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Layer-Specific Optimization for Mixed Data Flow
With Mixed Precision in FPGA Design for

CNN-Based Object Detectors
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Abstract— Convolutional neural networks (CNNs) require both
intensive computation and frequent memory access, which lead
to a low processing speed and large power dissipation. Although
the characteristics of the different layers in a CNN are fre-
quently quite different, previous hardware designs have employed
common optimization schemes for them. This paper proposes a
layer-specific design that employs different organizations that are
optimized for the different layers. The proposed design employs
two layer-specific optimizations: layer-specific mixed data flow
and layer-specific mixed precision. The mixed data flow aims
to minimize the off-chip access while demanding a minimal
on-chip memory (BRAM) resource of an FPGA device. The
mixed precision quantization is to achieve both a lossless accuracy
and an aggressive model compression, thereby further reducing
the off-chip access. A Bayesian optimization approach is used
to select the best sparsity for each layer, achieving the best
trade-off between the accuracy and compression. This mixing
scheme allows the entire network model to be stored in BRAMs
of the FPGA to aggressively reduce the off-chip access, and
thereby achieves a significant performance enhancement. The
model size is reduced by 22.66-28.93 times compared to that in a
full-precision network with a negligible degradation of accuracy
on VOC, COCO, and ImageNet datasets. Furthermore, the
combination of mixed dataflow and mixed precision significantly
outperforms the previous works in terms of both throughput,
off-chip access, and on-chip memory requirement.

Index Terms— Mixed precision, mixed data flow, coarse-
grained quantization, mixed precision convolution, Bayesian
optimization.
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I. INTRODUCTION

IN COMPUTER vision, object detection is a challenging
task. Recently, deep learning has been widely adopted in

object detection owing to the support of powerful computation
devices such as a GPU and an FPGA. Therefore, numerous
promising approaches have been proposed for object detection
with deep learning such as single-shot multibox detection
(SSD) [1], faster R-CNN [2], RetinaNet [3], DSSD [4], and
YOLO [5]. Among these detectors, for object detection, YOLO
performs one of the best trade-offs between accuracy and
speed [6]. It is a single neural network that predicts both the
object bounding boxes and class probabilities.

For achieving real-time operation, numerous FPGA designs
are available for a YOLO CNN [7]–[11]. The previous designs
in [7], [10], and [11] achieve a real-time throughput. However,
these designs only implement tiny YOLO-v2, which is rela-
tively shallow, and thus, achieving a relatively low detection
accuracy. The design in [8] combines a binary network for
feature extraction and a support vector machine (SVM). The
detection accuracy (mAP) is reported as 67.6%, and the
frame rate is 40.8 fps (frame-per-second) for a relatively
small input image (i.e., 224 × 224). For achieving a better
throughput and hardware efficiency, the study in [9] presents a
streaming design for binary weight YOLO-v2. The data path
is optimized to maximize the data reuse and eliminate the
off-chip access. Thus, this design realized a high throughput
with a minimum DRAM bandwidth, which results in low
power consumption in the DRAM access. Similarly, the CNN
accelerator design in [12] and [13] also uses a single bit to
attain an extremely high compression rate and a low hardware
cost. However, binary weight quantization causes a significant
accuracy degradation because it ignores the effect of the large
weights on the detection accuracy, which is not negligible even
though only a few large weights are present.

To avoid an accuracy decrease, several previous designs
employ quantization with 8 or 16-bit fixed point numbers for
the parameters [14]–[16]. However, owing to the large model
size, for its computation, these designs require the parameters
of each layer to be loaded from an external memory.
Consequently, their throughputs are relatively low and power
consumption is high. The design in [17] combines 4-bit
weights and a small portion of 8-bit weights to achieve
an impressive model compression while realizing a nearly
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lossless accuracy. For sparse computations, this design may
suffer from load imbalance because the partition value is
obtained by sorting the weights of the entire layer (i.e.,
layer-wise). To alleviate this problem, a relatively more
complex ASIC design is adopted in [18]. However, this
design assumes that throughout a given network, the portion
of the outliers is fixed. Therefore, the model size can be
further reduced as each layer has a different portion of
outliers. Moreover, as this design runs a single layer at a
time, it requires an extremely large on-chip SRAM for the
intermediate data to reduce the off-chip memory access.

Previous designs for object detection CNNs use a common
hardware organization and optimization scheme for all the
layers in a CNN. However, the sizes of the feature maps
and parameters of the different layers are often quite varied.
The parameter sparsity may also change depending on the
layer. Therefore, using a common organization for all the
layers may not be an effective approach to design a CNN
hardware accelerator. In this view, this paper presents a
layer-specific design that employs different organizations that
are optimized for the different layers. The proposed design
employs two layer-specific optimizations: layer-specific mixed
precision and layer-specific mixed data flow.

For layer-specific mixed precision, the proposed design uses
dense 1-bit weights and sparse 8-bit weights to achieve a
nearly lossless accuracy with a significant reduction in the
model size. The ratio of the 1-bit and 8-bit weights is chosen
carefully to minimize the required data size while avoiding
an accuracy decrease. For layer-specific mixed data flow,
the hardware organization is selected according to the sizes
of the feature maps and parameters. The main contributions
of this paper are summarized as follows:

• Algorithmic contribution: A mixed precision quantization
with a retraining method is proposed. The Gaussian
optimization method is applied to select the best sparsity
for the trade-off between compression and accuracy for
each layer independently, and consequently, the quantized
network outperforms the binary weight network while
achieving a similar compression ratio. The proposed
scheme causes a negligible accuracy (less than 1%)
while reducing the memory size by 22.66 – 28.93 times,
compared to a full-precision network.

• Architectural contribution: A mixed precision stream-
ing architecture with a mixed data flow is proposed.
Compared to “Shortcut Mining” [19], the mixed data flow
scheme reduces the off-chip access for feature-maps from
62MB to 0 MB while requiring smaller BRAM sizes and
achieving higher throughput. Compared to the unified
design, the combination of the two proposed schemes
runs 3.2 times faster, while reducing on-chip memory
size by 2.0 times and requiring 12.95 times less off-chip
access.

