
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44603

Implementation and Performance Analysis of an EtherCAT Master on the

Latest Real-time Embedded Linux

Raimarius Delgado

Graduate Student, Department of Electrical and Information Engineering, Seoul National University of Science and Technology,

Seoul, South Korea raim223@seoultech.ac.kr

Chang Hwi Hong

Student, Department of Electrical and Information Engineering, Seoul National University of Science and Technology,

Seoul, South Korea hokofoho@naver.com

Wook Cheol Shin
Student, Department of Electrical and Information Engineering, Seoul National University of Science and Technology,

Seoul, South Korea shinwc159@hanmail.net

Byoung Wook Choi


Professor, Department of Electrical and Information Engineering, Seoul National University of Science and Technology,

Seoul, South Korea bwchoi@seoultech.ac.kr

 Corresponding Author

Abstract

This paper presents a performance analysis of an open source

EtherCAT Master on a real-time embedded Linux extension,

Xenomai. The system is implemented on an embedded target
with the latest Linux kernel. Xenomai is a dual kernel

approach that provides real-time characteristics to user-space

applications integrated with the standard Linux kernel. IgH

EtherCAT Master is an open source solution that supports

real-time Ethernet protocol on top of real-time Linux

extensions. However, as opposed to PC-based Linux,

implementation of toolchains and patches is difficult on an

embedded platform due to lack of systematic documents and
technical support regarding kernel revisions. Therefore, this

paper provides comprehensive procedures and detailed

information to deal with latest embedded Linux kernels. We

also evaluated the real-time performance in terms of cyclic

task, jitter, and transaction time. Transaction time is defined

as the time interval between the master sending a command to

a slave and receiving the corresponding feedback. Finally, the

system is tested by connecting the EtherCAT Master to a
slave with CANopen protocol and the results are shown using

a control client that exhibits on-the-fly processing. The results

signify high potential of utilizing open source EtherCAT-

based embedded control devices for commercial and industrial

control systems.

Keywords: High Curvature Path, Physical Limits,

Convolution, Bézier Curve, Path Planning, Obstacle
Avoidance.

Introduction

Nowadays, ratification of Ethernet-based fieldbus system as

the standard physical communication layer in the fields of

automation and control technology is radically increasing

worldwide. Ethernet is already an established command-level

technology for both factory networking and inter-control

communication [1].

After adaptation of the fieldbus standard, Ethernet-based
network simplifies, thoroughly reduces wires, and makes

maintenance of the system as convenient as possible.

Moreover, the move towards Ethernet as the basic

communication platform is also based on the excellent price

over performance relationship of the technology [2].

However, Ethernet is not optimized to send subsequent short

messages and requires microprocessors at each node that

entirely slows down the whole system. In comparison with
other fieldbuses, it could not achieve typical automation

requirements regarding performance and being deterministic.

Some applications require real-time performance that is vital

in controlling intelligent and dynamic systems.

Real-time Ethernet protocols have been developed to ensure

determinism over standard Ethernet such as, EtherNet/IP,

Powerlink, PROFINET, and EtherCAT [2]. EtherCAT

(Ethernet for Control Automation) is a real-time Ethernet
protocol that is gaining popularity in factory automation and

process automation. It offers various appealing features such

as higher performance of optimal usage of the Ethernet

bandwidth for data transfers, more flexible topology and

lower costs than other Ethernet fieldbus technology. [3-5].

At present, a common EtherCAT system uses structured

environment that provides high quality, top-performance, and

technical support on high-end hardware [6]. However, these
systems are not flexible in terms of development especially in

solving the black box problem. In addition, another important

issue is the cost of acquisition and maintenance where a single

unit is considered expensive, bulky, and not fully optimized

for its purpose.

Thus, this paper presents an implementation of an open-source

EtherCAT Master solution provided by IgH EtherLab [7],

mailto:raim223@seoultech.ac.kr
file:///C:\Users\???\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.IE5\AppData\Local\Microsoft\Windows\Temporary%20Internet%20Files\Content.IE5\PZ7SILE6\hokofoho@naver.com
mailto:shinwc159@hanmail.net
mailto:bwchoi@seoultech.ac.kr

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44604

under real-time dual-kernel approach of Xenomai [8] and

embedded Linux. This solution gives more power and

freedom to the user in developing within the applications,

data, and physical layers of the whole system. Moreover,
ARM-based processors such as BeagleBoard, ODROID, and

Freescale i.MX Series, have found its way to the field as it

offers optimal performance for an EtherCAT Master while

being operated in low power and relatively low-cost compared

to high-end computers.

