
Intel Serv Robotics (2009) 2:139–151
DOI 10.1007/s11370-009-0040-0

ORIGINAL RESEARCH PAPER

Real-time control architecture using Xenomai for intelligent
service robots in USN environments

Byoung Wook Choi · Dong Gwan Shin ·
Jeong Ho Park · Soo Yeong Yi · Seet Gerald

Received: 22 February 2009 / Accepted: 8 April 2009 / Published online: 30 April 2009
© Springer-Verlag 2009

Abstract This paper describes the implementation of a
dual-kernel software architecture, based on standard Linux
and real-time embedded Linux, for real-time control of ser-
vice robots in ubiquitous sensor network environments.
Mobile robots are used in active service for the assisted liv-
ing of elderly people, monitoring their mental and physio-
logical data with wireless sensor nodes. The data collected
from sensor nodes are routed back to a sink node through
multi-hop communication. The moving sink node installed
on the main controller of the robot collects data and trans-
mits it to the main controller. To be able to handle emergency
situations, the robot needs to satisfy real-time requirements
when processing the data collected, and invoking tasks to
execute. This paper realizes a multi-hop sensor network and
proposes real-time software architecture based on Xenomai.

B. W. Choi (B) · S. Y. Yi
Department of Electrical Engineering, Seoul National University
of Technology, 172 Gongreoung 2-dong, Nowon-gu,
Seoul 139-743, South Korea
e-mail: bwchoi@snut.ac.kr

S. Y. Yi
e-mail: suylee@snut.ac.kr

D. G. Shin
Robotstar Co., Ltd., 119-38, Sasa-dong, Sangnok-gu, Ansan,
Gyeonggi-do 426-220, South Korea
e-mail: shingun@robostar.co.kr

J. H. Park
DasaRobot Co., Ltd., 401 Yakdae-dong, Wonmi-gu, Bucheon,
Gyeonggi-do 420-734, South Korea
e-mail: jhpark@dasarobot.com

S. Gerald
School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Nanyang Ave.,
Singapore 639798, Singapore
e-mail: mglseet@ntu.edu.sg

The real-time tasks were implemented, with priority, to rap-
idly respond to urgent sensor data. In order to validate the
deterministic response of the proposed system, the perfor-
mance measurements for the delay in handling the sensed
data transmission and the trajectory control with a feedback
loop were evaluated on the non real-time standard Linux.

Keywords Service robot · Real-time embedded Linux ·
Wireless sensor and actor network · Assisted living

1 Introduction

Recent advances in wireless communication, embedded sys-
tems, and ubiquitous computing have enabled the develop-
ment of small sensor nodes that are of low cost, low power,
and multifunctional. A ubiquitous sensor network (USN) is
composed of a large number of sensor nodes which sense,
collect, correlate, and aggregate data, concurrently. The abil-
ity of a USN to sense phenomenon such as temperature,
light, pressure, or movement makes it a promising sensing
technique for many applications. USNs have been used in
numerous applications including military applications, envi-
ronmental monitoring, health applications, home automa-
tion, and smart environments [1–4].

Due to the problem of an aging society, there are propos-
als to use a USN to aid senior citizens in hospitals and silver
towns. As the population ages, there will be an increasing
demand on health care resources. Approximately one-third
of all health care expenditures are directed to the popula-
tion over 65. Almost 25% of this population have one or
more deficits in capability, necessary for successful daily
life, and reside in a customised or assisted living facility [5].
New and improved devices and applications are expected
to emerge. UIUC has suggested the I-Living System, which
uses open software and hardware to provide daily life

123

140 Intel Serv Robotics (2009) 2:139–151

support for elderly people [6,7]. They are involved in the
process of developing a wireless-based software infrastruc-
ture with sensing, localisation, monitoring, wireless commu-
nication, and event/data management. AlarmNet, a system
which provides healthcare service by monitoring the vital
signs and activity patterns of residents in a home via sen-
sors, has also been proposed [8]. A Health Smart Home was
designed by the Faculty of Medicine to validate the feasibility
of such a system [9].

Realization of these USN applications requires wireless ad
hoc networking techniques. Although many protocols and
algorithms have been proposed for USNs in recent years,
they are not well suited for the unique features and applica-
tion requirements of sensor networks [1]. Since the sensor
nodes are usually scattered and densely deployed in a sen-
sor field, multi-hop communication is typically adopted by
using neighbour nodes. Data collected in sensor nodes are
routed back to a central entity. The central entity performs
the functions of data collection, coordination and transmis-
sion to central controller, e.g. human interaction. Sometimes,
the central entity is referred to as a sink node. The sink node
collects and transmits the data to the main controller for
in-depth analysis such as monitoring, alarming, and form-
ing a database. This type of architecture is referred to as
semi-automated architecture since the sink node collects and
transmits data to the main controller, where the appropriated
action is initiated [10].

