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Abstract: This paper presents design details adopting open embedded systems (OES) as real-time
controllers in industrial distributed control systems. OES minimize development cost and enhance
portability while addressing widely known shortcomings of their proprietary counterparts.
These shortcomings include the black box method of distribution which hinders integration to
more complex systems. However, OES are highly dependent on the compatibility of each software
components and essential benchmarking is required to ensure that the system can satisfy hard
real-time constraints. To address these issues and the notion that OES will find broader distributed
control applications, we provide detailed procedures in realizing OES based on an open source
real-time operating system on various low-cost open embedded platforms. Their performance
was evaluated and compared in terms of periodicity and schedulability, task synchronization, and
interrupt response time, which are crucial metrics to determine stability and reliability of real-time
controllers. Practical implementations, including the modernization of a multi-axis industrial robot
controller, are described clearly to serve as a comprehensive reference on the integration of OES in
industrial distributed control systems.

Keywords: open embedded systems; real-time controller; real-time operating systems; Xenomai;
industrial distributed control systems

1. Introduction

Distributed control systems (DCS) are widely found in numerous control applications requiring
operation of various hardware devices and complex control algorithms. This is particularly relevant
to industrial control systems that are required to control distributed devices behaving reactively
with the working environment. The most essential part of a DCS is the main controller whose
functionality is to calculate and transfer motion commands to the actuators and to collect feedback data
from sensory devices. The main controller is responsible in ensuring minimal computational delay
when processing significant amount of data from the distributed devices. To cope with this demand,
it should achieve precise control period and demonstrate deterministic response times. In other words,
the entire system should satisfy real-time constraints [1]. Considering the objective mentioned above
and evaluating previous studies in literature, the general approach is to design the main controller
based on a real-time operating system (RTOS). An RTOS usually have all the necessary features
as good building blocks to build real-time systems. It allows priority-based scheduling of multiple
tasks. Most RTOS are commercially distributed that runs on large and often expensive hardware
platforms that support monolithic control applications [2]. Therefore, the software, together with the
entire system, are usually distributed in a black box that prevents any changes and hinders integration
to more complex systems [3,4].
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These shortcomings are addressed by open source projects by enabling developers to freely add
and modify the software. With more users simultaneously sharing their contributions, the evolution of
the system is enhanced and debugging of problems can be easier. Due to its open source nature and
easy accessibility, Linux has gained increasing popularity as the general-purpose operating system for
embedded systems applied in scientific experiments that do not require strict temporal determinism [5].
However, its scheduling policy, which utilizes fairness [6] rather than priorities of tasks, prevents
its integration to real-time control systems. Various real-time Linux approaches were developed in
the recent past with the aim to improve the priority scheduling of the standard Linux to operate
in real-time [7–10]. The two major approaches of real-time Linux are classified as the preemptible
kernel, and the dual-kernel approaches. In the former, the source code of the standard Linux kernel is
directly modified. The scheduler and the timers are enhanced to enable priority-based scheduling so
that higher priority tasks can preempt lower priority ones. This means that the preemptible kernel
is dependent on the kernel version and sometimes it might be a proprietary software distributed
by commercial purpose. On the other hand, the dual-kernel approach employs a real-time kernel
to function alongside the standard Linux through an abstraction layer called the adaptive domain
environment for operating systems (ADEOS) [11]. There are two projects employing the dual-kernel
approach, namely RTAI and Xenomai. Ceria et al. presented a comparison of the real-time performance
between the RT_PREEMPT (preemptible kernel) and RTAI (dual-kernel) as the main controller of
an EtherCAT network [12]. However, the RTAI project has become stagnant and has limited central
processing unit (CPU) support (Intel x86, PowerPC, and older ARM processors). Xenomai, on the
other hand, has a very active community supporting various embedded hardware platforms and
leading to wide-range of control applications [10,13,14]. The performance of Xenomai compared with
the RT_PREEMPT is presented by Brown et al. [15]. Comparing their performance, the RT_PREEMPT
is significantly better in terms of limiting the maximum scheduling jitter. Whereas both dual-kernel
approach showed better accuracy in meeting hard real-time deadlines with lower standard deviations.

We focus on designing real-time controllers based on Xenomai because of its availability to a
large number of platforms and it provides user-friendly application programming interfaces (API).
The performance was also proven as a worthy alternative to a commercial RTOS [5]. As OES are
composed of both hardware and software components, we have selected popular low-cost embedded
hardware platforms to implement the real-time environment. Open embedded hardware platforms are
gaining popularity as main controllers in different control systems including sensor networks [16,17],
image processors [18], and industrial robot controllers [19,20] due to their portability, low power
requirements, and inexpensive costs in comparison to high-end computers. However, developing the
real-time environment is more difficult owing to the limited availability of systematic documentations
and technical support. These hardware platforms are available off-the-shelf and comes with Linux
kernel sources provided by their manufacturers. Depending on the control application, compatibility
with other software components is an open problem that is very time consuming and without a
standard solution.