In order to ensure practical and proper design of a motion

control system based on EtherCAT, benchmarking the time

characteristics of the protocol using real-time mechanisms is
required to verify the expected timing accuracy between

EtherCAT Master and Slave communication.

Currently, there are different performance analysis researches

for EtherCAT systems but they lack either actual automation

workload, or inadequate attention to the performance of real-

time mechanisms on the master side. Cereia et.al evaluated the

performance of a PC-based real-time EtherCAT Master using

the fully pre-emptible Linux kernel, RT_PREEMPT and
RTAI in terms of the accuracy of periodic control tasks of the

master, without automation workload [9]. Sung et.al

addressed the performance analysis of an EtherCAT control

system in terms of end-to-end delay of synchronized

processes using older versions of both Xenomai and IgH

EtherLab, 2.6.0 and 1.5.0 respectively [10].

The contributions of this paper are divided into two main

parts: First, the suitable and latest working environment is
developed and implemented for an ARM-based embedded

board, Freescale i.MX6Q SABRELite. Unlike working

environments for PC-based Linux, formulation of compatible

versions of the Linux kernel, Xenomai, and EtherCAT has

many issues for embedded Linux. These issues include lack of

updates for hardware dependent parts of the kernel code,

inadequate support of the Adeos patch [11] that is required for

dual kernel approach, and the introduction of the Device Tree
Binary (DTB) [12] for Linux kernel version 3.x which

requires newer version of the bootloader. Next, a performance

analysis between the ARM-based EtherCAT Master and a

slave communicated using CANopen protocol [13] was

conducted. The feasibility of the system was evaluated in

three different categories. The first one is the periodicity of

the real-time control task in different cyclic periods. The

second one is the jitter that occurs for each cycle of the
control task, and the final one is the transaction time that is

defined as the end-to-end delay for a Master to send a

command and receive the corresponding feedback while in

connection with the CANopen-based slave.

The second section briefly introduced the EtherCAT protocol

and the CANopen-over-EtherCAT (CoE) protocol that

employs CANopen mechanisms on the EtherCAT Data layer.

Next, we describe the porting procedures for step-by-step
implementation of the development environment for the

embedded EtherCAT Master. The fourth section shows the

experimental results and performance evaluation of the

EtherCAT system. The final section concludes this paper.

EtherCAT and CoE

EtherCAT is a protocol offering very high real-time

performance and determinism developed by Beckhoff

Automation [6]. The typical EtherCAT network supports

single-master network configurations, where the master

communicates with the slaves by sending them suitable
telegrams.

The EtherCAT master sends a telegram that passes through

each node. Each EtherCAT slave device reads the data

addressed to it “on the fly”, and inserts its data in the frame as

the frame is moving downstream. The frame is delayed only

by hardware propagation delay times. The last node in a

segment (or branch) detects an open port and sends the

message back to the master using Ethernet technology’s full
duplex feature. The telegram’s maximum effective data rate

increases to over 90 %, and due to the utilization of the full

duplex feature, the theoretical effective data rate is even

higher than 100 Mbit/s.

CANopen is a communication protocol and device profile

specification for embedded systems used in automation.

CANopen implements the layers above and including the

network layer. The CANopen standard consists of an
addressing scheme, several small communication protocols

and an application layer defined by a device profile. The

communication protocols have support for network

management, device monitoring and communication between

nodes, including a simple transport layer for message

segmentation/desegmentation. The lower level protocol

implementing the data link and physical layers is usually

Controller Area Network (CAN). Fig. 1 shows the sequence
diagram in developing a control application for a CANopen

over EtherCAT (CoE) with IgH EtherCAT Master [7].

First, CoE protocol enables the complete CANopen profile

family to be utilized via EtherCAT. The SDO protocol is used

directly, so that existing CANopen stacks can be used

practically unchanged. Optional extensions are defined that

lift the 8-byte limit and enable complete readability of the

object list. The process data are organized in process data
objects (PDO), which are transferred using the efficient means

of EtherCAT - naturally without 8-byte limit. The application

can register the PDOs’ entries for exchange during cyclic

operation. The sum of all registered PDO entries defines the

PDOs.

Fig. 1 CoE Device Architecture

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44605

Implementation of the Embedded EtherCAT Master

In this paper, the EtherCAT Master uses i.MX6Q embedded

board manufactured by Freescale Semiconductors [14]. The

summary of the software architecture of the EtherCAT Master
is shown in Fig. 2. For an embedded board without its own

compiler, host-target development environment is required

which in this case, described by Table 1.