There is much ongoing research on utilizing sensor net-
works to advance the development of mobile service robots.
A wireless sensor network can extend the sensory perception
of people and robots far beyond their normal range. Although
there have been some research efforts related to USNs with
robots, most of them are focused on navigation and mapping
algorithms. None of the studies reported were related to the
conduct of active services utilizing USNs. The mobile robots
can perform more active service based on the data collected
by sensor networks, such as responding to emergency situa-
tions. The proposed application in this paper is an example
of an integrated sensor/actor node since the robot is capa-
ble of both sensing and acting. This is sometimes referred
to as a wireless sensor and actor network (WSAN), as it
consists of a group of sensors and actors linked by a wire-
less medium to perform distributed sensing and acting tasks.
The design of a WSAN featuring node mobility has been
investigated for control applications [11]. A typical example
of integrated sensor/actor nodes in WSANs is the autono-
mous battlefield robot called the robotic mule [10]. In another
WSAN effort, a mobile sensor platform for a mobile dis-
tributed sensor network for real-time target detection, rec-
ognition, and tracking was developed by Sandia National
Laboratories [12].

In this paper, a sink node was deployed into a main robot
controller and became the moving sink node used for aggre-

gating sensor data. The robot should act on its own sensor
readings as well as the sink node data received from the net-
work. Coordinating the behaviour of the mobile robot was an
important issue as the tasks that need to be performed evolve
with time. For instance, when applied to active assisted living,
coordinated actions should be initiated to react as soon as
possible to events detected by sensors, as in the monitoring
of an elderly person’s behaviour, such as a fall [3,11]. Thus,
real-time control architecture is strongly required for active
service and to achieve real-time communications to remote
care providers [13].

In order to achieve real-time requirements, real-time
operating systems (OS) are needed. The proprietary OS pro-
vides an integrated development environment, a multi-task-
ing environment, and third party tools. As a consequence of
dramatic improvements in hardware computing power and
free software quality, Linux can currently be considered as
a soft real-time OS. Recently, the possibility of using stan-
dard Linux for embedded real-time applications in robotics
was evaluated [14]. However, standard Linux is not suitable
for hard real-time applications as required in feedback con-
trol or reactive control. There are two approaches to satisfy
real-time performance in the Linux domain. One is a dual-
kernel approach, and the other is a fully pre-emptive Linux
kernel with a real-time scheduler. Open-source Linux exten-
sions based on the dual-kernel approach are mainly RTAI
[15] and Xenomai [16]. Most commercial real-time embed-
ded Linux is based on fully pre-emptive Linux.

Even though both approaches are useful to achieve
real-time performance, the focus of this paper is on the open
source approach, implying the dual-kernel approach. In the
dual-kernel approach, a standard Linux kernel is run as the
lowest priority task by the microkernel and Linux system
calls can be used. Both the RTAI and Xenomai were wor-
thy of consideration for the proposed application. Xenomai
was chosen as it had a better structure, available for a larger
number of platforms, and provides a set of emulation lay-
ers which may prove useful when porting to large systems
[16]. Xenomai is a real-time development framework that
cooperates with the Linux kernel in order to provide a perva-
sive, interface-agnostic, hard real-time support to user-space
applications seamlessly integrated into the GNU/Linux envi-
ronment. In performance measurements on four different
OSs, Barbalace et al. demonstrated that open-source software
such as RTAI and Xenomai are suitable for hard real-time
applications [17]. The open and modular approach that uses
Xenomai over the IEEE 1394 real-time device driver has been
described and its real-time performance has been evaluated
for a mobile robot platform [18].

The proposed system is a WSAN, where the service robot
is an actor that provides assisted living service while the
mobile sink node aggregates the sensing data. This paper
documents the following engineering R&D tasks of smart

123

Intel Serv Robotics (2009) 2:139–151 141

sensing, wireless transmission, monitoring, and real-time co-
mputing for the service robots working in USN environments.

• A network routing algorithm of multi-hop from sensor
nodes to a moving sink node was implemented by user
data defined in TinyOS data packet structures, for lower
power consumption.

• A real-time control architecture, based on a dual-kernel
approach (Xenomai + standard Linux), was developed to
provide real-time response by prioritizing tasks during
emergency situations for the user.

• A real-time serial interface between the sink node, embed-
ded in the robot controller, and the main robot controller
was implemented to provide real-time handling of the
sensing data aggregated from sensor fields.

• A prototype of an assisted living system for the elderly
was implemented on a mobile robot, to prove the feasi-
bility of the proposed system.

• The real-time performance was examined for the pro-
posed architecture depending on the workload in handling
sensor data in a WSAN as well as in applying the tracking
control for the mobile robot.

2 System structure

A service system for assisted living people in USN envi-
ronments needs sensor nodes to sense phenomenon, a sink
node to aggregate data, and send them to the main control-
ler. The main controller is implemented on a service robot
for active service, to react to emergency situations, and serve
as a remote monitoring system. An efficient network routing
algorithm from the sensor nodes to the sink node is required,

together with a real-time software architecture to process data
in order of task priority.

In order to meet such requirements, Fig. 1 shows the over-
all structure of active services for elderly people with service
robots in USN environments. The proposed system consists
of sensor fields, an integrated sink node, and a remote moni-
toring server. The sensor nodes are usually scattered to sense
phenomenon in sensor fields. The role of sensor nodes is
to collect data and route it back to the sink node. The inte-
grated sink node is a mobile robot with a sink node installed
to collect data. The robot should perform appropriate actions
based on the collected data; for example, moving to the sensor
node where an event is triggered and monitoring the behav-
iour of elderly people using a camera installed on the mobile
robot. All actions are performed in the tasks scheduled by the
real-time operating system. The robot controller also trans-
mits collected information to a remote monitoring server via
wireless LAN for other services, such as alerting a doctor or
to monitor the people remotely.