The remained of this paper is organized as follows.
Section II discusses about the previous works on CNN hard-
ware design. Section III and IV present the proposed mixed
data flow and mixed precision quantization, respectively.
In Section V, the hardware architecture for the proposed

Fig. 1. The scheduling for streaming convolutional layer: (a) Full weight
reuse (Scheme 2). (b) Row-based weight reuse (Scheme 3). Borrowed from
Fig. 2 in [9].

quantization is elaborated. The experimental results are pre-
sented in Section VI. Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORKS

A. CNN Data Flows

Fig. 1 presents two main scheduling schemes of weight
reuse for tile-based convolution. The sizes of the tiled input
channels and output channels are denoted as Ti and To,
respectively. H is the feature map size, and N and M are the
numbers of the input channels and output channels, respec-
tively. The advantages and drawbacks of each strategy are
described below.

The “Scheme 2” shown in Fig. 1(a) maximizes weight reuse.
Each weight is reused for the whole input channel (i.e., reuse
H2 times). At a time, Ti input planes are convolved with each
of To weight blocks. The partial sum is stored in an output
buffer. The SRAM size of this output buffer is To × H2 × QS,
where QS is the bit width of the accumulation before quantiza-
tion. To produce final To output feature-maps, the entire input
feature-maps are accessed. Hence, to generate the entire output
feature-maps, the input feature-maps are repeatedly read M/To
times. Therefore, the input buffers must be large to store them.
Moreover, to pipeline between layers, the input buffer size
should be doubled, which is 2 × H2 × N × QA, where QA is
the bit width of input feature-maps.

The “Scheme 3” shown in Fig. 1(b) minimizes the input
buffer size and processing latency. The input sliding cube
(i.e., K × K × Ti pixels) slides along the width of the input
image, which is called a row pass. The input sliding cube is
convolved with To weight blocks each time to produce To
temporary output values. These weight blocks are reused for
a row pass. These To computations are processed in parallel
and saved in the line buffers thereby creating To temporary
output channels. The input sliding cube then shifts Ti channels
toward the end of N-input channels. In the next row pass,
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new To weight blocks are fetched and convolved with the new
sliding cube. To finish the processing for one line, the entire
weight of the model is accessed from the memory. Therefore,
to process the whole input feature-maps, the weights are read
H times. Regarding the hardware resource, the input buffer size
for pipelining is (K + 1) × N × H × QA, and the temporary
accumulation buffer size is To × H × QS.

B. Related Works About CNN Accelerators

Deep neural networks such as VGGNet [20], YOLOv3 [21],
and ResNet-152 [22] are very powerful. However, they
consume a huge amount of memory bandwidth and
computational resources. Frequent access to off-chip memory
causes long latency and large energy consumption [23], [24].
For example, a 32-bit floating point addition consumes only
1pJ while a 32-bit data word access from DRAM (45nm
CMOS technology) requires 640pJ [25].

There are a number of previous works designing a single
layer accelerator for CNNs [13]–[16], [18], [26]–[30]. These
works optimize the processing of a single CNN layer through
loop optimization to increase hardware utilization. However,
the performance of the network decreases as it goes deeper
owing to data transfer back and forth between the CNN
accelerator and off-chip memory. For example, ResNet-
152 layers [22] requires 102.8 MB of weights and 61.1 MB
of feature-maps of 16-bit precision. The ideal technique
would need to load off-chip data once for computation.

To reduce off-chip access, fused layer techniques [31], [32]
cascade multiple layers. The intermediate feature-maps pyra-
mid is stored in BRAMs, thereby consuming considerable
amount of BRAMs resource (e.g, 5 layers of VGGNet require
122% of the BRAMs in Xilinx Virtex-7 chip). Therefore, this
technique does not scale up well for deeper networks owing
to their large intermediate feature-maps storage.

There are several works that presents a multi-layer processor
approach, in which each layer is processed by a dedicated
hardware unit [10], [11], [33], [34], to maximize the utilization
of computing resources. As the on-chip memory is not enough
for multiple hardware units, the data have to be stored in off-
chip memory. Therefore, these works require huge amount
of memory access for data. Even they work fine for shallow
networks, it is difficult to scale up to deeper networks.

Flexible data flow has been studied in many previous works:
Flexflow [35], DNA [36], SmartShuttle [28], and MAERI [37].
Flexflow demonstrates a unified design with a combination of
feature-maps, neuron, and synapse-level parallelism to boost
the resource utilization. DNA leverages the input, output,
and weight reuse within the same fabric. Each single layer
is assigned a reuse pattern to achieve the best resource
utilization. However, both designs are applied to a single
layer, not across different layers. These designs aim to boost
the resource utilization, not optimizing the off-chip memory
access/on-chip memory size. SmartShuttle allows switching
among two data reuse schemes: partial sum reuse oriented
and weight reuse oriented by using an empirical method for
choosing tiling factors. Running 13 CONV layers of VGGNet
with SmartShuttle requires 434.8 MAC/DRAM access

Fig. 2. Memory requirements for each layer in SimYOLOv2. Scheme 2
(full weight reuse) and Scheme 3 (row-based weight reuse) are brought from
Table I in [9]. It should be noted that Scheme 1 (no reuse) in [9] is not listed
here.

(i.e., 142 MB). The off-chip access is projected to be larger
for deep network such as ResNet152 because it requires
large shortcut outputs and feature-maps. Unlike conventional
CNN computation, MAERI has a tree-based reconfigurable
interconnect within the accelerator to handle convolution,
recurrent layers with irregular filter sizes and sparsity. This
work aims to maximize the data mapping to MACs, not the
on-chip/off-chip memory access directly.

A recent work [19] presents “Shortcut Mining”, an accel-
erator design with a flexible buffer structure, to maximize
the reuse of shortcut feature-maps. It achieves a significant
speed up over the previous works owing to the reduction of
off-chip access for feature-maps. It is a single layer design
with shortcut buffer optimization. Even though it reduces
the off-chip access for shortcut data significantly, this work
still requires large off-chip access while consuming most of
available on-chip memory resource of an FPGA chip.

To aggressively reduce the on-chip/off-chip utilization, this
paper proposes a new hardware architecture which has two
parts: pipelined layers and main layer. Similar to the fused
layer design [31], the functionality of pipelined layers is to
reduce off-chip access for feature-maps completely. Unlike
the fused technique, which stores 2D feature-maps pyramid of
consecutive layers on-chip, this work does pipeline between
layers based on line buffers. Therefore, this work consumes
much smaller on-chip resources than the design in [31].
The main layer processes the remaining layers while being
able to store intermediate data on-chip. Hence, this work
completely removes the off-chip access for feature-maps with
a small on-chip memory size. Moreover, the mixed precision
compression further reduces off-chip accesses and speeds up
the computation. The detail of the proposed work is to be
discussed in the following sections.