Fig. 2 Software Architecture of the Embedded EtherCAT

Master

TABLE. 1. Host-Target Development Environment

Item Description

Host Processor Intel Core i5-4460 @ 3.2 GHz

OS 32-bit Ubuntu 14.04 LTS

Kernel Linux 3.16-0-45-generic

Target Board Freescale i.MX6Q SABRELite

Toolchain arm-linux-gnueabihf-4.8.3

Bootloader U-Boot 2014.07

Kernel Linux 3.14.15 ARMv7

Multiplatform

Adeos Patch ipipe-core-3.14.17-arm-2

Real-time Skin Xenomai 2.6.4

RFS Minimal Ubuntu 14.04.02

EtherCAT

Master

IgH EtherCAT Master 1.5.2

The latest version of embedded Linux that can be

implemented on the i.MX6Q is Linux kernel 3.14.15 offered
by ARMv7 Multiplatform [15]. Moreover, the compatible

Xenomai version is 2.6.4 with the Adeos patch 3.14.17-arm-2.

The real-time system is stacked with IgH EtherCAT Master

1.5.2 which is the latest stable version.

Depending on the manufacturer, most of embedded Linux

kernel versions above 3.0 introduce the DTB, depending on

the manufacturer. DTB is a data structure that describes the

hardware and initializes the devices for the board during

kernel boot time. In case of the i.MX6Q, all Linux kernel

versions above 3.8 require DTB when the kernel starts to

know all the devices within the board and initialize useful

drivers.
The factory version of the bootloader, U-boot 2009.08, could

not read DTB files therefore; an updated version offered by

Boundary Devices [15], U-boot 2014.07 is implemented

instead.

Fig. 3 Memory Device Diagram and Partition Table

According to the boot commands and arguments of the latest

bootloader, the Multimedia Card (MMC) memory device

where the environment should be stored, is separated into two

partitions as shown in Fig. 3. The first part is called the BOOT
partition, which is a FAT formatted partition where the

Xenomai-stacked kernel image and the board defining DTB

are stored. It usually requires a size of 20 MB. The remaining

memory is formatted in EXT4 to serve as the Root Filesystem

(RFS) partition of the Linux kernel where the libraries and

APIs of both Xenomai and EtherCAT Master is located.

Latest bootloader is downloaded from the Boundary Devices

repository [15]. Default settings for the i.MX6Q SABRELite
are configured and the bootloader binary is built.

cd u-boot-imx6

make mx6qsabrelite_config

make

The latest Linux kernel ported for the i.MX6Q SABRELite

board is downloaded by running the shell script, build_kernel

within the cloned armv7-multiplatform tree [15] from the
v3.14.x branch. The kernel path is stored as an environment

variable.

cd armv7-multiplatform

./build_kernel.sh

export KERNEL=$(pwd)/KERNEL

To implement the dual-kernel approach using Xenomai and

the embedded Linux kernel, the kernel is prepared and
patched with Adeos I-pipe.

tar xvjf xenomai-2.6.4.tar.bz2

export XENO=$(pwd)/xenomai-2.6.4

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44606

#./xenomai-2.6.4/scripts/prepare-kernel.sh

--linux=$KERNEL

--adeos=ipipe-core-3.14.17-arm-2.patch

--arch=arm
cd $KERNEL

make distclean

make imx_v6_v7_defconfig

make menuconfig

When configuring the kernel of menuconfig, some

configurations should be defined. Real-time Operating

Systems (RTOS) are sensitive with voltage level changes such
as switches. These features are disabled to avoid bugs and

errors in real-time performance. The following configurations

are strictly disabled:

 CONFIG_CC_STACKPROTECTOR_NONE

 CONFIG_CPU_FREQ

 CONFIG_KGDB

Moreover, task pre-emption and real-time scheduler within
the Linux kernel are enabled to obtain optimal performance.