Whenever an event occurs, event information always
passes through the sensor nodes within one hop from the sink.
Thus, these sensor nodes may have a higher load of relay-
ing packets. However, the robot, an integrated sensor/actor
node, is able to move into the event area. This implies that
relaying sensor nodes also reconfigure in response to each
event. The relaying load becomes evenly distributed between
all nodes. As a result, since event information is transmitted
locally through sensor nodes around the event area, sensors
that are far from the event area do not function as relaying
nodes, resulting in network resource conservation by the pro-
posed application. Therefore, wireless sensor networks with
mobile sinks have many advantages over static sensor net-
works [18].

Fig. 1 System structure of
active services for the elderly
people

123

142 Intel Serv Robotics (2009) 2:139–151

The sensor node used consisted of a control board called
the H-mote and a daughter sensor board, as shown in Fig. 2
[19], and also two microprocessors: a micro-controller and a
RF chip. The processing unit of the H-mote was an 8 MHz TI
MSP430 micro-controller. The open-source operating sys-
tem TinyOS was used [20]. The RF chip was a CC2420
with 2.4 GHz IEEE 802.15.4 compliant RF transceiver. The
H-mote provided the connection to a sensor board and a
USB interface for integrating other controllers. The logical
connection, however, was achieved by the RS-232 interface.
Therefore, the same sensor control board could be used for
both sensor nodes and the sink node.

In order to provide more active service, a mobile robot was
needed. The robot utilized in this paper is shown in Fig. 3. The
robot had various sensors to perform autonomous navigation,
such as ultrasonic sensors, position sensor devices (PSD), a
CMOS camera, and a localizing sensor. A wireless commu-
nication device was also installed to communicate with the
remote monitoring system. An Intel/IBM compatible i386
single board computer was used as the main controller. In
this case, a sink node could be interfaced to become a mobile
sink node. The sink node transmitted data to the main board
through the USB interface.

The data gathered on the control board is processed accord-
ing to predetermined priorities. For example, vital signs such
as the pulse rate are processed first, while other less impor-
tant data are processed later. When the system determines an
emergency situation has occurred, the robot approaches the
user to capture visual images and send them to the system.
The collected sensor and visual data of the elderly, on urgent
occasions, are sent to the monitoring system using a broad-
band WLAN communication network. For such a system to
perform efficiently, real-time processing of the data is essen-
tial. If the data processing is delayed due to rescheduling of
the operating systems, a quick response cannot take place,
leaving the user in a dangerous situation.

3 Multi-hop network

This paper focuses on a specific type of WSAN. The deploy-
ment diagram of the proposed system is shown in Fig. 4.
The system consists of a group of sensors and a mobile
sink node where the data are aggregated periodically and
transferred to the robot controller. A multi-hop networking
technique would clearly be convenient for the distributed
network nodes in trying to locate the most efficient route
between the sensors and the sink node. In this section, a
routing algorithm is implemented based on a set of ad hoc
data packets using TinyOS. The implementation is based on
the TinyOS SurgeTelos routing algorithm [21]. It only sup-
ports the IEEE 802.15.4 PHY/RF and part of the MAC for

Fig. 2 A sensor node consisting of the H-mote and the sensor I/F board

Fig. 3 A two-wheeled mobile robot

the CC2420 RF device. It was modified so that the mobile
sink node would be required to update the periodic routing.

The configuration of the network routing between the
sensor nodes and the sink node must be set before the trans-
mission of the data. This means that the network routing must
be fixed according to the movement of the elderly people or
the mobile robot. TinyOS includes library components that
provide ad hoc multi-hop routes for sensor network appli-
cations and uses a packet structure for network routing and
data transmission. In TinyOS, a message buffer defined as
TOS_Msg is depicted in Fig. 5. The buffer contains a header,
data frame, and packet metadata. TOS_Msg is a fixed size
structure whose size is defined by the maximum data; the
default is 29 bytes.

In this paper, two separate packets were used in the net-
work routing and data transmission functions, thus enabling

123

Intel Serv Robotics (2009) 2:139–151 143

Fig. 4 The deployment
diagram of the proposed system

Fig. 5 TinyOS packet structure

efficient data processing. BeaconMsg was used for network
routing with the sink node, and DataMsg was used to transmit
data from the sensor nodes. The periods of time for mes-
sages with BeaconMsg and DataMsg were 4,096 and 800 ms,
respectively. In Fig. 5, Parent is the ID number of the parent
node of the receiving node, cost describes the link cost from
the sink node to the parent node, and hopcount represents
the number of hops from the sink node to the receiving node.
The receiving node configured the data route to the sink node
with such information. In the other direction, DataMsg was a
message structure used to transmit data from the sensor node
to the sink node.