III. LAYER-SPECIFIC MIXED DATA FLOW DESIGN

A. CNN Accelerator With the Mixed Data Flow

Fig. 2 illustrates the memory requirements for each layer
in Sim-YOLO-v2. In the beginning layers, the feature map
sizes are quite large, whereas the parameter sizes are relatively
small. For example, CONV1 outputs 5.5 million feature maps
while using only 864 parameters. Therefore, the “Scheme 3” is
suitable for the beginning layers because it is less demanding

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on October 07,2021 at 05:06:39 UTC from IEEE Xplore.  Restrictions apply. 



NGUYEN et al.: LAYER-SPECIFIC OPTIMIZATION FOR MIXED DATA FLOW WITH MIXED PRECISION IN FPGA DESIGN 2453

Fig. 3. Accellerator design with mixed data flow. The detailed architecture
of “Main Layer” is discussed in section V.

on the row buffer. Contrastingly, the last few layers gen-
erate small feature maps but require numerous parameters.
Therefore, the second scheme outperforms the “Scheme 3”
owing to its full reuse of the weight parameters. Accordingly,
this paper proposes an accelerator design with a mixed data
flow to optimize the data reuse for each layer and reduce
the BRAM utilization. As depicted in Fig. 3, the proposed
scheme decomposes the network into two groups of layers.
For the layers in the first group, each layer is processed by
its dedicated hardware unit. For reducing the external memory
access, these layers are pipelined using line buffers, and the
“Scheme 3” is used for the row-based weight reuse. This
implies that each layer starts its computation as soon as several
rows of its inputs are delivered. Therefore, the delay between
these layers is short. For plain networks such as AlexNet,
VGGNet, and SimYOLOv2, each block is considered as a
single layer, and there is no need of delayed shortcut buffer.
On the other hand, for residual style networks such as ResNet
and YOLOv3, each block is a residual block with a delayed
shortcut line buffer. The number of line buffers is calculated
by the number of delayed lines between the first and last layer
in a residual block. For example, in Fig. 3(b), delay between
input and output of 3×3 and 1×1 convolutional layer is 2 and
1, respectively. If the output of a block is used for a deep
layer later, it is stored to off-chip memory instead of using
shortcut line buffer to save on-chip memory. As the parameter
sizes of these layers are small, they are stored in an external
memory to further save the BRAM resources. This data reuse
scheme eliminates numerous DRAM accesses for intermediate
data (feature maps) while demanding a few DRAM accesses
for the parameters. By contrast, the layers in the second

group are processed sequentially using a single hardware unit
represented as the “Main Layer” in the Fig. 3. For scheduling,
the full weight reuse scheme (i.e., scheme 2) is employed. The
intermediate data are small in size, and thereby stored entirely
in BRAMs. Moreover, the parameters are read once for each
layer so that the DRAM bandwidth is kept small. It should
be noted that the main layer has a similar architecture to that
of the pipeline layers, except the manner in which the sliding
cube moves (i.e., the data flow). It includes an input frame
buffer, output frame buffer, and shortcut frame buffer. The
size of the shortcut buffer is the maximum size of shortcut’s
output. These buffers are interchanged for consecutive layers
to minimize the intermediate on-chip data movement. For
example, beside storing shortcut data, shortcut buffer can
function as an input buffer if its data are used for the next layer.
To pipeline the processing between two groups, one more input
buffer is needed. It is worth mentioning that the proposed
design does not require a DRAM access for intermediate data
(feature maps). Instead, they are all stored in BRAMs inside
an FPGA device.

B. Optimization for the Mixed Data Flow Design

The consequent problem is the decomposition of the net-
work into two groups for the best trade-off between the SRAM
size and DRAM bandwidth. In the mathematical formulation,
the number of layers in the network and group boundary are
denoted as L and i, respectively. The SRAM size and total
DRAM access per input image are calculated as a function of
i. For simplicity, the DRAM accesses for the input image and
final outputs are not presented here.

SRAMsize(i) =
�i

l=1

�
row_buffl + out_buffl

�

+ 3 × max
l∈[i+1,L] (in_frame_buffl)

+ max
l∈[i+1,L] (shortcut_buffl)

+ max
l∈[i+1,L] (out_buffl) (1)

where row_buffl and out_buffl are respectively the input buffer
and partial sum buffer for layer l in the first group, and
in_frame_buffl is the input frame buffer for layer l in the sec-
ond group. max

l∈[i+1,L] (shortcut_buffl) is the maximum size of

shortcut’s output in the second group. As shown in Table I
in [9], for layers in [1,i], row_buffl = (Kl +1)× Nl × Hl × Q A ,
out_buffl = To × Hl × QS , and for layers in [i + 1,L],
in_frame_buffl = H 2

l × Nl × Q A , out_buffl = To × H 2
l × QS ,

respectively. Kl , Hl, Nl , Ml are the kernel size, feature map
width (height), number of input channels, and number of
output channels, respectively. QA, QS are the bit-width of input
activation, and partial sum. Ti and To are the tiling factors.

DRAMaccess(i)=
�i

l=1
Hl ×paraml +

�L

l=i+1
paraml

(2)

where paraml is the parameter size of layer l.
If the parameters of the first group are stored in SRAMs,

the SRAM size and DRAM access with respect to boundary i
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TABLE I

ACCURACY OF MIXED PRECISION QUANTIZATION WITH
VARYING HIGH PRECISION WEIGHT RATIO

are formulated as equations (3) and (4), respectively. Com-

pared to (2), the DRAM access is reduced by
i�

l=1
Hl × paraml .

SRAMsize(i) =
�i

l=1

�
row_buffl + out_buffl + paraml

�

+ 3 × max
l∈[i+1,L] (in_frame_buffl)

+ max
l∈[i+1,L] (shortcut_buffl)

+ max
l∈[i+1,L] (out_buffl) (3)

DRAMaccess (i) =
�L

l=i+1
paraml (4)

In addition to the SRAM size reduction, the throughput
is also an important factor in the selection of the group
boundary. To achieve a balanced pipeline between two groups,
the computation times of the two groups need to be similar.
Owing to the fully pipelined design of the convolutional layers,
their outputs are obtained in each cycle. It is assumed that
the provided DRAM bandwidth is sufficient to not affect the
execution time. In fact, this assumption is true in most design
options considered in this study. The computation time of
layer l is calculated as follows:

tl = MACSl

K 2
l P Fl

= H 2
l N l Ml

P Fl
(5)

where MACSl represents the number of MAC operations in
the lth layer. P Fl = Ti (l)×T o(l) is the parallelism factor,
which is proportional to the number of multipliers in the lth
layer (K 2

l PFl). It is noteworthy that for the layers in the
first groups, for a certain integer, X , PFl = 2X for a certain
integer. Concurrently, in the main layer, for a certain integer Y,
PFl = 22Y for a certain integer owing to the power-of-two

tiling factors (Ti = To). The output buffer of the current layer
is the input buffer of the next layer (i.e., Ti = To) to simplify
the control logic and unified SRAM bit-width for the frame
buffers.

