in Fig. 6. The command
process is performed in two different manners according to
the found-flag:

1) If found is “0” (miss), the command is inserted to an
available entry in the cache according to the LRU
policy as shown in Table 1. The [V, U]-bit pair is set
to “01”. If the replacement does not occur immedi-
ately, the command stays in the InputQ and waits for
the availability of the cache entry.

2) If found is “1” (hit), the command is processed in one
of the three possible manners according to its type
and status:

e If the entry is valid (V-bit=1) and the command is
READ, the command is directly responded to the
host CPU where the status of U-bit is reset to “0”.

e If the entry is valid and the command is WRITE,
the dirty bit is set to 1 for writing data back to the
PCM when newly written data replaces the data.

1777

Algorithm 1 Process in RMW cache

Input: For the command on the head of InputQ
found = AddressDecoder(command.address)
if found
if Ifound_entry.V
wait for the response of previous command
else if command.type == WRITE
if Ifound_entry.U
found_entry.dirty < TRUE
else
wait for the response of command
else
put the command in RespQ
else
add an entry to the cache with LRU policy
new_entry.U < TRUE
new_entry.V < FALSE

Issue command in the next cycle

Fig. 6. Pseudo code of the proposed cache-based RMW.

The U-bit is asserted to avoid a write-after-write
(WAW) data hazard.

o If the entry is invalid (V-bit=0), it means that the
entry is under update (U-bit=1). Thus, the com-
mand stays in the InputQ and waits for the
response of the previous command.

When the first read command returns from the PCM, the
data field of the corresponding entry is loaded with the
read data and the valid bit (V-bit) is set to ”1”. The U-bit is
reset to “0” because the entry update is complete.

Since the proposed design frequently offloads redundant
read operations, the read disturbance is also reduced signifi-
cantly. Depending on the characteristics of workload, it may
not offer a noticeable improvement in the operation speed.
For example if a command with cache miss is under process
on the PCM device, all the commands behind the miss-
command in the InputQ are constrained in the queue. This
problem is critical for large miss penalty (called a stuck-in-
queue problem). In particular, if the locality of an applica-
tion is low, frequent cache misses results in a performance
degradation. A novel operation to effectively mitigate the
problem is explained in the next section.

5 TYPELESS COMMAND MERGING

5.1 Architectural Design

To mitigate the stuck-in-queue problem, the typeless merge
operation, which merges commands without any regard to
the command type, is proposed to drain commands clogged
in the InputQ. Fig. 7 shows the details of the new entry
structure and the modified RMW along with an example,
which will be discussed in the sub-section below. As shown
in the figure, M-bit is an additional bit in each block field of
the cache. It indicates an entry that represents multiple com-
mands accessing the same address but different block off-
sets (i.e., different cache lines). For example, if the M-bits in
block 0 and block 2 are set to 1, they would represent two
commands generated by a CPU and will be merged into a
single command regardless of it being READ or WRITE. To
make this new operation executable, this paper incorporates
a Merger and a De-merger for merging input commands from

1778 IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019
DRAM cache
1l Block 3 Block 2 Block 1 Block 0
M|L|T| DATA |M|L|T| DATA [M|L|T| DATA [M|L|T| DATA
O+ | 10 11|ow] [oxco1|1]1M [0x80] fo| - | - | [ox40] |1|0[R] [0x00]
01 ? [3)
Read-Modify-Write Read-Modify-Write
ReadGen@ [, Modifier ReadGen |[, (® Modifier
RMW cache D RMW cache D
Merger H> e-merger Merger > D e-merger
) I I ol 1 /0 16
@2 InputQ RespQ ModifyQ @ InputQ ReshHQ ModifyQ
2l _[0x480] 8 ¥
g g [0x80]
[0x1CO0] [0xCO]
T [0x00] T [0x00]
@y 2568 2568 vy 2568 4 2568
| Arbiter (FCFS) | | Arbiter (FCFS) |
() (b)

Fig. 7. Cache table and RMW module supporting merge operation. (a) Merge process, and (b) De-merge process.

the processor and disassembling the merged command
responded from the PCM, respectively.

5.2 Algorithm

For the merge operation, Algorithm 1 in Fig. 6 is slightly

modified as shown in Fig. 8. Additional pseudo codes sup-

porting the merge operation are illustrated in Fig. 9.
Modification of Algorithm 1. The operation handling the

false case of the V-bit in Algorithm 1 is slightly modified

Algorithm 1 Process in RMW cache (modified)
Input: For the command on the head of InputQ
found = AddressDecoder(command.address)
idx = ExtractBlockOffset(command.address)
if found
if Ifound_entry.V
if Ifound_entry[idx].M
found_entry[idx].M < TRUE
Record data if command.type == WRITE
else
wait for the response of prev. command
else if command.type == WRITE
if Ifound_entry.U
found_entry.dirty < TRUE
else
wait for the response of command
else
put the command in RespQ
else
add an entry to the cache with LRU policy
new_entry.U < TRUE
new_entry.V < FALSE

Fig. 8. Modified version of Algorithm 1 for merge operation in which the
modified part is shaded.