The routing algorithm provided by the TinyOS uses mini-
mum cost forwarding to set the route with the minimum link
cost between the nodes. The link cost is calculated using the
received signal strength indication (RSSI) and link quality
indication (LQI). Figure 6a shows the diagram of the algo-
rithm based on the minimum link cost. In the diagram, each

circle indicates nodes, and values on the links represent the
cost required to transmit a data packet through the related
link. The number 0 is the sink node which collects the data,
6 is the sensor node that senses phenomenon, and numbers
1–5 are the relay nodes within the network route transferring
the data to the next node. In semi-automated architecture,
whenever an event occurs event information always passes
through the sensor nodes within multi-hop to the sink node.
Thus, these sensor nodes become the relay nodes. Natu-
rally, there is no distinct difference between relay and sensor
nodes, and any node can be the sensor node when sensing
data.

Each node goes through initialization for network rout-
ing. Besides the sink nodes, other nodes cannot create Bea-
conMsg, which is used independently for network routing.
The algorithm to find the minimum energy route is described
in Fig. 6b. When the sink node transmits BeaconMsg, other
sensor nodes around the sink node receive the data and

123

144 Intel Serv Robotics (2009) 2:139–151

Fig. 6 The algorithm of
network routing for minimum
energy consumption. a The
measured cost of power on the
routes. b The flowchart of the
routing algorithm

compute the link cost to the parent node. The evaluated cost
for the receiving node is compared with that of the pre-
vious one, and the route is established for the one which
costs less. After this process, BeaconMsg is adjusted and
sent again; this process is repeated until the data reach the
final node. By using such a process, the data route with min-
imum link cost can be found, and sensor nodes are able to
transmit data to the sink node in the form of DataMsg pack-
ets. For example, in Fig. 6a the data route from 6 to 0 with the
multi-hop of 5 and 3 was established as the minimum energy
route.

In this application, the sensor nodes are static, whereas
the actuator node, or the mobile robot, is moving. Since the
sink node installed in the mobile robot is also moving, it
becomes a mobile sink node. Even though sink mobility can
improve network performance in areas such as energy effi-
ciency and throughput, the network routing needs to be rec-
onfigured when the robot moves. Bi et al. [18] suggested an
autonomous moving strategy for mobile sinks in data-gath-
ering applications. The movement of the robot requires quick
and regular reconfiguration of the network routing, but such
frequent reconfiguration reduces the transmission rate.
Therefore, an adequate time distribution depending on the
speed of the robot is needed to prevent this. Along with these

routing results, the position of the sensor node used by the
user can be found, giving the robot access to the position
where the event occurred.

4 Real-time control architecture using Xenomai

In recent years, dramatic improvements in hardware com-
puting power and free software quality have generated much
interest in the possibility of using standard Linux for embed-
ded real-time applications in robotics. Laboratory tests
showed that standard Linux could be used for embedded
real-time robotics [14]. Moreover, a new implementation of
the scheduler has been provided in Linux kernel 2.6. How-
ever, standard Linux is not yet suitable for hard real-time
applications as required in feedback control, especially in
trajectory control for robotics. Therefore, a way of adding to
Linux the possibility of defining real-time tasks that ensures
control within a deterministic response time needs to be con-
sidered. This feature is provided by the open-source Linux
extension Xenomai. The real-time extension of Xenomai is
achieved through a dual-kernel approach. Therefore, it is nec-
essary for the hardware resources to be shared by Linux and
the additional component. This was achieved through the

123

Intel Serv Robotics (2009) 2:139–151 145

adaptive domain environment for operating systems
(Adeos) [22]. To implement this requirement, several patches
of Linux, Adeos, and Xenomai were ported to the target
board.

4.1 Dual-kernal approach

The implementation to allow deterministic response times
regardless of the standard Linux implementation is described
in Fig. 7. Adeos is a resource virtualization layer available
to run several operating systems on a single hardware plat-
form. Adeos enables multiple entities called domains to exist
simultaneously on the same machine. These domains do
not necessarily see each other, but all of them see Ade-
os. Two domains were ported on the same hardware plat-
form: One was the real-time embedded Linux Xenomai 2.3,
and the other was the non real-time standard Linux 2.6.17.
Kernel space application was handled first depending on
the priority, and the standard Linux kernel was scheduled
with the lowest priority. The Adeos interface was directly
exposed to the hardware abstraction layer (HAL) underlying
the Xenomai core. Therefore, most of the requests for Adeos
services were issued from HAL allowing predictable inter-
rupt latencies in the lowest micro-second level range to
Xenomai no matter what the standard Linux was undergoing.

As shown in Fig. 7, Xenomai allows running real-time
applications both in kernel space and user space. All threads
managed by Xenomai can be identified from the real-time
nucleus. Adeos ensured that events were dispatched in an
orderly manner to the various client domains according to
their respective priority. The events were incoming exter-
nal interrupts, system calls issued by Linux applications, and
other system events triggered by the kernel code.
Xenomai threads were running over the context of the high-
est priority domain, but the Linux kernel was considered as
the lowest priority domain. Therefore, the real-time appli-
cations could be performed in the context of Xenomai as

well as standard Linux-based application as the non real-
time applications, insuring the convenience and extension
of development. These are the main advantages when using
Xenomai for real-time applications. Functions developed in
Linux can be used without any modification.