This paper aims to provide a comprehensive reference for readers on the design and integration
of OES as industrial controllers of distributed control systems. To begin, the paper provides the
complete procedures, considering software compatibility, in designing Xenomai-based real-time
controllers on different embedded platforms namely, BeagleBone Black, Raspberry Pi 3, Zybo-7020,
and i.MX6Q SABRELite. We also discuss their differences in terms of the control application.
The performance of each OES was evaluated focusing on three metrics including: periodicity and
responsiveness, performance of the task synchronization mechanisms, and the interrupt response
times. The experiments were conducted to evaluate whether the system ensures deterministic behavior
and responsiveness in various conditions, which is critical to determine stability and reliability of
the entire system. Practical cases of that the authors have implemented previously are discussed to
provide readers for implementation examples. This paper is organized as follows: Section 2 presents the
design details of the real-time environment for different open embedded platforms. The performance
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evaluation and experiment results are discussed in Section 3. Practical example cases are described in
Section 4 and the last section summarizes the concluding remarks.

2. Designing Real-time Embedded Controllers

In this section, we discuss the different real-time approaches of Linux and describe their differences
in terms of functionality and performance. As OESes are comprised with both hardware and software,
we have selected four popular low-cost embedded hardware platforms (namely BeagleBone Black,
Raspberry Pi 3, Zybo-7020, and i.MX6Q SABRELite) to implement the real-time environment based
on Xenomai, a dual-kernel approach of real-time Linux. We also provide the detailed procedures
considering software version compatibility to design real-time controllers utilizing the embedded
platforms mentioned above.

2.1. Real-Time Embedded Linux Approaches

Linux is currently considered a soft RTOS owing to the rapid improvements of the kernel and
the continuous advancements in the computer power of hardware platforms. However, it is still not
suitable for hard real-time applications that require strict timing constraints and preemption of low
priority tasks because of its scheduling policy of utilizing fairness over priorities [6]. Several real-time
Linux approaches were introduced in the recent past which improves the response time and
priority-based scheduling in order to meet hard real-time deadlines. These are largely classified
into two major approaches: the preemptible kernel [8] and the dual-kernel approaches [7,9,10]. In the
fully preemptible kernel approach, all parts of the standard Linux kernel with relationship to the
scheduler and timers are directly modified to render lower priority tasks preemptible by higher
priority ones. The most popular distribution of this approach is RT_PREEMPT [4], with its architecture
shown in Figure 1a. Herein, the entire Linux kernel should be modified which is very time consuming.
The performance is also variable depending on the version of the Linux kernel. Meaning a single
change in the kernel or an update of the kernel version can greatly affect the performance of the system
and would require the same tedious and time-consuming job. For this reason, fully preemptible kernel
is often distributed by commercial vendors.
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Figure 1. Classification of real-time embedded Linux systems: (a) fully preemptible kernel approach;
(b) dual-kernel approach.

Conversely, the dual-kernel approach employs a real-time kernel to function alongside the
standard Linux through a virtual layer called the adaptive domain environment for operating
systems [11]. In comparison to the former approach, the real-time kernel can run independent with
the standard Linux kernel as long as a compatible ADEOS patch is in existent. The architecture of
the dual-kernel approach is shown in Figure 1b. In this approach, the standard Linux has the lowest
priority and would only run if there are no tasks available for the real-time kernel. Two dual-kernel
approach projects are currently available, namely Xenomai and RTAI [14,21,22]. Both Xenomai and
RTAI are more accurate in meeting hard real-time deadlines with lower standard deviations and
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offers API for the real-time driver model (RTDM) [23]. RTAI, however, has become inactive and only
supports Intel, PowerPC, and older ARM processors. Therefore, we have selected Xenomai as the
RTOS for designing OES-based real-time controllers presented in the next section.

2.2. Xenomai-Based Real-Time Environment

With the aim to become a helpful reference for developers with the intent of integrating OES
in their own control systems, we provide the complete steps in designing Xenomai-based real-time
controllers on four embedded platforms. Table 1 enumerates the real-time environment for each
embedded platform considering software compatibility. Although manufacturers provide Linux kernel
sources and the bootloader, compatibility with other software and patches is still an open problem.
For example, a real-time environment based on Xenomai requires the ADEOS patch compatible with
both the Linux kernel and Xenomai itself. The most common solution is look for the best compatible
combination by trial and error in accordance to the control application deployed in the embedded
platform. For instance, Raspberry Pi 3 is not applicable to EtherCAT application, but the others
are possible.

Table 1. Real-time environment and the compatible version of each software components for the
respective open embedded platform.

Software Component BeagleBone Black Raspberry Pi 3 Zybo-7020 i.MX6Q SABRELite

Toolchain gcc-linaro-arm-linux-
gnueabihf-4.7.3

gcc-linaro-arm-linux-gnueabihf-
raspbian-4.8.3

gcc-linaro-arm-linux-
gnueabihf-4.8.3

gcc-linaro-arm-linux-
gnueabihf-4.8.3

Bootloader U-Boot 2015.10 Broadcom Bootloader U-Boot 2015.10 U-Boot 2015.10

ADEOS/I-PIPE ipipe-3.8.13-arm-3 ipipe-4.1.18-arm-4 ipipe-3.14.17-arm-4 ipipe-3.14.17-arm-2

Xenomai 2.6.5 [24] 3.0.2 [24] 2.6.5 2.6.5

Linux Kernel 3.8.13 [25] 4.1.21 [26] 3.14.2 [27] 3.14.15 [28]