To balance the pipeline between consecutive layers in the
first group, the parallelism factors in the first group must
satisfy the condition: t1 = t2 = . . . = ti . It is noteworthy
that Ti (l+1) = To(l) and Ml = Nl+1 . Hence, Ti and To of
each layer can be easily chosen by the guideline in (6).⎧⎪⎨

⎪⎩
Ti (l + 1) = To (l)

To (l + 1) = H 2
l+1Ml+1Ti (l)

H 2
l Nl

(6)

The computation times of the first and second groups are
calculated as (7) and (8).

tg1 =
�i−1

l=1
Dl

tl
Hl

+ ti (7)

tg2 =
�L

l=i+1
tl (8)

where Dl is the number of the delayed rows from layer l to
l + 1 in group 1 owing to the pipeline.

For a given set of parallelism factors, group boundary i ,
which ensures a balanced pipeline between the first and second
group, is chosen such that:

i = argmin
[1,L]






�i−1

l=1
Dl

tl
Cl

+ ti −
�L

l=i+1
tl





 (9)

For the mixed data flow design, Algorithm 1 describes the
procedure to select the parallelism factors. It is noteworthy
that to obtain a solution of Algorithm 1, SRAM constraints α
cannot be arbitrarily small for a given network.

Algorithm 1 Parallelism Factors for the Proposed Scheme
For group boundary i = 1:L do

1. if SRAMsize(i) > α (MB)
Continue;

2. Choose Ti , To of the 1st group by using (6)
3. Choose Ti , To of the 2nd group such that |tg1-tg2| is

minimum
4. if total required DSPs > total DSPs of FPGA

Reduce Ti , To of the 1st group; go to step 2.
5. Estimate frame_rate(i)=1/max(tg1, tg2)

End_for
i = argmax(frame_rate(i))

IV. LAYER-SPECIFIC MIXED PRECISION TRAINING

A. Motivation of Intra-Layer Mixed Precision Training

Fig. 4 shows the weight histogram of a channel in the
fourteenth convolution layer of Sim-YOLO-v2 [9]. As shown
in Fig. 4(a), most weights have small absolute values (e.g, less
than 0.02), whereas a few weights have large values. Fig. 4(b)
exhibits the binary weight quantization [38]. Both small and
large weights are represented by their mean values and signs,
respectively. This quantization aggressively reduces the model
size while losing numerous weight levels.
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Fig. 4. Histogram of weights (a) Original weights of full precision (b) Binary
weight quantization (c) Mixed precision quantization.

To address this problem and achieve a high accuracy while
utilizing the advantages of a binary weight quantization, this
paper proposes a mixed quantization method by adding more
quantization levels, as shown in Fig. 4(c). The weight his-
togram in Fig. 4(a) is divided into two regions with small and
large values. Small weights are quantized using a single bit,
whereas a few large weights are quantized in high precision.
It should be noted that many previous works such as [39],
[54], and [55] show that 8-bit precision is sufficient to achieve
near-lossless accuracy for various DNN inferences. In addi-
tion, 8-bit precision is also adopted by Google TPU [56].
On the other hand, lower precision, such as 6-bit in [9],
causes the significant accuracy loss of 1.23% in the VOC
dataset, and consequently, it is not justified to work well for
large-scale datasets such as ImageNet. Therefore, in this study,
the sparse high-precision weights are quantized to 8 bits to
better compensate for the loss caused by binary quantization.
Besides, there could be a mixed precision quantization scheme
using a gradation of bits from 1 bit to 8 bits. This scheme is
plausible for inter-layer approach, in which each layer uses
same number of bits [40], [41]. However, applying weights
within a same layer is complicated to quantize and inefficient
in terms of hardware utilization. Thereby, the proposed scheme
utilizes a combination of 1-bit and 8-bits data for intra-layer
weight quantization. It is noteworthy that this mixed precision
quantization is different from the pruning method in [25] such
that it keeps both small weights and large weights. Hence,
the proposed method achieves a better approximation to the
original weights.

Compared to the outlier-aware scheme in [17], which
proposes a combined quantization, the main difference of
the proposed scheme is that the binary weight requires no
multiplication with the information loss of 1-bit quantization
being compensated by a few high-precision weights. Hence,
the proposed scheme requires low FPGA resource utilization.

Fig. 5. Block diagram of mixed precision quantization.

Finally, the fixed outlier ratio throughout the network results in
a non-optimized model compression. The next subsection and
Section V of this paper present the technique to complement
these problems.

B. Coarse-Grained Intra-Layer Mixed Precision
Quantization

In mixed precision quantization, the large weights are
divided into two parts, as illustrated in Fig. 5. One part is
“+mean” value, which is represented as a dense binary weight
filter. The other is the original large value subtracted by the
“mean” value. This scheme enables to design a simple mixed
architecture. The proposed design includes two parts: a dense
binary convolutional kernel and a sparse 8-bit convolutional
kernel. The dense convolutional kernel design is the same
as that in a preceding research in [9], which requires no
multiplication. The remaining work is only a design of a sparse
computation kernel.

A sparse computation inherently causes a load unbalance.
Different from [17], this work sorts the weights in the same
filter (i.e., channel-wise) to achieve a better computation
balance. To accelerate the training, this study uses a segmented
sort algorithm, which is supported by the thrust library in
CUDA. As shown in Fig. 5, the sorted weights of each output
kernel are partitioned into small weights and large weights.
The major portions are quantized to a single bit, whereas
the minor large weights are quantized to eight bits. Each
layer is quantized independently to choose the best sparsity
for the trade-offs between the accuracy and compression
ratio (i.e., hardware cost). Other layers are initialized with
a pre-trained full precision model, and they perform only
forward computation. The fine-tuning updates only the layer to
be optimized. This problem is formulated as an optimization
problem shown below:

pi = argmax(L (pi)) (10)

where pi is the sparsity of the i-th layer, and the objective
function is expressed as follows:

L (pi) = mAP (pi) + γ × C (pi) (11)

where mAP(pi ) is the mean average precision of the network
with respect to the high-precision ratio, pi , of the i th layer.
Compression rate C(pi ) of this layer is computed as follows:

C (pi ) = 32

1 × (1 − pi) + 8 × pi
× Ni�

Ni

= 32

1 + 7 × pi
× Ni�

Ni
(12)

Authorized licensed use limited to: Seoul National Univ of Science & Tech (SNUT). Downloaded on October 07,2021 at 05:06:39 UTC from IEEE Xplore.  Restrictions apply. 