(see Fig. 8). The command on the head is merged with the
accessing entry if it is invalid (V-bit=0) disregarding the state
of the U-bit. This is because the merged command is to be
split into original commands again and the corresponding
responses are to be responded to the CPU. Since there is
only one “if” case added to the algorithm, it is implemented
using a 2-input multiplexer with a slight modification in
the hardware.

Algorithm 2 Merger
Input: InputQ
head = InputQ.head
if pending cycle = pending threshold
dispatch the request right away
for each cmd in /InputQ do
if same address && different block offset
idx = Extract-Block-Offset(cmd.address)
if llatched_entry[idx].M
latched_entry[idx].M < TRUE
Record data if command.type == WRITE
end for

Algorithm 3 De-merger
Input: ModifyQ, latched cache entry
head = ModifyQ.head
for each block in latched_entry do
if block.M
block.M « FALSE
Generate a response satisfying block info
push.the response into RespQ
end for
latched_entry.U < FALSE
latched_entry.V < TRUE

Fig. 9. Pseudo code of Merger and De-Merger.

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

1779

O128B O256B

40 H

35 || ms12B m1024B [|

?;3'0 m2048B R | |

g

1.

A0

0.5

0.0
— o~ o <t vy el — o (] <t o — o o <t wy o — o [sg] <t o
2 2 B X 2 2 X 2 ¥ X 9|k x ¥ 2 E 2 X ¥ ¥ x @
E E € & € € € € € E€ E§|E E E E E E E &€ E E 5

DRAM cache + RMW DRAM cache + Merge +tRMW

O128B 02568 (@)

50 M @s512B m1024B

40 || m2048B [| I &

pmix1
pmix2
pmix3
pmix4
average

— o o <t s} K=l o o <t
PR E] R -
E E g E E
o o o
DRAM cache + RMW
60 O128B 0256B (b)
Y [1@512B ®1024B
5.0
S0
230
2.0
1.0
0.0
8.0 HOI128B DO256B \87[
7.0 |{@512B ®1024B q
g.g)g m2048B
1o
£3.0
2.0
1.0
0.0

DRAM cache + RMW

DRAM cache + Merge +RMW

(d)

Fig. 10. Speedup comparisons between the RMW only applying DRAM cache and the RMW applying typeless merge operation with respect to differ-
ent DRAM cache entry numbers. Some bars out of range of the figure are labelled with specific values. (a) 512-entry, (b) 1024-entry, (c) 2048-entry,

(d) 4096-entry.

Merger (Algorithm 2). As shown in Fig. 9, the Merger
ensures that the commands generating new entries in the
cache are not issued immediately. It waits for commands
that access the same address but different block offsets. As
shown in the algorithm, the waiting time is determined by
the pending threshold which is chosen by the experiments. If
there is no command for merging within the pending thresh-
old in InputQ, it is dispatched right away for PCM access.
When searching for the commands for merging, the Merger
identifies the commands satisfying the conditions in the
pseudo code and sets all the M-bits to “1”, which means that
the command is merged with that entry. Because the com-
mands are merged into one entry, the throughput of the sys-
tem can be significantly improved. As a result, the Merger
can hide the miss penalty at the expense of simple logics as
shown in the algorithm.

De-merger (Algorithm 3). The merged commands that are
returned from the PCM must be retrieved with the informa-
tion recorded in the cache. As demonstrated in Fig. 9, the
De-merger checks the M-bit of each block field in the entry
and retrieves the commands merged in the InputQ with the

assertion of the V-bit. Finally, all the disassembled com-
mands are pushed into the RespQ for responses. Moreover,
the ordering can also be maintained if an additional L-bit is
added to each block field of the entry. The description for
this bit is given in the following sub-section.

5.3 Example

In this example, a PCM with a row buffer size of 256B is
assumed, and the command at the head of the InputQ is
accessing address 0x0. The pending threshold of the Merger
is chosen as eight. For better understanding, Fig. 7a illus-
trates the work-flow of merging:

1) 0xO-command first generates a new entry for the
cache due to cache miss. During the generation, the
M-bit is set to 1 to indicate that the block is occupied.

2) Subsequently, commands 0xCO and 0x80 are deliv-

ered into the InputQ within the pending cycle of
the Merger. Concurrently, the Merger matches the
address of the incoming command and the cache
entries. The L-bit of 0x80-command is set to 1 to indi-
cate that it is the latest WRITE command.

1780
1.0 = — - — — - = q R m
e I e
3 SO TR T TEERE P R e TR T e e e
£ 0.7
= 0.6
805
= 04
=03
z 0.1
0.0 “H = = - - - = -
IS A Nt T S B ~ B A VRt B 3
F&FFFFFFFSFSS
RATED M A
Benchmarks

0128B O256B @512B m1024B m2048B

Fig. 11. Speed degradation rate with respect to different row buffer size
where 64B is the baseline. The lower rate the worse performance.

3) The data of the commands are recorded into the gen-
erated entry in step-1 with assertions of the M-bit
and the U-bit.

4) After the pending cycle exceeds, the 0x0-command is
dispatched to the memory controller.

When the response of the 0x0-command is returned to
the RMW, it is first queued into the ModifyQ for the de-
merging process. Fig. 7b depicts the process of de-merging;:

5) The 0x0-command at the head of the ModifyQ is
directed to the De-Merger for decomposition.