Root Filesystem Minimal Ubuntu 14.04 Raspbian Jessie Minimal Ubuntu 14.04 Minimal Ubuntu 14.04

IgH EtherCAT 1.5.2 - 1.5.2 1.5.2

Instead of directly building the Linux kernel, first, it should be patched with the compatible
ADEOS version, available at the Xenomai i-pipe patch archives [29]. The patched kernel is configured
disabling CPU features which causes unwanted voltage and frequency changes that greatly affects
the real-time performance of Xenomai. These include CONFIG_CPU_FREQ, CONFIG_CPU_IDLE,
and CONFIG_KGDB. Buffer overflow detection and protection is also disabled because it can trigger
warnings when installing Xenomai. The kernel is compiled including device tree binaries (DTB). DTB
is the newest data structure in Linux that contains the information of all the devices that are attached
to the respective embedded hardware platform. DTBs are introduced from Linux kernel version
3.8. Therefore, the bootloader should be able to identify this new data structure to ensure successful
booting process. In case of the Raspberry Pi 3, the bootloader is not open to the public. We decided to
build the kernel on top of a complete working image available in the Raspberry Pi repository [30].

For the other platforms, we have chosen the same bootloader and version, U-Boot 2015.10 [31],
which is the most stable compatible version with the other software components. The Raspberry Pi 3
is integrated to a DCS that does not require any additional software, thus the latest version of both
the Linux kernel and Xenomai were implemented. Whereas the other platforms are designed with
the purpose of being the main controller of an EtherCAT network therefore, compatibility with an
open source EtherCAT master was also considered [32]. The practical applications of each hardware
platform are thoroughly discussed in Section 4.

Xenomai is included with user space libraries and tools for easier application development
without having to program in the kernel space. For all the embedded platforms, Xenomai was compiled
enabling the following flags: -march = armv7-a and -mfpu = vfp3, which stands for the CPU and
floating-point unit (FPU) architectures. To satisfy software dependencies and eliminate problems
such as unusable binaries, missing libraries, and other build errors, we have selected toolchain
versions compatible with all the software components and their respective hardware platform. For the
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users to easily communicate with the kernel, we implemented the root filesystem, minimal Ubuntu
14.04 [33]. With the same reason as of the bootloader, the root filesystem image on the Raspberry Pi 3 is
Raspbian Jessie.

A complete step-by-step guide for the compilation of i.MX6Q SABRELite is presented in our
previous study [34]. The same method can be applied with the other embedded platforms only
following the versions stated in this work. Building the environment is only the first step in designing
real-time controllers based on OESes. Reliability of these platforms requires evaluation of their real-time
performance; whether they can satisfy hard temporal constraints in various conditions. The next section
offers intuitive experiment procedures to demonstrate the validity of OES as real-time controllers.

3. Performance Evaluation

This section describes the performance evaluation of the real-time controllers designed in the
previous section. We focus on three performance metrics that are critical to determine reliability
and stability of each OES in real-time applications for distributed control. First, the periodicity and
responsiveness of each task was evaluated to ascertain whether the system shows deterministic
behavior and can perform expected tasks while satisfying hard temporal deadlines. Next, various task
synchronization mechanisms were defined and evaluated to give a guideline of the expected overheads
produced when they are applied in user applications. Finally, experiments were conducted to measure
the interrupt response time for each OES. This determines the behavior of the system when interacting
with device drivers for digital input and output devices. The experiment procedures and conditions
for each metric is discussed in detail in the following subsections.

3.1. Periodicity and Responsiveness

Schedulability of real-time tasks is highly dependable on the timing correctness of each task;
whether all the tasks can execute within their respective deadline. The periodicity and responsiveness
of the system is verified using the method called response-time analysis [35]. According to this method,
schedulability of set of tasks can be analyzed according to worst case response time. The response
time is defined as the duration in which a task starts its execution from a release point until it finishes
its job. The behavior of the execution of a real-time task is illustrated in Figure 2.
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Figure 2. Timeline describing the behavior of a real-time task with a given response time and period.

In the figure, for task τi, timing characteristics are defined with their respective priorities,
activation period (P), which is usually equal to the relative deadline where execution time is defined
as computation time (C). The release jitter (J) which is the delay of execution at the beginning of the
task due to context switching. The busy period (W) of the task which is the sum of computation time
(C), the blocking time (B), and interference time (I). A blocking happens when a low priority task owns
a resource needed by a high priority task. Whereas, an interference occurs when lower priority tasks
are preempted by tasks with higher priorities [8].