2456 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 6, JUNE 2021

where Ni and
�

Ni are the number of parameters of the
i th layer and total number of parameters in this network,
respectively. γ is the coefficient to balance the accuracy and
compression benefits.

The relationship between the objective function and variable
is not explicitly expressed in a closed form. Bayesian optimiza-
tion provides a general framework for the global optimization
of the black box functions that do not require derivatives [42].
As the objective function is unknown, the Bayesian method
treats it as a random function. The Gaussian process regres-
sion is a powerful and non-parametric Bayesian method to
estimate the objective function in exploration and exploitation
scenarios [43], [44]. Therefore, the objective function in (10)
is modeled as a Gaussian process.

Algorithm 2 describes the general GP-solution for the
proposed optimization problem. From a set of previous sam-
ples from the system (i.e., accuracy at a given sparsity),
the posterior distribution over function L(pi ) is derived as (13)
and (14), where x is pi and y is L(pi ) at a sample point. The
mean of the function and the kernel are as follows:

mt (x) = (x, Xt)
�

K (Xt, Xt) + σ 2
� I

�−1
yt (13)

kt
�
x, x �� = k

�
x, x �� − K (x, Xt)

�
K (Xt, Xt) + σ 2

� I
�−1

× K (Xt, x �) (14)

where Xt and yt are the inputs and outputs of the sampled
points so far. The acquisition function, Vt (x), is chosen from
the upper confidence bound (UCB) algorithm [25], which is
expressed as follows:

Vt (x) = mt−1 (x) + ωt


st−1(x) (15)

where


st−1(x) is the predictive standard deviation at a point,
x , and st (x) = kt (x,x). ωt is a free constant parameter,
which performs the trade-off between the expectation and
uncertainty. After numerous iterations, the algorithm converges
to an optimal value.

Algorithm 2 Gaussian Process (GP) Optimization Solution
Problem: written in (10)
Input: input space [0,1]; acquisition function Vt , GP-prior
for L(p) with mean function m(p) and kernel k(p, p�)

For i = 1:N do
Update the posterior of GP and Vt as shown in (13), (14),
(15)
Choose P∗

t = argmaxp�[0,1](Vt (p))
Sample L(P∗

t ) from system
End_for

It is worth mentioning that each layer behaves differently
at the same level of quantization. For example, convolution
layers with a large kernel size are more error tolerant to a
low-bit quantization than those with a small kernel size [45].
Consequently, large convolution layers can be further com-
pressed with the proposed method owing to their high sparsity.
Therefore, the proposed algorithm compresses the network
efficiently by varying the sparsity of the different layers.

Fig. 6. The proposed mixed precision design. (a) The architecture of a
convolutional layer. (b) The sparse weight format for weight blocks of the
entire layer. (c) The sparse computation kernel.

V. THE HARDWARE ARCHITECTURE

WITH MIXED PRECISION

The design of the proposed design is depicted in Fig. 6.
The convolutional layer requires additional kernels for sparse
computation in parallel to dense 1-bit computational kernels,
as shown in Fig. 6(a). Each output channel has different
numbers of sparse weights. It causes the unbalanced computa-
tion between output channels if they are processed separately.
To solve this imbalance and utilize the multipliers better, all
the sparse weights of K × K × Ti × To weight blocks are
merged and computed simultaneously as proposed in [26].
Fig. 6(b) illustrates the sparse weight format for an entire
layer. The memory buffer, named “Sparse block info,” stores
the number of sparse weights of K × K × Ti × To weight
blocks, whereas the weight buffer, named “Sparse weight
block,” stores the sparse weight values and their relative
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Fig. 7. Bayesian optimization for choosing the sparsity (density) of high-precision computation.

coordinates. The memory requirement for the sparse weights
reduces to O(2.5×nonzeros+M), where M is the number of
K × K × Ti × To weight blocks in this layer. This is the
same memory efficiency as that of the compressed sparse
column (CSC) format proposed in [46]. It is noteworthy that
the sparse weights are prefetched in synchronization to the
dense weights. If the number of sparse weights for a block
is zero, the prefetcher skips reading the sparse weights from
the weight buffer, and the sparse computation kernel is also
turned off. The sparse weight block is loaded to a buffer.
The corresponding activations in the sliding windows are then
selected by decoding the coordinates of the sparse weights.
The sparse weights and activations are multiplied by an array
of multipliers. The number of allocated multipliers for each
layer is calculated at the training time. It is the maximum
number of sparse weights in sparse weight blocks. In case
of the main layer, to support different high precision weight
ratio, the number of allocated multipliers is the maximum
number of multipliers of layers run by the main layer. Owing
to the high sparsity, the size of the multiplier array is small,
thereby keeping the hardware overhead of a sparse kernel
small. According to the coordinates of the sparse weights, the
outputs from multipliers are then input to the corresponding
pipelined adder tree as illustrated in Fig. 6(c). In the next
step, the outputs from the pipelined adder trees are added
to the outputs from the corresponding dense computation
kernels. Finally, the accumulated results are written to the
output buffer. There are two key parameters in the sparse
computation kernel: N_multipliers and tree_size. N_multipliers
is the maximum number of sparse weights in K×K×Ti ×To
weight blocks. tree_size is the maximum number of sparse
weights in K × K × Ti weight blocks.

Unlike [18] which processes outlier weights and normal
weights sequentially, the proposed hardware accelerator com-
putes sparse 8-bits and dense 1-bit kernels in parallel. Both the
sparse and dense kernels use the same sliding windows and
produce their partial sums in each cycle owing to the fully
pipelined design. According to the delay of their pipelined
adder tree outputs, some delayed registers need to be added

to synchronize the sparse and dense kernels for each sliding
windows processing. Owing to this straight synchronization,
these two hardware units share the same input buffer, output
buffer. The hardware overhead of the proposed mixed design
is for the sparse weight buffer, sparse input, multipliers, and
pipelined adder tree.