6) All the M-bits in the cache are identified to determine
the merged commands. Although two WRITE com-
mands are merged in the entry, it is unnecessary to
issue all of them to the PCM because this may be
inconsistent with the purpose of the merge operation.
Thus, the last WRITE command merged is issued,
which is implied by the L-bit. Meanwhile, the [U, V]-
bit pair is set to “01” after the decomposition.

7) Finally, the decomposed commands are stored into
the RespQ for direct response or write-back.

This example shows that the merge operation “virtually”
dispatches three commands in the eight pending cycles with
a single representative command. Therefore, the throughput
of the memory system is significantly improved with a sim-
ple operation while maintaining the read reliability due to
the reduction of redundant read operations.

6 EVALUATION

6.1 Speedup

The speed of the baseline RMW is degraded as the row
buffer size increases because a memory transaction of a
larger buffer size requires a longer burst length. The simula-
tion results shown in Fig. 11 verify the degradation. The
proposed cache-based RMW, however, achieves a speedup
with an increase in the row buffer size. In each graph in
Figs. 10a, 10b, 10c, and 10d, the left sub-graph shows the
result with the cache-based RMW whereas the right sub-
graph represents the improvements made by the merging
operations. The baseline for normalization is the model hav-
ing a 64B-row buffer size. As shown in the left sub-figures
of Figs. 10a, 10b, 10c, and 10d, the speedup increases as the
cache capacity enlarges thanks to the enhanced cache hit
rate. The average speedups of 512B-row buffer systems are
1.4 times, 1.6 times, 1.8 times, and 2.4 times when there are
512, 1,024, 2,048, and 4,096 entries in the DRAM cache,
respectively. The maximum improvement is 4.1 times

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

compared to the baseline on average, when the entry num-
ber is 4,096 and row buffer size is 2 KB.

Some benchmarks have speedups smaller than 1 when
the entry number is smaller than 1,024 for 128B row buffer.
This degradation occurs due to the “stuck-in-queue” prob-
lem as discussed in Section 4.2. To mitigate stuck-in-queue
problem, the merge operation mentioned in Section 5 is
applied to the cache-based RMW. The right sub-figures of
Figs. 10a, 10b, 10c, and 10d show the speedup of merge
operation ranging from 128B to 2KB row buffer size. As
shown in these figures, the merge operation enhances the
performance markedly. For a system with 512B-row buffer,
the speedup achieves 1.7, 2.0, 2.5, and 3.2 times when the
numbers of the cache entries are 512, 1,024, 2,048, and 4,096,
respectively (see Figs. 10a, 10b, 10c, 10d). The maximum
speedup is 5.7 times on average with 2KB-row buffer and
4,096-entry cache, which is higher than the value of 4.1
times when using DRAM-only method.

6.2 Benefits of Reliability
6.2.1 Read Disturbance

The proposed system provides performance improvement,
and yet it is still insufficient to indicate that the proposed
method is suitable for general use concerning reliability.
Another unexpected benefit of the cache-based RMW is
device reliability. Read disturbance is an error that is
incurred by frequent and redundant read operations on a
specific cell. Since a cache filters out most of the commands
accessing neighboring addresses to prevent the commands
from entering the PCM device, the read disturbance can be
highly reduced by applying the proposed method.

To cover technology variations, six different bit error rates
are chosen as 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, and 1E-7. Fig. 12
shows the average normalized bit errors which represents
the ratio of the bit errors generated by proposed RMW
against the baseline. These values are represented by the bar
graphs. On the other hand, the line graphs in the figure show
the average numbers of errors occurred per read operation
with respect to the size of row buffer. The horizontal axis rep-
resents the row buffer size whereas four cache sizes are cho-
sen as 512, 1,024, 2,048, and 4,096 entries, respectively. The
four graphs in Fig. 12 represent the results for these four
cache sizes, respectively. In this figure, although the errors
per read operation increase due to the fast decrease of the
total read operations (or dominator), the number of bit errors
decrease with the increase of the row buffer size, from which
the proposed method consequently enhances the overall
read reliability compared to the baseline. This is because the
proposed model allows the controller to pre-fetch and reuse
the data as the size of the row buffer increases. For 512B row
buffer tested at the bit error rate of 1E-5, for example, the
average errors are reduced by 41, 39, 40, and 49 percent
when the cache has 512, 1,024, 2,048, and 4,096 entries,
respectively, as compared to that in the baseline.