Wi = Ci + Bi + ∑
j∈hp(i)

⌈
Wi + Jj

Pj

⌉
· Cj︸ ︷︷ ︸

Ii

(1)
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In this equation, Ii denotes the sum of the computation time of all the elements included in the set
of tasks with higher priority than task τi, hp(i). If ∃τ∈hp(i), Equation (1) is iterated x number of times
until W(x+1)

i = Wx
i . The test should be stopped once the current iteration yields a value of beyond the

deadline else, it would be impossible to terminate. This is only applicable to determine the busy period
of the current task, τi, and should be repeated when needed for the other tasks. After the busy period
is calculated, the overall response time of the system is determined by the following equation [8]:

Ri = Wi + Ji (2)

Periodic tasks are schedulable if and only if all the scheduled tasks can complete their execution
of the given computation time within the respective period/deadline. To demonstrate a practical
example of the response-time test, we performed a simplified experiment consisting of two real-time
tasks. The goal of the experiment is to verify whether the real-time controllers designed in the previous
section can show deterministic behavior accordingly with the response time test. The experiment
conditions are made as simple as possible for easier understanding and lesser calculations. Two tasks
were generated with the given priority, period, and computation time. The first task, τ1, has a priority
of 99, computation time of 0.5 ms, and period of 1 ms. The lower priority task, τ2, was generated with
the priority of 80, computation time of 1.5 ms, and period of 5 ms. Note that according to the Xenomai
documentation, the highest priority level is 99 and the lowest is 1. The tasks are scheduled to start
approximately at the same time. To ensure that both tasks can fulfill the configured computation time,
we have used the function rt_timer_spin(SPINTIME) which is available in the Xenomai user space
library. This function burns the CPU in the specified SPINTIME, given as an argument in nanoseconds.
The expected behavior of the tasks is shown in Figure 3. In this figure, τ1 and τ2 are represented by the
blue and red lines, respectively. The interference is represented by the box with blue diagonal lines.
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Figure 3. Execution timeline of the real-time tasks for the experiment with two tasks. The blue solid
line represents the higher priority task, τ1, and the red solid line represents τ2.

It is important to notice that τ2 is preempted by the higher priority task, thus there are points of
interference during its busy period. For visibility purposes, the rt_timer_spin() function is encapsulated
in a loop with the SPINTIME of 0.1 ms. The loop will terminate when the accumulated SPINTIME is
equal to the configured computation time of 1.5 ms. This means that τ2 completes its job when fifteen
blocks of 0.1 ms is executed. The interference time is represented by the boxes with blue diagonal
lines. Additionally, it is conspicuous that both tasks run periodically as shown in the values of the data
cursor located at the release points. According to Equations (1) and (2), the expected response time
for τ1 is 0.5 ms because it has the highest priority and no block or interference occurs during its busy
period. On the other hand, τ2 will complete its execution every 3 ms. The calculation for the response
time is presented in the Appendix A. The calculated response times are also verified in accordance to
the schedulability analysis tool, Model Analysis Suite for Real-time Applications (MAST) [36]. Herein,
the default toolset was selected to calculate the worst-case behavior of the system and whether it
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can always meet the hard real-time deadline. We have enabled slack calculations, or the percentage
by which the execution time can be increased while maintaining schedulability. The slack is a vital
information in determining whether how close the system is becoming schedulable or non-schedulable.
The results of the MAST analysis are shown in Table 2. The worst-case response time for each task is
equal to the results of the calculation using Equations (1) and (2) and both tasks are schedulable with
24.61% system slack.

Table 2. Calculation of the worst-case response time using MAST [36].

Task Priority Worst-Case Response (ms) Slack (%)

τ1 99 0.500000 39.45%
τ2 80 3.000000 65.63%

The experiments were performed on each real-time embedded controller for 10 minutes to verify
whether they can show schedulability in comparison to the values above. During the experiment,
the OESes are kept isolated to avoid any unwanted interruptions that could affect the performance of
the entire system. For this reason, all the measured values are stored in a buffer for offline processing
and analysis.

The results of the timing analysis are shown in Table 3 with the statistical average (avg), maximum
(max), minimum (min), and standard deviation (σ) values of each timing metric. Analyzing these
results, we could see that the measured average response time for all OESes were approximately
equal to the expected response time of 0.5 and 3 ms for τ1 and τ2, respectively. Moreover, we can
conclude that they were able to meet their respective deadlines producing promising results of the
average period for both tasks. The σ shows that the Raspberry Pi 3 has the best performance with the
lowest deviation to the statistical average. Although not reported in this paper, this difference can be
accountable to the improved architecture of Xenomai 3.

Table 3. Statistical analysis of periodicity and response times of each embedded hardware platform.

Task τ1, High Priority (99, 1 ms Deadline) τ2, Low Priority (80, 5 ms Deadline)

Metric (ms) Period (P) Response (R) Jitter (J) Period (P) Response (R) Jitter (J)

BeagleBone Black

avg. 1.000000 0.502764 0.004424 5.000000 2.987725 0.001938
max. 1.029958 0.510792 0.029958 5.028000 3.001875 0.028000
min. 0.972792 0.502125 0.000000 4.976250 2.963000 0.000000

st.d (σ) 0.006238 0.000667 0.004398 0.003521 0.004687 0.002940

Raspberry Pi 3

avg. 1.000000 0.500780 0.001121 5.000000 2.994471 0.000617
max. 1.007084 0.503437 0.008906 5.008959 2.998542 0.008959
min. 0.991094 0.500520 0.000000 4.993646 2.989844 0.000000

st.d (σ) 0.001429 0.000164 0.001124 0.000951 0.000666 0.000723

Zybo-7020

avg. 1.000000 0.502655 0.000878 5.000000 2.998630 0.001120
max. 1.010889 0.509745 0.010909 5.015211 3.003186 0.015323
min. 0.989091 0.502341 0.000000 4.984677 2.984868 0.000001

st.d (σ) 0.001588 0.000332 0.001127 0.002187 0.002377 0.001878

i.MX6Q SABRELite

avg. 1.000000 0.502450 0.001423 5.000000 2.996607 0.003339
max. 1.010803 0.508783 0.012045 5.015409 3.002187 0.015409
min. 0.987955 0.501965 0.000000 4.987518 2.984358 0.000000

st.d (σ) 0.002163 0.000913 0.001629 0.004488 0.003698 0.002999
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As the objective of this paper is to prove the viability of OES in real-time applications,
the difference in performance with respect to the Xenomai version is neglected as long as the OES
were able to fulfill the requirements of a hard real-time control system. These results indicate that the
designed real-time controllers based on OES is feasible for hard real-time applications.