VI. EXPERIMENTAL RESULTS

A. Mixed Precision Quantization

In the first experiment, the effectiveness of the Gaussian
process optimization, as described in Section IV, is evaluated
by compressing Sim-YOLO-v2. Fig. 7 presents the itera-
tion results to choose the best high-precision weight ratio
(i.e., density) for some layers. The layers of the same
dimension are optimized at once (e.g., CONV3 and CONV5,
CONV6, and CONV8). In the proposed work, the balance
coefficient, γ , is set as 0.01. For example, CONV2 converges
after at most 15 iterations. The converged ratio (density) is
0.035 (i.e., 3.5% of high-precision weights). As presented
in Fig. 7, the optimization for all the layers converges to a
small ratio value.

Table I presents the performance of the proposed opti-
mization method, manually chosen methods, and pruning
method [25]. It should be noted that the first and last lay-
ers are not quantized to preserve the accuracy. Therefore,
the high-precision weight ratio of each layer is 1. In the
binary quantization, the ratio is set as 0 (i.e., there is no
high-precision weight). The compression rate is expressed
by the average numbers of bits to represent a parameter.
“Mixed ratio 1,” and “Mixed ratio 2,” are the manually chosen
methods. For example, the “Mixed ratio 1” scheme sets all
the layer ratios as 0.05. This scheme needs only 1.408 bits,
on average, to represent a parameter. Compared to the manual
methods, the proposed scheme compresses the network more
efficiently using the various ratios optimized for the different
layers. Thus, the proposed method realizes a higher accuracy
than the manually chosen method with the best compression
ratio, “Mixed ratio 2,” while obtaining a higher compression
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TABLE II

COMPARISON OF THE COMPRESSION ON TINY-YOLOV2

Fig. 8. Trade-off relationship between the accuracy and compression rate.

ratio. The ratio for some large layers is reduced to less
than 1%, such as CONV14 and CONV16. Compared to the
full-precision network, the proposed scheme causes a small
loss in accuracy (i.e., 0.95%) while requiring a 27.87 times
smaller memory size. An additional experimental result for
YOLO-v2 tiny is presented in Table II. Compared to the
full-precision model, the mixed precision scheme achieves a
+0.48% higher accuracy and 28.93 times better compression
ratio.

For a reasonable comparison to sparse model, the full-
precision Sim-YOLO-v2 [9] is pruned and then retrained to
obtain the same accuracy as that of the proposed scheme (i.e.,
within 1% of loss). The non-pruned weights are uniformly
quantized to 8 bits. The forth column of the Table I describes
the density (non-zero ratio) of the pruned model. Some layers
such as CONV12, CONV14, and CONV15 have a density
higher than 40%. It is noteworthy that this high density
causes the design of a sparse CNN accelerator to be less
efficient. Compared to the pruning scheme, the proposed
scheme requires a significantly lower high-precision weight
ratio for all the layers, thereby yielding a better compression
ratio.

To better understand the trade-off relationship between
accuracy and model size (i.e., compression rate), various
gamma values are selected for the additional experiment.
Fig. 8 illustrates the trade-off relationship between accu-
racy and model size according to various gamma values.
When the gamma value is large, the quantization is near to
binary quantization to achieve the highest compression rate.
On the other hand, the smaller gamma (i.e., less than 0.01)
guarantees higher accuracy while sacrificing the compression
rate. This result shows the tendency of (11) well, and it is
necessary to set a well-balanced gamma value based on this
result.

To demonstrate the scalability of the mixed precision
scheme to larger networks and datasets, YOLOv3 (106 layers,
65 GOPs) is trained with COCO dataset [47]. All of the
original model (i.e., 32-bit floating point), mixed precision,

TABLE III

COMPARISON OF THE COMPRESSION ON YOLO V3 AND COCO DATASETS

TABLE IV

THE MIXED PRECISION MODEL OF SIMYOLOV2 ON TWO DATASETS

TABLE V

COMPARISON WITH PREVIOUS WORKS FOR THE
COMPRESSION ON RESNET-50 AND IMAGENET

and pruning modules are trained for performance comparison.
Table III shows that the mixed precision model requires
22.66 times smaller size while losing 0.46% of mAP.
Compared to the pruning method with a same compression
ratio, the mixed precision scheme achieves 2.7% higher mAP.

Finally, additional tests on ImageNet dataset [48] are con-
ducted to demonstrate the efficiency of the proposed mixed
precision scheme. Firstly, the same compressed model of
SimYOLOv2 is trained on ImageNet dataset. In Table IV,
the proposed scheme reduces model size by 27.37 times while
achieves a top-1 accuracy of 72.8% (i.e., 0.1% lower than
the floating-point model). Furthermore, Table V shows the
comparison of the proposed scheme to the previous works
on ResNet-50. HAQ [40] and HAWQ [41] propose mixed
precision quantization schemes, in which each entire layer is
quantized to a different number of bits. However, they do not
cover binary quantization due to a significant loss of accuracy.
Whereas, in the proposed work, the accuracy loss due to binary
quantization is well compensated by a small dynamic number
of high precision weights. Therefore, the proposed work yields
a higher performance in terms of both compression efficiency
and accuracy.

The above experiments show that even though this paper
focuses mainly on YOLO detectors which achieve the best
trade-offs between accuracy and speed [6], the proposed
scheme also works well for various networks (i.e., YOLOv2,
YOLOv3, ResNet50) on various datasets, including both
object detection (i.e., VOC, COCO) and classification (i.e.,
ImageNet). Therefore, it is expected that the proposed scheme
can be generalized to all other deep networks based on the
convolutional layers.

B. Accelerator Design With Mixed Precision

The first experiments show the advantages of the proposed
channel-wise ratio scheme over the layer-wise scheme
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Fig. 9. Comparison of layer-wise vs channel-wise. (a) Adder tree size of each output channel of conv14. (b) Number of multipliers for each layer of
SimYOLOv2. (c) Adder tree size of each layer of SimYOLOv2.