6.2.2 Cell Endurance

The lifetime is another important measurement of PCM
characteristic which is estimated by measuring the number
of writes to the hottest position (or the worst-case wear
counts), by which it is used for quantifying the effectiveness
of wear-leveling in [48]. Fig. 13a shows the writes to the

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

Bit error rate (1E-2)

Bit error rate (1E-3)

1781

Bit error rate (1E-4)

[N}
w
o

N
[

()

%0

n

Errors per bit

=)

S o o 9o
i

S e o9
[S N
o

o o =
w

<
S

© o o
[
b

S s
=3
v

Errors per bit

Average normalized bit errors
Average normalized bit errors

128B 256B 512B 1024B
Row buffer size

C— Normalized RD(512) — Normalized RD(1024)

2048B 128B 256B

C— Normalized RD(512)

== Normalized RD(2048) mmmmm Normalized RD(4096) === Normalized RD(2048)

—— Errors per read(512) —<&— Errors per read(1024) —— Errors per read(512)

—— Errors per read(2048) ()+ Errors per read(4096) —— Errors per read(2048)
a

Bit error rate (1E-5)

512B
Row buffer size

Bit error rate (1E-6)

S

1024B 2048B 128B 256B 512B 1024B
Row buffer size
— Normalized RD(512) C— Normalized RD(1024)
===3 Normalized RD(2048) == Normalized RD(4096)
—>— Errors per read(512) —&— Errors per read(1024)
—— Errors per read(2048) —@— Errors per read(4096)

©
Bit error rate (1E-7)

2048B

— Normalized RD(1024)
= Normalized RD(4096)
—&— Errors per read(1024)
—@— Errors per read(4096)

4] 0.003 [1.2 3.0E-04 @ 3.0E-05
£] s
5 0.0025 = 1 2.5E-04 & 2.5E-05
2 = o 2 8 =
208 00027 £0.8 20E-047 B 2.0E-052
= 0 g = g
So. 0.00155 20.6 15E-04 5 8 1.5E-05 =
= = = = = =
£o. 0.001 & E04 LOE-042 E 1.0E-05 £
5 =5 =5 =
0. 0.0005 0.2 5.0E-05 2 5.0E-06
) @
g 0 g0 00E00 & 0.0E+00
2 128B 256B 512B 1024B 2048B 4 128B 256B 512B 1024B 2048B [128B 256B 512B 1024B 2048B
< Row buffer size < Row buffer size < Row buffer size
C— Normalized RD(512) C— Normalized RD(1024) 1 Normalized RD(512) C— Normalized RD(1024) C— Normalized RD(512) C— Normalized RD(1024)
=3 Normalized RD(2048) = Normalized RD(4096) =3 Normalized RD(2048) == Normalized RD(4096) =3 Normalized RD(2048) Emm Normalized RD(4096)
—— Errors per read(512) —o— Errors per read(1024) —>— Errors per read(512) —0— Errors per read(1024) —— Errors per read(512) —— Errors per read(1024)
—— Errors per read(2048) —@— Errors per read(4096) —— Errors per read(2048) —@— Errors per read(4096) —— Errors per read(2048) —@— Errors per read(4096)

(e)

Fig. 12. Average normalized bit errors and average bit errors/read command after applying merge operation with different DRAM cache entries
(512-4096 entries). (a) BER=1E-2, (b) BER=1E-3, (c) BER=1E-4, (d) BER=1E-5, () BER=1E-6, (f) BER=1E-7.

hottest position of the proposed method equipped with a
4,096-entry DRAM cache which is normalized to the base-
line by increasing the row buffer size from 128B to 2 KB.
The wear-out becomes worse if the row buffer is enlarged
from 128B to 512B; however, it can be handled as similar to
the baseline by modulating the row buffer size larger than 1
KB due to data pre-fetching effect on the DRAM cache. The

1.4 = —
1.2
1.0
0.8
0.6
0.4
0.2
0.0

hottest position

Normalized writes to the

Benchmarks
0O128B O256B ©@512B m1024B m2048B
(@)

>
&

—_ =
(= S)

t position
o
[oe)

o
=N

@»n

Normalized writes to the

128B 256B 512B
Row buffer size

O512-entry 01024-entry @2048-entry E4096-entry

(b)

Fig. 13. Normalized writes to the hottest position of the proposed merge-
operation: (a) the results for each benchmark when DRAM cache has
4096 entries, (b) the results for different DRAM cache entries.

1024B 2048B

proposed method with 2 KB row buffer and 4,096-entry
DRAM achieves to 39 percent reduction of the worst-case
wear counts as compared to the baseline. Fig. 13b also
shows that the proposed method prevents wear-out more
effectively as the DRAM cache size increases. For a 512B
row bulffer, the wear-outs to the hottest cell are reduced by
24.3 percent as the entry number increases from 512 to 4,096.

6.3 Energy Consumption and the Selection of the
Optimal Row Buffer Size

Fig. 14 shows that the average energy consumption of a
memory system generally increases with the row buffer size
by adopting the proposed merge-operation with respect to
a different DRAM cache size, where the energy consump-
tions of different row buffer sizes are measured for each
DRAM cache size. The horizontal red line shows the energy
consumption of the baseline. The energy consumption grad-
ually decreases as the number of DRAM cache entries
increases. For a 4,096-entry DRAM cache 512B row buffer,

9.E+08
8.E+08
7.E+08
6.E+08
5.E+08
4.E+08
3.E+08

Average energy consumption (nJ)

2.E+08
o.E+o0 L HH]
jasjiaaiyaaiaaiiaal jaajiasiyaajyaajaal
0 O A < o© 0 O ANt 0
o™ vy — A v — A
— NN OO — NN OO
— A — N
512-entry 1024-entry | 2048-entry | 4096-entry

Row buffer size

Fig. 14. Average energy consumption of the proposed merge-operation
where the red line shows the average energy consumption of the base-
line in this paper.