3.2. Task Synchronization Mechanisms

Aside from periodicity and responsiveness of real-time tasks, correctness of the data being
processed is another concern to ensure deterministic behavior of a real-time control system. Notably in
a DCS, various devices are required to exchange data in a multitasking environment. These tasks are
expected to execute in parallel and often need to access the same resources. However, asynchronization
and concurrency issues between them can cause either data overflow (when the publisher is
running faster than the reader), or data loss (when the publisher is slower). RTOSes offer inter-task
communication (ITC) mechanisms to prevent such anomaly. ITCs are characterized into two main
types: Shared memory protection and message-passing mechanisms. In a shared memory, different
tasks can publish or read data stored in a region of memory. Mechanisms such as semaphores and
mutexes prevent simultaneous access of that region, thus only one task can access the shared data and
avoid the asynchronization issues mentioned above. In case of the message-passing, one tasks acts as
the sender responsible for transmitting a specific data to the reader.

The reader continuously waits for the message from the sender and will not execute until it
receives the entire message completely. In this paper, ITC mechanisms are evaluated to serve as a
guideline and make developers aware of the amount of overhead when applying these mechanisms to
user space applications. This is very helpful in particular to real-time applications in an embedded
environment, where optimal size of the user code is required to save memory space and to efficiently
predict the total task execution time.

3.2.1. Semaphore and Mutex

Semaphores are very useful in the synchronization of multiple tasks when communicating with
shared data structures. As all tasks in the same process exist in the same address space, sharing data
structures between tasks are vulnerable to data corruption. A semaphore gives exclusive access to
the shared resources unto the task that possesses it. Other tasks requesting for the semaphore are
suspended until the current owner releases it. In Xenomai, semaphores are counting semaphores that
can allow N number of tasks to access the shared resources simultaneously. On the other hand, mutexes
(MUTual Exclusion) are binary semaphores that can only have two values: unlocked or locked. In the
locked state, the task in possession can access the shared resources and the other tasks should wait.
Whereas in the unlocked state, the critical section is free for the other tasks to access and to acquire
the mutex. Another feature of the mutex in Xenomai is that it enforces a priority inheritance protocol
in order to solve priority inversions, a problem in scheduling real-time tasks where lower priority
tasks preempts higher priority tasks. To measure the overhead produced by these mechanisms, the
experiment condition in the previous section were reformulated including semaphores and mutexes as
shown in the pseudo code in Figure 4.

Basically, the response time with either semaphore or mutex (RSem|Mtx) is equal to the response
time in without any of the ITC mechanisms and the overhead. Therefore, the time duration for
acquiring and releasing the semaphore or mutex is calculated using the following equation:

RSem|Mtx = R0 + TSem|Mtx (3)

where, R0 denotes the response time measured in the previous section, TSem|Mtx denotes the overhead
for the mutex or the semaphore.
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set task period(5 ms) and make periodic();  
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Figure 4. Pseudo code for measuring the response time of real-time tasks with mutex and semaphore:
(a) high priority task, τ1; (b) low priority task, τ2. Note that the same pseudo code can be applied in the
periodicity and response time test (previous section) but omitting the mutex/semaphore operations.

Considering the same conditions, the experiments were conducted for each OES. Although the
Xenomai semaphore is a counting semaphore, we decided to configure it behaving similar with a mutex
that only has two values. This is to make a more legit comparison of both mechanisms. Moreover,
we focus on acquiring the results from the higher priority task with straightforward implementation
in order to neglect external factors that can contribute to the measurement. The semaphore/mutex
operations in the low priority task is within a loop, which can produce unwanted computational delays.
The results are summarized in Table 4 showing the statistical average of the response times and the
time duration of each ITC mechanism. Herein, we can clearly see that the mutex has larger overhead
than the semaphore, which is consistent for all the embedded platforms. We assume that this is due to
the mutex having more features such as blocking interrupts and the priority inheritance scheme.

Table 4. Statistical average of the shared memory ITC mechanisms, semaphore and mutex.