TABLE VI

COMPARISON OF THE PROPOSED DESIGN WITH THE PREVIOUS WORKS FOR YOLO CNN HARDWARE

proposed in [17]. A large convolutional layer (i.e., CONV14)
is compared. Fig. 9(a) depicts the size of the adder tree in each
PE (i.e., corresponding to each output channel processing) for
both layer-wise and channel-wise mixed precision training.
The adder tree size of a layer is the maximum size of
the adder tree in all the PEs. Compared to the proposed
scheme (i.e., channel-wise), the layer-wise scheme requires a
larger adder tree and causes a larger load unbalance between
the output channels. Consequently, it demands a relatively
larger hardware resource and lower resource utilization. For
both the schemes, Fig. 9(b) and 9(c) present the number of
multipliers and adder tree size, respectively, for each layer
in Sim-YOLO-v2. In Fig. 9(b), the number of multipliers for
layers 2, 3, 5, 11, 14, and 16 of the channel-wise scheme is
significantly smaller than for those of the layer-wise scheme.
The (mean, standard deviation) values of the number of
multipliers for the channel-wise and layer-wise schemes are
(19.4, 5.0) and (24.7, 7.7), respectively. This indicates that the
sparse weights are more uniformly distributed over the weight
blocks in the channel-wise scheme than over the layer-wise
scheme. A small number of multipliers results in a small
LUTs size and low DSP utilization. Fig. 9(c) shows a similar
observation that the adder tree size in the channel-wise scheme
is many-folds smaller than that in the layer-wise scheme.

The (mean, standard deviation) values of the adder tree
size are (6.6, 1.7) and (11.1, 4.7) for the channel-wise and
layer-wise schemes, respectively. Both the experimental results
exhibit that the channel-wise scheme requires relatively much
smaller hardware resources and consequently, the hardware
utilization is much higher for different layers.

Table VI provides the comparison of the streaming mixed
precision design and previous designs for the YOLO hardware
implementation. Owing to the elimination of the off-chip
access for intermediate data and parameters, the proposed
design attains the same throughput as the precedent design
in [9]. In terms of the hardware utilization, compared to
the precedent design [9] in the sixth column, the proposed
design requires only 4.9% more BRAMs utilization and 19.9%
more DSPs utilization. In terms of the LUTs, the proposed
scheme utilizes 29.3% more LUTs of the FPGA resources.
It is noteworthy that mAP of the proposed scheme is 71.13%,
which is significantly higher than in [9]. Compared to full-
precision Sim-YOLO-v2 on a GPU, in the second column,
the proposed accelerator loses only 0.95% detection accuracy
while requiring a 27.87 times smaller parameter size, which
results in a much lower power consumption. Furthermore,
in terms of the throughput, the proposed design achieves a
1.24 times higher performance.
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Fig. 10. SRAM size/DRAM access w.r.t group boundary. (a) 8-bit Sim-YOLO-v2. (b) 16-bit Tiny-YOLO-v2. (c) mixed precision quantization + mixed data
flow scheme for Sim-YOLO-v2.

C. Accelerator Design With Mixed Data Flow

The experimental results show that the hardware accelerator
with the mixed data flow is highly efficient in reducing the
SRAM size while minimizing the off-chip access.

The first experiment is conducted with 8-bit precision Sim-
YOLO-v2. Fig. 10(a) shows the on-chip size and off-chip
accesses of the mixed data flow scheme with respect to the
group boundary. The “gray” bar graph shows the estimated
SRAM size when the parameters of the first group are stored
in SRAM. The “DRAM accesses (SRAM)” bars present the
off-chip access when the parameters of the first group are
stored in SRAM. The “DRAM accesses (DRAM)” line depicts
the off-chip access when the parameters of the first group are
stored in DRAM. For the case when the parameters in the
first group are stored in DRAM, the total DRAM access for
a single input image is 191 MB, which is extremely large
for high-speed processing on an embedded FPGA. In fact,
this case corresponds to the previous streaming design in [9]
(i.e., group boundary is CONV17 in Fig. 10(a)). By contrast,
the proposed mixed data flow with the group boundary at
CONV7 reduces the SRAM size by 8.9 times when compared
to the previous streaming design [9]. The DRAM access is 14
MB, which corresponds to a reduction by 13.5 times.

The second experiment shows the advantages of the pro-
posed mixed data flow compared to the state-of-the-art design,
DNNBuilder, in [11]. For a reasonable comparison, the same
YOLO network, data precision (i.e., 16 bits), and input HD
image size (1280×384) are used. The mixed data flow divides
YOLO into two groups. Parameters in both the groups are
loaded from a DRAM. Fig. 10(b) illustrates the SRAM size
and DRAM access (per single input) with respect to the group
boundary. The boundary at CONV4 performs the best in terms
of both the factors. However, DNNBuilder has all layers only
in group 1, implying that the boundary is at the extreme
last layer. The required DRAM bandwidth is 10.3 times
smaller than that in the design in [11]. Table VII provides the
performance comparison of the proposed work and result given
in [11] on a ZC706 FPGA board. While achieving the same
throughput, the mixed data flow scheme requires 1.61 times
less BRAMs and a 10.3 times lower DRAM bandwidth.

To demonstrate the scalability of the proposed mixed data
flow design to more complicated networks, two very deep

TABLE VII

TINY-YOLOV2 PERFORMANCE COMPARISON OF MIXED

DATA FLOW SCHEME AND DNNBUILDER [11]

Fig. 11. The SRAM size and DRAM access w.r.t group boundaries for
ResNet-152.

networks, ResNet-152 with 152 layers and YOLOv3 with
106 layers, are deployed in the proposed hardware design. It is
assumed that the parameters of the first group are stored in the
on-chip memory. Fig. 11 depicts the on-chip size and off-chip
access for parameters with respective to the group boundary
on ResNet-152. It is noteworthy that the proposed scheme
removes off-chip accesses for the intermediate feature-maps
completely. Parameters are read once per layer by the “Main
Layer”. The group boundary at conv3_1 requires a minimal
on-chip memory, thereby, being chosen as the boundary.
To see the benefits of adding pipelined layers to the main
layer, the mixed dataflow design and single layer design are
implemented on FPGA. In the “single layer” design, even
though shortcut data and intermediate feature-maps are access
off-chip, it still consumes large on-chip resource for input
buffer and partial sum buffer. As shown in Table VIII, the
mixed dataflow design on ResNet-152 reduces the SRAM
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TABLE VIII

RESNET152 - PERFORMANCE COMPARISON OF SINGLE LAYER
DESIGN VS MIXED DATA FLOW DESIGN

TABLE IX

RESNET152 - PERFORMANCE COMPARISON TO PREVIOUS WORKS

size and off-chip access significantly while adding small
hardware overhead for pipelined layers in the 1st group.
Finally, Table IX presents the comparison of the proposed
mixed data flow design with previous works over the
ResNet-152. The proposed design completely removes
off-chip access for feature-maps, and read parameters once.
Therefore, the memory bandwidth is significantly smaller
than previous works. Moreover, it consumes least BRAM
resources demonstrating that the proposed design provides the
best performance while requiring modest off-chip memory
access and on-chip memory size.