1782
7 —%— 512-entry
6 —o— 1024-entry
5 / —4—2048-entry
5 4 / ,/A —o— 4096-entry
3 /A/ g
% 3 / / X
2 d e — e
R
| [Cs=
0

2.E+08 3.E+08 4.E+08 5.E+08 6.E+08 7.E+08 8.E+08 9.E+08
Energy consumption (nJ)

Fig. 15. Relationship between energy consumption and speedup by
modulating the row buffer size for different cache entry numbers.

the increase of the energy consumption by the proposed
merge-operation is about 38 percent while the speed is
improved by 3.2 times compared to the baseline. This
increase of energy consumption is relatively small because
the main memory consumes about 11 percent of a whole
computing system [49]. As a result, the proposed method
can achieve x3.2 of the speedup with a relatively small
increase in energy consumption (about 4% = 38% x 11%)
compared to the baseline.

The optimal row buffer size should be chosen to achieve
the best trade-off between the energy consumption and
speedup. Fig. 15 shows the relationship between the energy
consumption and speedup by modulating the row buffer
size from 128B, 256B, 512B, 1,024B, to 2,048B. The five sym-
bols in each graph represent these sizes. Since the energy
consumption increases by nearly 1.5 times when row buffer
size is above 1,024B as compared to the baseline which too
large to be adopted in the system, 512B is chosen as the opti-
mal row buffer size. This selection is compliant with the
previous research that also chooses the transaction unit to
be no more than 512B [2], [21], [22]. The selected trade-off
increases the speed by 3.2 times and reduces total error
occurrences by 49 percent, as it increases the energy con-
sumption by 38 percent when compared to the baseline for
4,096-entry DRAM cache with merge operation. The hard-
ware cost of the merge operation very small because 4,096-
entry DRAM cache demands about 2 MB while a DRAM
requires approximately 5.5$/GB [9].

6.4 Comparison with Related Works

For fairly comparison among different performance
enhancement schemes, this paper applies [12], [32], and [34]
to the RMW integrated with the DRAM cache instead of
nave RMW. The average speedups and average energy con-
sumptions of all schemes including the proposed method
(typless merge operation) are shown in Figs. 16a and 16b,
respectively. The graphs denoted by NonBlockBank, WSHR,
and FgNVM, represents the schemes of [12], [32], and [34],
respectively. For speedup, the proposed method achieves
the best performance as it offers 19.2 percent improvement
on average as compared to the others when the row buffer
size is 512B (the optimal row buffer size discussed in the pre-
vious sub-section). For the energy consumption in Fig. 16b,
all schemes show similar energy consumptions, whereas the
proposed method consumes 1 percent smaller consumption
on average as compared to the others due to the decrease of
command processing command processing.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

w

IS

Speedup

i

128B 256B 512B 1024B 2048B
Row buffer size
ONonBlockBank OWSHR BFgNVM BMerge (proposed)
(a)
5.0E+08 —
_ 4.5E+08
S
£ 4.0EF08 |l
-’
°>5 3.5E+08
5 3.0EF08 e
£ 2.5E+08
& 2.0E+08 1 | | [}
£ 15E+08 (| | [} =HRN =
;ﬁ LOE+08 1 | | [}
S.OE+07 | | | P | =
0.0E+00
128B 256B 512B 1024B 2048B
Row buffer size
ONonBlockBank OWSHR BFgNVM BMerge (proposed)

Fig. 16. Comparison with different performance enhancement schemes
where all results are normalized to the baseline in the paper. (a)
speedup, (b) energy consumptions.

7 CONCLUSIONS AND FUTURE WORK

A PCM is an indispensable memory device as data access
becomes increasingly intensive with an increasing demand
for data reliability. It is necessary to increase the size of the
row buffer in a PCM device to larger than 128B to address
the drawbacks of the PCM compared to DRAM. This paper
first proposes an RMW architecture utilizing a DRAM cache
for enhancing read reliability and the performance in a
PCM-based system. However, it may induce an unexpected
performance degradation for some workloads due to high
miss penalty of the cache in the PCM. Therefore, merge, an
operation for combining the cache and RMW, is proposed,
not only to compensate for the throughput reduction as
much as possible but also to achieve even improved perfor-
mance. As a result, the merge operation adopted in the
512B-row buffer system with 4,096-entry DRAM cache
enhances the speed and read reliability by 3.2 times and
49 percent, respectively, on average. The DRAM cache
requires approximately 2 MB of storage space, of which cost
is very small as discussed in the previous section.

This work assumes that the memory controller of the
PCM including the RMW is supported by a super-capacitor
so that the proposed model offloads the work of persistent
model as much as possible. In the future, to further reduce
the energy consumption and area utilization consumed by
the heavy super-capacitor, we need to devise a much more
concrete model which can deal with the persistent model
without incorporating the super-capacitor.