Mechanism Semaphore Mutex

avg. (µs) RSem TSem RMtx TMtx

BeagleBone Black 531.52 28.756 532.090 29.326
Raspberry Pi 3 527.443 26.663 531.018 30.238

Zybo-7020 533.255 30.6 534.376 31.721
i.MX6Q SABRELite 537.04 34.59 542.864 40.414

3.2.2. Message Queue

The message queue is very useful in sending data between real-time tasks. The message is sent
from either interrupt service routines or tasks to another task. Centralization of a specific function, such
as error handling, is the common application of message queues. If a task is waiting for a message and
the queue is empty, then the task will be suspended until a message is posted in the queue. Meaning,
the waiting task does not consume any CPU time while waiting for a message thus, other tasks can
run continuously. The goal of the experiments is to measure the total time duration for the receiver
task to be activated, which is shown in the pseudo code in Figure 5.
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set task period(1 ms) and make periodic(); 

create message queue(); 

read end_time; 

while (1) 

wait release time; 

 read start_time; 

 msg = “dummy”; 

 read TMsgq_start; 

  send message_queue(msg); 

period = start_time - end_time; 

end_time = start_time; 

endwhile;  

read end_time; 

while (1) 

recieve message_queue(msg); 

 read TMsgq_end 

 period = TMsgq_end - end_time;  

TMsgq = TMsgq_end - TMsgq_start; 

end_time = TMsgq_end; 

endwhile;  

Figure 5. Pseudo code for measuring the elapse time of a message queue between two tasks: (a) high
priority task (sender); (b) low priority task (receiver).

The total time duration of from the sender task posting a message to the queue, until the
receiver task receives the message and gets activated, denoted as TMsgq, is calculated using the
following equation:

TMsgq + Tctx = TMsgq_end − TMsgq_start (4)

In here, Tctx denotes the context switching time, or the time it takes for the CPU to save the
context (state) of the current task, restore and execute the context of the next scheduled task. In this
paper we assume that the context switching time is very small that it is neglectable. For a practical
implementation of message queues, we consider the pseudo code in Figure 5. The high priority task is
set periodically for 1 ms. Note that, the receiver task depends on the periodicity of the sender task.
Meaning, the period of the receiver should be equal to the period of the task posting the message.
The sender task posts a dummy message to the queue and the receiver task waits for the message
before doing its execution. The results are summarized in Table 5 with the statistical average (avg),
maximum (max), minimum (min), and standard deviation (σ) values of TMsgq and the periodicity of
the two tasks.

Table 5. Statistical results of the message queue mechanism and the periodicity of two tasks.

Mechanism Message Queue

Metric P,τ1 (ms) P,τ2 (ms) TMsgq (µs)

BeagleBone Black

avg. 1.000000 1.000000 18.748
max. 1.036625 1.059042 41.459
min. 0.976375 0.961084 14.375

st.d (σ) 0.002621 0.004464 3.805

Raspberry Pi 3

avg. 1.000000 1.000000 15.341
max. 1.005989 1.015000 24.531
min. 0.994532 0.986979 14.740

st.d (σ) 0.000522 0.000609 0.224

Zybo-7020

avg. 1.000000 1.000000 14.627
max. 1.012644 1.029186 31.596
min. 0.985410 0.968832 11.454

st.d (σ) 0.000939 0.002162 0.789

i.MX6Q SABRELite

avg. 1.000000 1.000000 14.376
max. 1.009421 1.013699 24.722
min. 0.991685 0.985530 9.898

st.d (σ) 0.001676 0.002172 0.498
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As expected, the periodicity (P) of the receiver task (τ2) highly depends on that of the sender
task (τ1). This is evident in all the measured data from each OES. The trend of the periodicity for
both tasks is also consistent with the results from Section 3.1 with the Raspberry Pi 3 showing the
best performance and BeagleBone Black has the relatively worst results. Moreover, most of the OES
produced similar statistical average of TMsgq, BeagleBone Black has the worst average with 18.748 µs.
The same trend is visible in the standard deviation where the BeagleBone Black produced very high
value of 3.805 µs in comparison to the other OES that show deviations of less than 1 µs. We account
this to the single core architecture of the BeagleBone Black whereas, all other OES systems are attached
with multiple CPU cores.

3.3. Interrupt Response Time

As DCS are composed of different devices to interact with the environment, it is very important
to measure the interrupt response time of the main controller. The interrupt response time is defined
as the elapse time between an interrupt signal and the corresponding interrupt service routine. In a
Xenomai environment, device drivers should be created in order to interact with the connected devices.
However, most device drivers are only available to the standard Linux. Although it is possible to use
these device drivers inside Xenomai tasks, it is not highly recommended because the event called
mode switching could occur. Mode switching causes Xenomai tasks to be scheduled in the standard
Linux scheduler, thus losing its real-time capabilities. To this end, Xenomai offers a RTDM to develop
device drivers without suffering from the issues of mode switching. Using RTDM, we can expect that
the interrupt response time would be lower than that of the standard Linux because of priority-based
scheduling of Xenomai.