4.2 Real-time architecture for the sink node

In the proposed architecture, the mobile service robot
becomes an actor integrated with the sink node in a WSAN
that processes all incoming data and performs active service.
The sink node gathers the data from the sensor nodes and
analyses it before issuing it to the actor node. Therefore, the
following roles are required in addition to intrinsic service
robot functions:

• Sink Node: Gather the data received from the sensor node
and transmit them to the main controller.

• Active Agent: Provide an active service of the robot
depending on the gathered data for the user.

• Gateway: Transmit the data to remote monitoring system
via WLAN for further use.

In order to perform such tasks, the service robot must be
equipped with the proper computing devices. For this study,
the Intel/IBM compatible i386 single board computer (SBC)
was chosen as the main controller for the robot, with stan-
dard Linux and real-time Linux Xenomai running together as
described in Fig. 7. For the sink node installed on the mobile
robot, the CC2420 was used to receive data from the sen-
sor nodes and to transmit data to the main controller. The
sink node needs to route the network frequently to provide a
minimum energy data transmission in a multi-hop commu-
nication environment. In addition, the sink node must gather
data sent by sensor nodes, and then send the data to the actor
in order of importance in real-time.

Fig. 7 Real-time control
software architecture based on
Xenomai

123

146 Intel Serv Robotics (2009) 2:139–151

Fig. 8 The real-time sink node
architecture

The service robot in the proposed system exchanged
information with the rest of the WSAN through serial trans-
missions of the main controller and the sink node. The data
in the sensor nodes are transmitted to the main controller
using the RS-232 interface. Therefore, a real-time (denoted
RT for device driver or task) device driver needed to be real-
ized for the serial devices in Xenomai platform. The real-
time driver model (RTDM) provides a unified interface of
real-time user-space applications and the hard real time sys-
tem [16,23]. Xenomai was the first real-time Linux exten-
sion to support the new RTDM revision. It acts as a mediator
between an application requesting a service from a certain
device and the device driver offering it. HAL is an optional
indirection layer which may be added when further abstrac-
tion is required. In the Xenomai project, real-time device
drivers have been ported for open-source projects such as
RT_COM for serial transmission, RT_NET for network per-
formance over Ethernet, RT_CAN for CAN (Controller Area
Network) controllers, RT_FireWire for IEEE1394 specifica-
tion, etc. [22,24]. Blocking capability of a function was ruled
out to ensure real-time performance. Xenomai comes with a
reference driver for the UART 16550A chips conforming to
the serial profile. In this paper, RT_COM was applied as a
real-time serial driver to the motor control system. RT_COM
was used to interface with other sensor devices in the robot
as well.

The real-time sink node architecture can be seen in Fig. 8,
fulfilling the requirements for active services in a WSAN.
To perform the real-time data collecting and processing, the
real-time software architecture based on Xenomai was ported
on the SBC, the RT device driver of RT_COM was imple-
mented to communicate to the sink node through the RS-232
interface, RT tasks in kernel space were designed to process
incoming data and conduct real-time control with high pri-
ority, and finally, both RT applications and NRT applications
were implanted to do other functions in the user space with
low priority. The data communication between tasks from the

kernel space to the user space was achieved with RT FIFO
(real-time FIFO mechanism) and message queue. In terms
of hardware, the sink node and sensor nodes have the same
structure, and both nodes use TinyOS to efficiently manage
limited resource. TinyOS is an appropriate operating system
to provide an efficient performance within a limited hardware
memory capacity, since it is an event-based status switching
operating system.

5 Implementation and performance measurement

For performance measurement, the proposed system was
implemented with the minimum functions. The purpose of
this experiment was to show the feasibility of a dual-ker-
nel approach for the service robot in a USN environment in
the sense of real-time performance. The focus was on the
real-time performance for both handling data gathered from
the WSAN and performing trajectory control. The number
of RT and NRT tasks and the levels of priorities depend upon
the application of the service robot. Therefore, the practi-
cal temporal constraints of RT tasks were not handled. In
general, interrupt latency and rescheduling time should be
considered for evaluating real-time performance. The perfor-
mance measurements for the measured delays for VxWorks,
Xenomai, RTAI and Linux have been addressed by Barba-
lace et al. [17]. Therefore, measurements were concentrated
on the performance for the effect of context switching in
terms of the number of tasks running simultaneously for both
real-time Linux and standard Linux.

5.1 Realization of the real-time control software

The implementation to allow deterministic response based
on Xenomai is shown in Fig. 8. For the real-time realization,
Xenomai 2.3 was applied to the Adeos architecture. The stan-
dard Linux of kernel 2.6.17 was ported to the main board for

123

Intel Serv Robotics (2009) 2:139–151 147

Fig. 9 The realization of
real-time software in the robot

general application software as the root domain, and the sink
node used CC2420 to route data back from the sensor nodes
to the main controller. The data transfer between the sink
node and the main controller was performed over RS-232
serial communication.

For the mobile robot, the implemented robot tasks were
simple because the robotics-related algorithms were not the
scope of this paper. The robot had various sensors such as
ultrasonic sensors and PSDs, but these were connected with
a USB-to-serial converter due to the lack of serial ports of the
controller used in this paper. Therefore, the set of tasks was
implemented in the standard Linux as threads. For autono-
mous navigation to the position of the elderly (for example,
finding the position of the elderly people using the position
of the issued sensor), a StarGazer [25] was adopted. The
interface for the motor control board and localisation sen-
sor was serial communication so that real-time tasks through
RT_COM for achieving motor control and handling position
data were developed.