Finally, the additional experiment on YOLOv3 [21] is
conducted. YOLOv3 has a multi-scale/multi-branch architec-
ture and feature concatenation of different scales. Table X
compares the performance of the proposed scheme against the
unified design. Similar to running ResNet-152, the proposed
mixed data flow design achieves higher throughput while
requiring 1.6 times less BRAMs and completely eliminating
off-chip access to intermediate data. These results also demon-
strate that the proposed method can be extended to other
detectors. It should be noted that almost all detectors (i.e.,
YOLOv2, YOLOv3, RetinaNet, SSD, RCNN, etc.) produce
the detection results, bounding boxes and classification results,
on downscaled feature-maps. Hence, the mixed dataflow archi-
tecture still can be applied to these detectors. In detail, some
shallow layers that work with large size feature-maps can
reduce off-chip access by applying the row-reuse scheme,

TABLE X

YOLOV3 - PERFORMANCE COMPARISON OF UNIFIED
DESIGN VS MIXED DATA FLOW DESIGN

TABLE XI

SIMYOLOV2 - PERFORMANCE COMPARISON OF SINGLE LAYER

DESIGN AND MIXED PRECISION + MIXED DATA FLOW

while deep layers that work with smaller size feature-maps
can be processed by the main layer.

D. Accelerator Design With Mixed Precision and Mixed
Data Flow

The last experiment combines the mixed precision design
and the mixed data flow to further reduce the on-chip memory
utilization and off-chip access. It should be noted that the
dense + sparse parameters of the first group are stored in
BRAMs. Fig. 10(c) shows the SRAM size and DRAM access
of the proposed mixed design. The group boundary between
CONV7 and CONV13 reduces the SRAM size to less than
1.5 MB while requiring less than 2 MB of the DRAM access.
CONV12 is chosen as the boundary to guarantee a bal-
anced pipeline between the two groups to achieve the highest
throughput. Section VI-C discusses about the advantages of
the mixed data flow design to the single layer design. The
combination with the mixed precision scheme further reduces
the off-chip access. As shown in Table XI, the combined
scheme achieves 3.2 times higher throughput while requiring
2 times less BRAMs size and 12.95 times less off-chip
accesses. A single data rate (SDR) SDRAM is sufficient to
support real-time performance.

E. Related Works

Research in [49] presents a heterogeneous weight quantiza-
tion including both equal-distance and mixed powers-of-two
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methods for different layers of Tiny-YOLO v2. However,
the compression causes 2.7% accuracy loss compared to
the original model. Another research in [50] combines
both quantization and pruning to accelerate CNN training
process. It presents an architecture to utilize both inference and
back-propagation sparsity to achieve low operation complexity.
Different from this work, the proposed work aims to reduce
off-chip access/on-chip memory size for inference only.

To reduce off-chip access for intermediate data, the accel-
erator designs in [59] and [60] perform the pipelined com-
putation between layers. The ASIC design in [59] utilizes
5-bit look-up-table to remove large hardware cost of mul-
tiplications. As reported in [59], the accuracy loss of this
approach is significant when the CNNs become deeper. The
study in [60] optimizes the CNN structure using depth-wise
convolution [52] so that the entire weights are able to be stored
in BRAMs of a FPGA chip owing to lightweight and shallow
CNN structure. However, these works would not scale up well
for larger datasets and deeper networks that are well supported
by the proposed scheme.

The study in [57] introduces an integrated CNN accelera-
tor design with a dynamic fixed-point quantization strategy
to minimize the computational loss while saving hardware
resources and memory bandwidth. Another work in [58]
proposes a CNN hardware design which supports configurable
multi-precision computation using single bit RRAM. In this
design, each layer is computed using a different number of
bits, which can significantly reduce energy consumption. Dif-
ferent from these studies, this paper proposes a coarse-grained
intra-layer mixed precision quantization scheme and the cor-
responding hardware design, and evaluates high compatibility
of the proposed method with various network structures and
various datasets.

Regarding the CNN compression, there are many previous
works aim to reduce model size of CNNs [25], [38], [40], [41],
[51]–[53], [61]. Binary [38] and ternary [53] weight quanti-
zation schemes compress the network by 32 and 16 times,
respectively, but cause a significant accuracy loss on ImageNet
dataset. Pruning [25] reduces parameter size of convolutional
layers of VGGNet by 4.5 times with no loss of accuracy.
Another hardware-aware technique in [61] also presents a
constrained pruning approach to achieve a similar pruning ratio
as [25] while balancing the computation for the sparse CNN
accelerators. However, it should be noted that the experimen-
tal results in Section VI-A show that the proposed scheme
achieves significantly higher compression ratio than the prun-
ing approach with a same accuracy. Moreover, the workload
imbalance is also solved by a channel-wise quantization in
the proposed scheme. Meanwhile, an object detector made
by compact network such as MobileNetv2 and SSDLite [52]
outperforms YOLO v2 on COCO dataset (22.1% vs 21.6%)
while keeping the network size 10 times smaller. Whereas,
the proposed mixed precision compresses networks by
22.66 – 28.93 times on PASCAL VOC, COCO, and ImageNet
datasets with negligible loss.

Finally, AutoML based methods such as HAQ [40] and
RaQu [62] proposed a fined-grained inter-layer mixed preci-
sion quantization, where the computation within a layer uses a

same number of bits. Different from these works, the proposed
scheme employs a coarse-grained intra-layer mixed precision
using Bayesian approach. Therefore, the AutoML approaches
from [40] and [62] can also be applied to the proposed
quantization to manipulate the weight ratios within the layer.

VII. CONCLUSION

This paper proposes a layer-specific design that employs dif-
ferent organizations that are optimized for the different layers.
The proposed design employs two layer-specific optimizations:
layer-specific mixed precision and layer-specific mixed data
flow. The mixed precision scheme causes a negligible accuracy
loss while reducing the model size significantly compared to
that in a full-precision network. As a result, the proposed
schemes significantly outperform the previous works in terms
of both throughput, off-chip access, and on-chip memory
requirement.
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