Comparative experiment measuring the interrupt response time was conducted by creating RTDM
device drivers and standard Linux device driver that handle two general-purpose input and output
(GPIO) ports. To gather accurate results, we used a function generator to generate square-wave signals
that will be connected to the input port of the OES. An oscilloscope was used for data acquisition and
determine the skew between the reference signal and the device driver output. The first port of the
GPIO is configured as the input, connected to a square-wave function generator. The other port is
configured as the digital output. The interrupt service routine is kept as simple as possible by acquiring
the value of the input port and sending it directly to the output port. The input port is probed by
the oscilloscope which becomes the reference signal. Another probe is placed on the output port.
The time difference (skew) between the ports is the interrupt response time. The same procedures were
implemented using the RTDM and standard Linux device drivers. The experiments were conducted for
10 minutes and the statistical measurements were acquired from the oscilloscope. The actual results for
all the OES are shown in Figure 6. In the figure, the standard Linux device driver has shown interrupt
response time that is four times at most than that of the RTDM. The average interrupt response time
for RTDM ranges from 5.22 µs to 8.01 µs, with the Zybo-7020 showing the fastest response. The same
experiments were repeated a few times producing results with the same trend. These promising results
will serve as a good measure for developers willing to integrate various devices to Xenomai-based
real-time controllers. Especially, with devices that requires fast response times, RTDM device drivers
can minimize the interrupt response time, guaranteeing priority-based scheduling.
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OES: (a) BeagleBone Black; (b) Raspberry Pi 3 (c) Zybo-7020; (d) i.MX6Q SABRELite.

Let us again consider the two-task application described in Figure 4, the output GPIO is toggled
to visualize the jobs. Figure 7 shows the actual behavior of the tasks observed using an oscilloscope for
all the designed real-time controllers. The high priority task (τ1) runs periodically with an average of
1 ms for all the embedded controllers. The lower priority task (τ2) at the bottom part of the plot also
maintains periodicity running with an average of 5 ms. This shows that the minimal interrupt response
time produced by the RTDM driver does not affect the periodicity of the real-time tasks. As expected,
Raspberry Pi 3 shows the best performance with standard deviation of 1.938 µs and 443.6 ns for τ1 and
τ2, respectively.
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4. Example Cases Using OES as Real-time Controllers

Given the advantages of OES, various practical applications have been proposed in the literature
and research projects with most focusing on the distributed control of numerous devices interfaced
directly to the real-time controllers. In this section, three example cases are presented to demonstrate
the validity of OES as main controllers of industrial robots and an omnidirectional mobile robot [37]
on an EtherCAT network, and the integration of Robot Operating System (ROS) to Xenomai real-time
tasks to control a telepresence robot [38,39].

4.1. Real-Time Controller for Joint Space Motion of an Omnidirectional Mobile Robot

Mobile robot control requires a DCS composed of a main controller, servo drives, actuators, and
sensors to interact with the environment. The main controller is responsible for the calculation of
the motion commands and collection of the feedback from the other components. It should be small
enough to enable the robot in navigating easily within the environment. There are several attempts of
embedded controllers for mobile robots [40–42]. However, these studies were unable to accurately
track a desired path. This is due to the failure of meeting real-time requirements. We have developed
an EtherCAT-based omnidirectional mobile robot [37] to ensure real-time responses of all the connected
devices. To address the size and power requirements of the main controller, we have selected the
embedded platform i.MX6Q SABRELite. Figure 8a shows the control architecture with an EtherCAT
master based on the i.MX6Q SABRELite. IgH EtherLAB 1.5.2 was implemented on top of the real-time
environment discussed in Section 2. Figure 8b shows the actual image of the mobile robot without the
cover to make the internals visible as possible.
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Figure 8. EtherCAT-based omnidirectional mobile robot: (a) Control architecture; (b) Actual image of
the mobile robot.

To demonstrate the validity of the system, a path planning method in Reference [10],
was implemented to generate a path from (0 m, 0 m) to (3 m, 1.5 m). The convolution-based trajectory
generator produces central velocity commands that can track the planned path as shown in the
black solid line in Figure 9a. This is decomposed into the joint space velocities through the joint
space controller. The joint space velocities vi (I = 0,1,2,3) are the actual velocities sent to the actuators.
The feedback from the encoders are acquired and are analyzed to show the actual position of robot as
shown in Figure 9b. The results show that the mobile robot was able to accurately track the desired
path with minimal error at the end point.



Electronics 2019, 8, 223 14 of 18

Electronics 2019, 7, x FOR PEER REVIEW  13 of 17 

 

motion commands and collection of the feedback from the other components. It should be small 

enough to enable the robot in navigating easily within the environment. There are several attempts 

of embedded controllers for mobile robots [40–42]. However, these studies were unable to accurately 

track a desired path. This is due to the failure of meeting real-time requirements. We have developed 

an EtherCAT-based omnidirectional mobile robot [37] to ensure real-time responses of all the 

connected devices. To address the size and power requirements of the main controller, we have 

selected the embedded platform i.MX6Q SABRELite. Figure 8a shows the control architecture with 

an EtherCAT master based on the i.MX6Q SABRELite. IgH EtherLAB 1.5.2 was implemented on top 

of the real-time environment discussed in Section 2. Figure 8b shows the actual image of the mobile 

robot without the cover to make the internals visible as possible. 

 

 

(a) (b) 

Figure 8. EtherCAT-based omnidirectional mobile robot: (a) Control architecture; (b) Actual image of 

the mobile robot. 

To demonstrate the validity of the system, a path planning method in Reference [10], was 

implemented to generate a path from (0 m, 0 m) to (3 m, 1.5 m). The convolution-based trajectory 

generator produces central velocity commands that can track the planned path as shown in the black 

solid line in Figure 9a. This is decomposed into the joint space velocities through the joint space 

controller. The joint space velocities vi (I = 0,1,2,3) are the actual velocities sent to the actuators. The 

feedback from the encoders are acquired and are analyzed to show the actual position of robot as 

shown in Figure 9b. The results show that the mobile robot was able to accurately track the desired 

path with minimal error at the end point.  