The robot was mainly used as the actor. The software mod-
ules needed to meet the requirement for the mobile robot
were simply displayed as several processes in user space. The
simplified overall implementation in the robot is shown in
Fig. 9. The general inter-task communication (ITC) mecha-
nisms were used to achieve communication between RT tasks
and NRT standard threads. The tasks requiring real-time per-
formance, such like rt_motor, rt_local and rt_sensor, were
implemented in kernel space with real-time priority. Local-
isation based on the StarGazer needed to be updated within
specified periodic time intervals to conduct trajectory control.
In order to rapidly respond to urgent sensor data handle, the
real-time tasks needed to be implemented with priorities for
the sink node. Other tasks related with general applications of
the robot were implemented in user space as standard Linux
threads. Even though user processes can be implemented in

kernel space, debugging and extensions with other off-the-
shelf libraries are very difficult. Therefore, the dual-kernel
approach is useful to implement complicated robot applica-
tions. For NRT tasks such as sensor_thread and user pro-
cesses, there is no guarantee they will be executed within the
specified period.

5.2 Performance measurement of handling sensor data

This measurement aimed to show the efficiency of RT tasks
in handling the sink node data through RT_COM. It was not
focused on evaluating the efficiency for multi-hop communi-
cation. For this experiment, a test program produce_sine was
created in a sensor node, which processed the sampled data in
a 100 ms range to transmit 180 degrees for one cycle of a sine
curve of magnitude 4. Although very simple, this program
allowed the testing of features of interest. Since the data were
periodically sampled and gathered in the main controller, the
sink node gathering data from the sensor node transmitted
data to the main board through the RS-232 interface at a speed
of 57,600 bps. As described in Fig. 9, the RT task rt_sen-
sor was designed as the periodic task of 100 ms to read the
received data through RT_COM. The received data were sent
to data_task running in user space by message queue where
data were processed into a plot. nrt_data_task was used to
evaluate non real-time performance. nrt_data_task, imple-
mented in user space as standard Linux application, reads
data through a standard serial interface.

The measured times are reported in Fig. 10. For RT tasks,
it took approximately 18 s to draw the data from the time
the data were received from the sensor node to handing
the data in user space to data_task, regardless of the num-
ber of tasks running simultaneously. The reason for such a
result was that when the RT serial device driver was used
to process the data and the priority of the handling task

123

148 Intel Serv Robotics (2009) 2:139–151

Fig. 10 Measured performance for the delay according to the number
of workload tasks

was high, it prevented context switching by standard
Linux processes. However, for NRT performance the mea-
sured time increased when the workload increased. In the
proposed software architecture, the data processing was per-
formed in the necessary time even if the workload increased.
On the other hand, in the NRT environment the data pro-
cessing revealed time delays depending upon the number of
workload tasks.

5.3 The remote monitoring system

Another important part of the software is the graphical user
interface (GUI) of the remote monitoring system, which is
executed on either Windows or Linux (see Fig. 11). In order
to use sensor data to form a health record database for the
user, to gain a visual image of the user during an emergency
situation, or to move the mobile robot to a certain location
according to a situation, a monitoring management system
is required. This consists of three graphical windows and
many other control views. The graphical data view can be
used to display data such as the pulse signals of the person.
Through the camera view transmitted from the robot, the
visual status of the elderly person can be examined. Also,
other information about the WSAN can be shown, such as

Fig. 11 GUI of the remote monitoring system

the remaining battery power for each node and communica-
tion packets.

Information on the position of the sensor nodes is useful
as the robot is able to move to the sensor node that issued
sensor data near the person. The demonstration of the unique
feature of an active service is displayed in the top-middle
window labelled “Position”. The four grey dots in the win-
dow show the position of each node, and the circled dot indi-
cates the position of the elderly person. When the sensor
node triggered data to indicate the abnormal status of the
person, the data were transmitted to the sink node. Next, the
data were relayed to the remote monitoring system by the
robot controller through TCP/IP as shown in Fig. 9. Using
the routing information within the relay nodes and position
data of each node allowed the robot to move to the posi-
tion of the sensor node. Another mode is tele-operation. The
robot can be interactively controlled to move to another posi-
tion and determine the condition of the person through voice
chatting or visual camera by using control buttons made in
GUI.