ACKNOWLEDGMENTS

This paper was result of the research project supported by
SK Hynix Inc. and was supported by the Technology Inno-
vation Program (10080613, DRAM/PRAM heterogeneous

LEE ET AL.: INTEGRATION AND BOOST OF A READ-MODIFY-WRITE MODULE IN PHASE CHANGE MEMORY SYSTEM

memory architecture and controller IC design technology
research and development) funded By the Ministry of
Trade, Industry & Energy (MOTIE, Korea).

REFERENCES

1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-efficient main memory alter-
native,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2013,
pp- 256-267.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Proc. 36th
Annu. Int. Symp. Comput. Archit., 2009, pp. 2-13.

S. Mittal, “A survey of soft-error mitigation techniques for non-
volatile memories,” Comput., vol. 6, no. 1, 2017, Art. no. 8.

Intel, “Intel and micron produce breakthrough memory tech-
nology,” 2015. [Online]. Available: https://newsroom.intel.com/
news-releases/intel-and-micron-produce-breakthrough-memory-
technology

S. Shin, J. Tuck, and Y. Solihin, “Proteus: A flexible and
fast software supported hardware logging approach for
NVM,” in Proc. 50th Annu. Int. Symp. Microarchitecture, 2017,
pp. 178-190.

S. Sundararaman, N. Talagala, D. Das, A. Mudrankit, and D.Arteaga,
“Towards software defined persistent memory: Rethinking soft-
ware support for heterogeneous memory architectures,” in Proc.
3rd Workshop Interactions NVM/FLASH Operating Syst. Workloads,
2015, pp. 6:1-6:10.

S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent mem-
ory,” in Proc. 9th Eur. Conf. Comput. Syst., 2014, pp. 15:1-15:15.

B. Bhattacharjee, M. Canim, C. A. Lang, G. A. Mihaila, and K. A. Ross,
“Storage class memory aware data management,” Bulletin IEEE Com-
put. Soc. Tech. Committee Data Eng., vol. 33, no. 4, pp. 35-40, 2010.

J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware logging
in transaction systems,” Proc. VLDB Endowment, vol. 8, pp. 389400,
2014.

J. Guerra, L. Mrmol, D. Campello, C. Crespo, R. Rangaswami, and
J. Wei, “Software persistent memory,” in Proc. USENIX Annu.
Tech. Conf., 2012, pp. 22-29.

M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L. A. Lastras,
“PreSET: Improving performance of phase change memories by
exploiting asymmetry in write times,” in Proc. 39th Int. Symp. Com-
put. Archit., 2012, pp. 380-391.

P. Zhou,]. Y. B. Zhao, and Y. Zhang, “Throughput enhancement
for phase change memories,” IEEE Trans. Comput., vol. 63, no. 8§,
pp- 2080-2093, Aug. 2014.

F. Xia, D. Jiang, J. Xiong, and N. Sun, “HiKV: A hybrid index key-
value store for DRAM-NVM memory systems,” in Proc. USENIX
Annu. Techn. Conf., 2017, pp. 349-362.

Numonyx, “Numonyx,” 2009. [Online]. Available: http://www.
pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf

AMD, “High-bandwidth memory reinventing memory tech-
nology,” 2015. [Online]. Available: https://www.amd.com/
Documents/High-Bandwidth-Memory-HBM.pdf

R. Fisher, “Optimizing NAND flash performance,” in Flash Mem-
ory Summit, Santa Clara, U.S., Aug. 2008. [Online]. Available:
https://www.flashmemorysummit.com/English/Collaterals/
Proceedings/2008/20080812_F2B_Fisher.pdf

C.Kim, J.Ryu, T. Lee, H. Kim, J. Lim, J. Jeong, S. Seo, H. Jeon, B. Kim,
I. Lee, D. Lee, P. Kwak, S. Cho, Y. Yim, C. Cho, W. Jeong, J. Han,
D. Song, K. Kyung, Y. Lim, and Y. Jun, “A 21nm high performance
64Gb MLC NAND flash memory with 400MB/s asynchronous tog-
gle DDR interface,” in Proc. Symp. VLSI Circuits-Digest Tech. Papers,
2011, pp. 196-197.

J. Kim, S. Kim, and J. Kim, “Subpage programming for extending
the lifetime of NAND flash memory,” in Proc. Des. Autom. Test
Europe Conf. Exhib., 2015, pp. 555-560.

M. Kim, J. Lee, S. Lee, J. Park, and]. Kim, “Improving perfor-
mance and lifetime of large-page NAND storages using erase-free
subpage programming,” in Proc. 54th Annu. Des. Autom. Conf.,
2017, pp. 1-6.

N. H. Seong, D. H. Woo, and H. H. Lee, “Security refresh: Protect-
ing phase-change memory against malicious wear out,” IEEE
Micro, vol. 31, no. 1, pp. 119-127, Jan. /Feb. 2011.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

1783

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proc. 42nd Annu. Int. Symp.
Microarchitecture, 2009, pp. 14-23.

F. Huang, D. Feng, W. Xia, W. Zhou, Y. Zhang, M. Fu, C. Jiang,
and Y. Zhou, “Security RBSG: Protecting phase change memory
with security-level adjustable dynamic mapping,” in Proc. 30th
IEEE Int. Parallel Distrib. Process. Symp., 2016, pp. 1081-1090.