 
(a) 

 
(b) 

Figure 9. Navigation of the omnidirectional mobile robot: (a) Velocity profiles; (b) Trajectory. 

4.2. Integration of ROS in Real-Time Control Systems  

Figure 9. Navigation of the omnidirectional mobile robot: (a) Velocity profiles; (b) Trajectory.

4.2. Integration of ROS in Real-Time Control Systems

Robot operating system (ROS) is the most dominant open source robotic platform that offers
various robot control algorithms that available as easily redistributable packages. The main drawback
of ROS is that it does not operate in real-time. As most software, including device drivers and
ROS, are originally designed for the standard Linux, we have implemented a message-passing
communication mechanism to successfully pass data which can avoid mode switching (refer to
Section 3.3). In comparison to the message queue in the previous section, the cross-domain datagram
protocol (XDDP) can transfer data from the Xenomai domain and the Linux domain without the
risk of the real-time tasks being scheduled by the standard Linux scheduler. To this end, a control
application for a telepresence robot, named M4K [43], was designed aiming to easily realize navigation
scheme using ROS navigation packages [38,39]. The mobile base includes actuators and sensors.
Standard Linux device drivers are developed for each of the devices and are executed in the
multi-tasking environment of Xenomai. On a Raspberry Pi 3, the ROS nodes and Linux tasks are
connected to the Xenomai using XDDP as shown in Figure 10.
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The navigation package includes various path planners that can be selected by the users depending
on the kinematics of the mobile robot in hand. In case of the M4K, we have selected the default
base_local_planner because of its simplicity and compatibility to two-wheeled differential drive mobile
robots. The mobile base of the robot is equipped with different sensory and actuator devices such
as ultrasonic distance sensor (Sonar), inertial measurement unit (IMU), laser rangefinder (LRF),
and light-emitting diode (LED) strips. The actuators are consisted of two DC motors with absolute
encoders. Each device has their own standard Linux device drivers connected to five Xenomai real-time
tasks using XDDP. From the worst-case execution time presented in Reference [39], schedulability
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of the real-time tasks for the navigation of the robot were analyzed using MAST and the results are
shown in Table 6. The worst-case response time of the lowest priority task is 2.273 ms, which is less
than the respective hard real-time deadline. Meaning, all the tasks including high priority tasks can
execute within their respective hard temporal deadline all the time. The MAST analysis shows that
the all the tasks are schedulable with 914.06% of system slack. Although we have presented a simple
application, more sophisticated real-time systems need worst-case response-time analysis to determine
schedulability of the entire system. MAST is a very valuable tool to meet these requirements.

Table 6. Schedulability analysis for the navigation of M4K using MAST [36].

Task Period (ms) Execution (ms) Priority Worst-Case Response (ms) Slack (%)

Actuator 10.000 0.029 99 0.029 31,082.4%
IMU 10.000 0.432 95 0.461 2086.3%
LED 20.000 0.590 90 1.051 3055.5%

Sonar 30.000 0.460 85 1.511 5864.5%
LRF 200.000 0.762 80 2.273 23,694.1%

5. Conclusions

In this paper, we present the design details to minimize the development cost and for easier
distribution of industrial DCSes adopting OES as real-time controllers. Depending on the control
application, developers should carefully select the suitable hardware platform considering the
available interfaces and hardware layout. Additionally, compatibility of the software components
with the hardware platform and other software is another issue that highly depends on the designed
application. We have provided implementation procedures in detail considering software compatibility
for real-time environment based on Xenomai for various open hardware platforms. To verify the
real-time performance of each OES, experiments were conducted focusing on the periodicity and
response time of real-time tasks which were also evaluated using MAST [36] for schedulability analysis.
Timing characteristics of the real-time mechanisms, which ensure accuracy of data manipulation in a
multitasking environment were also measured. The interrupt response time using RTDM of Xenomai
was measured to show the latency improvements in comparison to the standard Linux device drivers.
Although the measurements for each metric showed small difference between the OES-based real-time
controllers, the acquired results are very important to serve as references in predicting the behavior of
OES when applied in more complex and advanced distributed control systems. Additionally, we have
given suitable example practical cases for each embedded platform provided practical applications
that were discussed in detail in various control applications. Given these advantages, it is in the view
of the authors that OES-based real-time controllers are worthy of consideration as alternatives to their
proprietary counterparts.
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Appendix A

The higher priority task, τ1, would not experience any blocking or interference, thus the busy
period is equal to 0.5 ms. On the other hand, because of the interference from the higher priority task,
the busy period of τ2 is calculated as follows:

W0
2 = 1.5 +

⌈
1.5
1

⌉
· 0.5 = 1.5 + 1 = 2.5

W1
2 = 1.5 +

⌈ 2.5
1
⌉
· 0.5 = 1.5 + 1.5 = 3.0

W2
2 = 1.5 +

⌈ 3.0
1
⌉
· 0.5 = 1.5 + 1.5 = 3.0

Therefore, the expected response time of τ2 is approximately 3 ms.
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