Fig. 12 The trajectories of the
robot in Cartesian space. a
Measured performance for NRT
tasks. b Measured performance
for RT tasks

123

Intel Serv Robotics (2009) 2:139–151 149

Fig. 13 Heading angles of the robot. a Measured performance for NRT tasks. b Measured performance for RT tasks

5.4 Performance measurement of controlling the robot

In the first round of tests, the focus was on the difference in
delay time when handling sensing data in RT and NRT soft-
ware environments. In this case, the real-time performance
for aggregating sensor data could be examined even though
those were gathered from the sensor nodes. Here, the control
performance was put into focus by driving the robot straight
forward. Since the robot was an actor in this study, the con-
trol performance was also important in performing the active
services. The mobile robot was controlled from the Cartesian
coordinates (344, 100) to (344, 230), measured in cm, while
heading angle was targeted from 120 degrees to 90 degrees.
In the robotics of mobile robots, the position and heading
angle are major control arguments. The feedback control loop
should be performed with a control loop time of 300 ms to fol-
low the reference command. Complicated algorithm was not
adopted as the purpose of this test was to verify the real-time
characteristics, not to show the performance of the control

algorithm. Although Bruzzone et al. [14] evaluated the possi-
bility of standard Linux for embedded real-time application
in robotics and showed that a large variety of applications
could be implemented, the current version of Linux is not
yet suitable for hard real-time applications, as required in
feedback control and for this case.

In Figs. 12–14, all results are reported according to the
number of workload tasks, where symbols denote the num-
ber of workload tasks (multiplication symbol: no other task,
open square: 5 tasks, open circle: 7 tasks). Figure 12 shows
the robot trajectories in Cartesian space, Fig. 13 describes
the heading angle of the robot in the trajectory, and Fig. 15
indicates the performed control loop cycle. Table 1 shows
the detailed results. The control loop cycle time in Fig. 14a
varied when workload increased. The delay of the control
loop in Fig. 14b created the delay in total execution time
shown in Fig. 13b. On the other hand, the control loop in
Fig. 14b was maintained at 300 ms. Results imply that the
proposed architecture is feasible for hard real-time control,

Fig. 14 The sampling times in
the control loop of the robot. a
Measured performance for NRT
tasks. b Measured performance
for RT tasks

Table 1 Tracking control
performance for NRT tasks
depending on workload tasks

No. of tasks Actual distance/reference Working time (ms) Actual time/reference
distance (cm) time (ms)

0 132/130 6,300 300/300

5 143/130 7,803 300–600/300

7 140/130 7,960 500–600/300

123

150 Intel Serv Robotics (2009) 2:139–151

as required in feedback control. The trajectories and heading
angles of the robot were incorrectly controlled in the case
of a NRT software environment, as shown in Figs. 12a and
13a. The results shown in Figs. 12b and 13b maintained the
control goal regardless of the number of workload tasks, even
though the trajectory did not follow the reference command
exactly. The final control error resulted from the slippery
floor and the poor resolution of localization sensors adopted
in this paper. This is another problem that was beyond the
scope of this paper; improving the control performance itself
is a topic for future work.

6 Conclusion

This paper proposed a real-time control software architec-
ture for mobile robots in WSANs for health care or assisted
living services for elderly persons. A WSAN consists of a
robot, a sink node fitted onto the robot controller, and sensor
nodes to sense phenomenon such as temperature, pressure
and movement. The robot became an actor for performing
active services, and the sink node collecting the sensing data
became a moving sink node. To facilitate the moving sink
node, the network routing algorithm for multi-hop was con-
ducted to find the minimum energy cost using the TinyOS.
The real-time software architecture was based on a dual-ker-
nel approach, where Xenomai and standard Linux are run-
ning together on top of the Adeos environment. In order to
interface the sink node, the real-time serial device driver was
also ported. For realization of the health care system, a remote
monitoring system was introduced without an explicit server.
As system calls can be used with two kernels, the functions
can be easily performed for the gateway to the outside, the
controller with real-time performance, and the sink node.

In order to verify the feasibility and real-time performance,
two features were focused upon: sensor network data han-
dling, and control performance of the robot with a feedback
loop robot corresponding to the number of workloads. Based
upon the performance measurement results, the following
was observed:

• The performance of the proposed system, in terms of
delay, was good at both handling sensing data transmis-
sion and performing trajectory control with the feedback
loop.

• Both a real-time task and real-time serial device were
required to satisfy real-time performance.

• Xenomai was better structured and available for a larger
number of platforms; the flexibility of the proposed sys-
tem was applicable to both real-time and non real-time
applications.

• The robot performed well as the moving sink node and
the actor in the WSAN.

Though there were many research initiatives involving
sensor networks introduced [1], more development should
be encouraged in solutions to living assistance for elderly
persons with mobile robots in a WSAN as follows:

• Real-time requirements and decomposition of RT and
NTR tasks should be considered.

• Robot control problems, including localization, should
be overcome.

• Non-tactile sensors to sense the psychological data of the
elderly person must be developed.

• More practical services implemented in the context of
WSANs are needed for commercial solutions, such as
visual tracking, voice chatting, and rich databases for clin-
ical purposes.

Acknowledgments This work is the outcome of a Manpower Devel-
opment Program for Energy & Resources supported by the Ministry of
Knowledge and Economy (MKE).