H. Yu and Y. Du, “Increasing endurance and security of phase-
change memory with multi-way wear-leveling,” IEEE Trans. Com-
put., vol. 63, no. 5, pp. 1157-1168, May 2014.

J. Yun, S. Lee, and S. Yoo, “Dynamic wear leveling for phase-
change memories with endurance variations,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 23, no. 9, pp. 16041615, Sep. 2015.
Intel Corporation, “ECC Handling Issues on Intel XScale I/O Pro-
cessors”, Tech. Note, 1st ed., Dec. 2003. [Online]. Available:
https://www.intel.com/content/dam/www /public/us/en/
documents/application-notes/ecc-handling-issues-on-xscale-io-
processors-note.pdf

J. H. Edmondson, R. A. Alfieri, M. F. Harris, and S. E. Molnar,
“Coalescing to avoid read-modify-write during compressed data
operations,” US Patent 8928681 B1, Jan. 2015.

P. R. Hiller, W. P. Hovis, and J. A. Kirscht, “Memory controller
and method for optimized read /modify/write performance,” US
Patent 7908443 B2, Mar. 2011.

L.Jiang, B. Zhao, Y. Zhang,]. Yang, and B. R. Childers, “Improving
write operations in MLC phase change memory,” in Proc. 18th Int.
Symp. High Perform. Comput. Archit., 2012, pp. 201-210.

M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montao,
“Improving read performance of phase change memories via
write cancellation and write pausing,” in Proc. 16th Int. Symp.
High-Perform. Comput. Archit., 2010, pp. 1-11.

N. Castellani, G. Navarro, V. Sousa, P. Zuliani, R. Annunziata,
M. Borghi, L. Perniola, and G. Reimbold, “Comparative analysis
of program/read disturb robustness for GeSbTe-based phase-
change memory devices,” in Proc. IEEE 8th Int. Memory Workshop,
2016, pp. 1-4.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp- 24-33.

Y. Kim, S. Yoo, and S. Lee, “Write performance improvement by
hiding R drift latency in phase-change RAM,” in Proc. 49th Annu.
Des. Autom. Conf., 2012, pp. 897-906.

A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Moss, “Increasing PCM main memory lifetime,” in Proc. Conf.
Des. Autom. Test Europe, 2010, pp. 914-919.

M. Poremba, T. Zhang, and Y. Xie, “Fine-granularity tile-level par-
allelism in non-volatile memory architecture with two-dimen-
sional bank subdivision,” in Proc. 53th Annu. Des. Autom. Conf.,
2016, pp. 1-6.

M. Arjomand, M. T. Kandemir, A. Sivasubramaniam, and C. R. Das,
“Boosting access parallelism to PCM-based main memory,” in Proc.
43th Annu. Int. Symp. Comput. Archit., 2016, pp. 695-706.

J. Chang and A. Sainio, “NVDIMM-N cookbook: A soup-to-nuts
primer on using NVDIMM-ns to improve your storage perform-
ance,” 2015. [Online]. Available: http://www.snia.org/sites/
default/orig/FMS2015/Chang-Sainio. NVDIMM_Cook book.pdf
R. Peglar, A. Bumgarner, and T. Talpey, “Persistent memory, NVM
programming model, and NVDIMMS,” 2017. [Online]. Available:
https:/ /www.flashmemorysummit.com/English/Collaterals /
Proceedings/2017/20170809_FR21_SNIA.pdf

NorthwestLogic, “AXI interface core,” 2017. [Online]. Available:
https:/ /nwlogic.com/products/docs/AXI_Interface_Core.pdf
NorthwestLogic, “Read-modify-write core,” 2017. [Online]. Available:
https:/ /nwlogic.com/ products/docs /Read-Modify-Write_Core.pdf
M. Poremba, T. Zhang, and Y. Xie, “NVMain 2.0: A user-
friendly memory simulator to model (non-)volatile memory
systems,” IEEE Comput. Archit. Lett., vol. 14, no. 2, pp. 140-143,
Jul.-Dec. 2015.

F. Zeng, L. Qiao, M. Liu, and Z. Tang, “Memory performance
characterization of SPEC CPU2006 benchmarks using TSIM,”
Phys. Procedia, vol. 33, pp. 1029-1035, 2012.

L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F. T. Chong,
“Mellow writes: Extending lifetime in resistive memories through
selective slow write backs,” in Proc. 43rd Annu. Int. Symp. Comput.
Archit., 2016, pp. 519-531.

https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf
https://www.amd.com/Documents/High-Bandwidth-Memory-HBM.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2008/20080812_F2B_Fisher.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2008/20080812_F2B_Fisher.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/ecc-handling-issues-on-xscale-io-processors-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/ecc-handling-issues-on-xscale-io-processors-note.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/application-notes/ecc-handling-issues-on-xscale-io-processors-note.pdf
http://www.snia.org/sites/default/orig/FMS2015/Chang-Sainio_NVDIMM_Cook book.pdf
http://www.snia.org/sites/default/orig/FMS2015/Chang-Sainio_NVDIMM_Cook book.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FR21_SNIA.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_FR21_SNIA.pdf
https://nwlogic.com/products/docs/AXI_Interface_Core.pdf
https://nwlogic.com/products/docs/Read-Modify-Write_Core.pdf

1784

[43]

[44]

[45]

[46]
[471

[48]

[49]

[50]

[51]

[52]

[53]

J. Zhao, O. Mutly, and Y. Xie, “FIRM: Fair and high-performance
memory control for persistent memory systems,” in Proc. 47th
Annu. Int. Symp. Microarchitecture, 2014, pp. 153-165.