References

1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002)
Wireless sensor networks: a survey. Comput Netw 38:393–422.
doi:10.1016/S1389-1286(01)00302-4

2. Manley ED, Deogun JS (2007) Location learning for smart homes.
In: Proceedings of IEEE international conference on advanced
information networking and application workshops, pp 787–792

3. Hou J, Wang Q, Ball L, Birge S, Caccamo M, Cheah CF,
Gilbert E, Gunter C, Gunter E, Lee CG, Karahalios K, Nam MY,
Nitya N, Rohit C, Sha L, Shin W, Yu Y, Zeng Z (2007) PAS: a
wireless-enabled, sensor-integrated personal assistance system for
independent and assisted living. In: Proceedings of joint workshop
on High Confidence Medical Devices, Software, and Systems
(HCMDSS) and Medical Device Plug-and-Play (MD PnP) inter-
operability (HCMDSS/MD PnP’07)

4. Diamond SM, Ceruti MG (2007) Application of wireless sensor
network to military information integration. In: Proceedings of
IEEE international conference on industrial informatics, pp 317–
322

5. Berenson UI (2006) Public policy lecture: quality, chronic care, and
developments in physician payments. In: Presented in Am Geriatric
Soc annual meeting

6. Assisted living project. http://lion.cs.uiuc.edu/assistedliving/
technical.html

7. Wang Q, Shin W (2006) I-Living: an open system architecture for
assisted living. In: Proceedings of IEEE International Conference
on Systems Man and Cybernetics (ICSMC ’06), pp 4268–4275

8. AlarmNet. http://www.security.honeywell.com/hsce/solutions/
alarmnet/index.html

9. Noury N, Herve T, Rialle V, Virone G, Mercie E, Morey G, Moro
A, Porcheron T (2000) Monitoring behavior in home using a smart
fall sensor. In: Proceedings of IEEE-EMBS special topic confer-
ence on microtechnologies in medicine and biology, pp 607–610

10. Akyildiz IF, Kasimoglu IH (2004) Wireless sensor and actor:
research challenges. Ad Hoc Netw 2:351–367. doi:10.1016/j.
adhoc.2004.04.003

11. Xia F, Tian YC, Li Y, Sun Y (2007) Wireless sensor/actuator net-
work design for mobile control applications. Sensors 7:2157–2173.
doi:10.3390/s7102157

123

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://lion.cs.uiuc.edu/assistedliving/technical.html
http://lion.cs.uiuc.edu/assistedliving/technical.html
http://www.security.honeywell.com/hsce/solutions/alarmnet/index.html
http://www.security.honeywell.com/hsce/solutions/alarmnet/index.html
http://dx.doi.org/10.1016/j.adhoc.2004.04.003
http://dx.doi.org/10.1016/j.adhoc.2004.04.003
http://dx.doi.org/10.3390/s7102157

Intel Serv Robotics (2009) 2:139–151 151

12. Sandia National Laboratories. Visited in March 2008 http://www.
sandia.ov/isrc

13. Oh S, Schenato L, Chen P, Sastry S (2007) Tracking and coordi-
nation of multiple agents using sensor networks: system design,
algorithms, and experiments. In: Proceedings of the IEEE, vol 95,
pp 234–254

14. Bruzzone G, Caccia M, Ravera G, Bertone A (2009) Standard
Linux for embedded real-time robotics and manufacturing control
systems, robotics and computer-integrated manufacturing. Cor-
rected Proof, available online 15 January 2008 (in press)

15. Home Page RTAI. http://www.rtai.org
16. Xenomai Home Page. http://www.Xenomai.org
17. Barbalace A, Luchetta A, Manduchi G, Moro M, Soppelsa A,

Taliercio C (2007) Performance comparison of VxWorks, Linux,
RTAI and Xenomai in a hard real-time application. In: Proceedings
of IEEE-NPSS real-time conference, pp 1–5

18. Bi Y, Sun L, Ma J, Li N, Khan IA, Chen C (2007) HUMS: an auton-
omous moving strategy for mobile sinks in data-gathering sensor
networks. EURASIP J Wirel Commun Netw 1–15. doi:10.1155/
2007/64574

19. Hybus Home Page. http://www.hybus.net
20. Tiny OS. http://www.tinyos.net
21. Serge Telos. http://www.tinyos.net/tinyos-1.x/apps/SurgeTelos
22. Adeos Home Page. http://home.gna.org/adeos
23. Kiszka J (2005) The real-time driver model and first applications.

In: Proceedings of 7th real-time Linux workshop
24. Kiszka J, Wagner B, Zhang Y, Broenink J (2005) RTnet—a flexi-

ble hard real-time networking framework: In: Proceedings of 10th
IEEE international conference on emerging technologies and fac-
tory automation

25. Home Page HAGISONIC. http://www.hagisonic.com/

123

http://www.sandia.ov/isrc
http://www.sandia.ov/isrc
http://www.rtai.org
http://www.Xenomai.org
http://dx.doi.org/10.1155/2007/64574
http://dx.doi.org/10.1155/2007/64574
http://www.hybus.net
http://www.tinyos.net
http://www.tinyos.net/tinyos-1.x/apps/SurgeTelos
http://home.gna.org/adeos
http://www.hagisonic.com/

	Real-time control architecture using Xenomai for intelligent service robots in USN environments
	Abstract
	1 Introduction
	2 System structure
	3 Multi-hop network
	4 Real-time control architecture using Xenomai
	4.1 Dual-kernal approach
	4.2 Real-time architecture for the sink node

	5 Implementation and performance measurement
	5.1 Realization of the real-time control software
	5.2 Performance measurement of handling sensor data
	5.3 The remote monitoring system
	5.4 Performance measurement of controlling the robot

	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