J. Coburn, A. M. Caulfield, L. M. G. A. Akel, R.]. R. K. Gupta, and
S. Swanson, “NV-heaps: Making persistent objects fast and safe
with next-generation, non-volatile memories,” in Proc. 16th Int. Conf.
Archit. Support Program. Lang. Operating Syst., 2011, pp. 105-118.

A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: Atomic
durability in non-volatile memory through hardware logging,” in
Proc. 23rd Int. Symp. High Perform. Comput. Archit., 2017, pp. 361-372.
Redis, “An introduction to redis data types and abstractions,”
[Online]. Available: https:/ /redis.io/topics/data-types-intro

S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
in Proc. 41st Int. Symp. Comput. Archit., 2014, pp. 265-276.

Y. Du, M. Zhou, B. R. Childers, D. Moss, and R. Melhem, “Bit
mapping for balanced PCM cell programming,” in Proc. 40th
Annu. Int. Symp. Comput. Archit., 2013, pp. 428-439.

Intel, “Microprocessor power impacts,” 2010. [Online]. Available:
https:/ /www .glsvlsi.org/archive/glsvlsil0/pant-GLSVLSI-talk.pdf
C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and
D. Vimercati, “A 45nm 1Gb 1.8V phase-change memory,” in Proc.
IEEE Int. Solid-State Circuits Conf., 2010, pp. 270-271.

Y. Choi, I. Song, M. H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang,
J. Lee, Y. Kwon, S. Kim, J. Kim, Y. J. Lee, Q. Wang, S. Cha, S. Ahn,
H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y. T. Lee, J. Yoo, and
G. Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth,” in Proc. IEEE Int. Solid-State Circuits Conf., 2012,
pp- 46-48.

K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data management
on non-volatile memory-based heterogeneous main memory,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2017,
pp.- 58:1-58:14.

D.Kline, R. Melhem, and A. K. Jones, “Counter advance for reliable
encryption in phase change memory,” IEEE Comput. Archit. Lett.,
vol. 17, no. 2, pp. 209212, Jul.-Dec. 2018.

Hyokeun Lee (S'19) received the BS degree in
electrical and computer engineering from Seoul
National University, Seoul, South Korea, in 2016,
where he is currently working toward the inte-
grated MS and PhD degrees in electrical and com-
puter engineering at Seoul National University.
His current research interests include non- volatile
memory controller design, hardware persistent
model for non-volatile memory, and computer
architecture. He is a student member of the IEEE.

Moonsoo Kim received the BS degree in electri-
cal and computer engineering from Seoul National
University, Seoul, Korea, in 2014, where is cur-
rently working toward the integrated MS and PhD
degrees in electrical and computer engineering at
Seoul National University, Seoul, Korea. His cur-
rent research interests include SoC design of
video/images, and low-power, reliable design of
memory hierarchy.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.12, DECEMBER 2019

Hyunchul Kim received the BS degree in com-
puter science and engineering from Dankook Uni-
versity, Seoul, South Korea, in 2002, where he is
currently working as a senior engineer at SK
Hynix, Icheon, Gyeonggi-do, South Korea.His
current research interests include new memory
solution architecture.

Hyun Kim (M'12) received the BS, MS and PhD
degrees in electrical engineering and computer sci-
ence from Seoul National University, Seoul, South
Korea, in 2009, 2011, and 2015, respectively.
From 2015 to 2018, he was a BK assistant profes-
sor with the BK21 Creative Research Engineer
Development for IT, Seoul National University. In
2018, he joined the Department of Electrical and
Information Engineering, Seoul National University
of Science and Technology, Seoul, where he is an
assistant professor. His current research interests
include algorithm, computer architecture, memory, and SoC design for
low-complexity multimedia applications, and deep neural networks. He is a
member of the IEEE.

Hyuk-Jae Lee (M'04) received the BS and MS
degrees in electronics engineering from Seoul
National University, Seoul, South Korea, in 1987
and 1989, respectively, and the PhD degree in
electrical and computer Engineering from Purdue
University, West Lafayette, IN, in 1996. From 1998
to 2001, he was a senior component design engi-
neer with the Server and Workstation Chipset Divi-
sion, Intel Corporation, Hillsboro, OR. From 1996
to 1998, he was a faculty member with the Depart-
ment of Computer Science, Louisiana Tech Univer-
sity, Ruston, LA. In 2001, he joined the School of Electrical Engineering and
Computer Science, Seoul National University, where he is a professor. He
is the Founder of Mamurian Design, Inc., Seoul, a fabless SoC design
house for multimedia applications. His current research interests include
computer architecture and SoC for multimedia applications. He is a mem-
ber of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://redis.io/topics/data-types-intro
https://www.glsvlsi.org/archive/glsvlsi10/pant-GLSVLSI-talk.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