 CONFIG_SCHED_MC

 CONFIG_PREEMPT

Compilation of the Xenomai-stacked Linux kernel image,

modules, and DTB are described below. The kernel image is

loaded by the bootloader in a specific memory address of the

RAM. Thus, the kernel image should be built accordingly.
The resulting kernel image and DTB are stored in the BOOT

partition of the MMC.

make uImage LOADADDR=0x12000000

make modules

make dtbs

The RFS is downloaded from RobertCNelson’s server [16]

which is an image of a Minimal Ubuntu Filesystem. After
downloading the image, it is uncompressed and the path of the

RFS is stored as an environment variable.

tar xvf ubuntu-14.04.2-minimal-armhf-2015-6-9.tar.xz

cd ubuntu-14.04.2-minimal-armhf-2015-6-9

tar xvf armhf-rootfs-ubuntu-trusty.tar

export RFS=$(pwd)/rootfs

The kernel modules are installed inside the RFS with the
following steps:

cd $KERNEL

export INSTALL_MOD_PATH=$RFS

make modules_install

After the modules are all installed, the Xenomai library is also

installed in the RFS. To optimize Xenomai with the target

board, suitable configurations and FPU settings are
implemented for ARMv7 architecture as follows:

cd $XENO

./configure CFLAGS="-march=armv7-a -mfpu=vfp3"

LDFLAGS="-march=armv7-a -mfpu=vfp3"

--host=arm-linux-gnueabihf

--prefix=$RFS/usr/xenomai

make

make install

Latest version of the EtherCAT Master offered by IgH

EtherLab is cloned from the IgH Mercurial repository found

in [7]. Identical to the board optimization settings in building
the Xenomai library, same configurations are implemented in

building the EtherCAT Master API.

cd igh_ethercat

#./configure

--prefix=$RFS --with-linux-dir=$ KERNEL

--with-xenomai-dir=$RFS/usr/xenomai

--enable-generic=yes --enable-rtdm=yes

CFLAGS="-march=armv7-a -mfpu=vfp3 -g -O2"
CXXFLAGS="-march=armv7-a -mfpu=vfp3

-g -O2"

LDFLAGS="-march=armv7-a-mfpu=vfp3"

--host=arm-linux-gnueabihf

make

make install

make EXTRA_CFLAGS="-march=armv7-a

-mfpu=vfp3" modules
make modules_install

After completion of all the steps, the RFS is moved to the

rootfs partition of the MMC. The MMC is attached to the

target board and the booting sequence is initialized.

Fig. 4 shows the Latency test results to check real-time

characteristics of the Xenomai-stacked Linux kernel. The test

mode is done in the user-space and the sampling period of the
dummy task is 1000 microseconds. As shown in the figure,

the maximum latency for a running time of 5 seconds is

approximately 5 microseconds, which is less than the

minimum viable latency of 50 microseconds. Fig. 5 checks

EtherCAT Master connection with a slave.

Fig. 4 Xenomai Latency Test

Fig. 5 IgH EtherCAT Operation Check

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44607

Experiment Results and Performance Analysis

For this study, we constructed an EtherCAT system with the

controller based on the embedded EtherCAT Master discussed

in the previous section, a slave operated using CANopen
protocol, and a control client that send and acquire data on the

fly. The experimental environment is shown in Fig. 6. In

addition, Table 2 describes detailed specifications of the

system.

Fig. 6 Experiment Environment

TABLE. 2 Specifications of the EtherCAT System

Item Description

Control Client Software C#-based Application

Connection User Datagram Protocol

Features State Switch, Position Control

Slave Board LS Mecapion L7NA004B

PDO Tx 12 Bytes, Rx 12 Bytes

Fig. 7 shows our developed control client application that is

connected to the EtherCAT topology that controls servo state

of the slave, send position commands, and monitors feedback

from the slaves and timing characteristics. The application is
developed using C# and uses UDP communication to preserve

real-time characteristics.

Fig. 7 EtherCAT Control Client

Fig. 8 Timing Diagram of the Real-time Control Task

Fig. 9 Pseudocode of EtherCAT Control_Task

The real-time cyclic control task operating within the

EtherCAT Master is expressed in a timing diagram shown in

Fig. 8. In this figure, current state and data in process image

from the slave is represented by C, which stands for collect.

Processing or P denotes the current process where the next

control command is generated. Transmit or T is the period

where the generated command is transferred to the process
image that is sent back to the slave. Fig. 9 shows the

pseudocode for the real-time control task operated in the

EtherCAT Master that expresses the timing diagram in a

different manner. The transaction time of an EtherCAT

control task is denoted as Ttrans which is defined as:

()trans n sT k P k C T   (1)

where, kn is the delay that occurs depending on the number of

slave. ks denotes the delay that depends on the size of the

process image that affects the Control and Transmit periods.

Tperiod represents actual time that it takes for one cycle of the

control task. Its relationship with the jitter is defined by the
following equation:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44608

jitter cycle periodT T T  (2)

where, Tcycle is the expected cycle of the real-time control task.

(a) 0.5 ms

(b) 2 ms

(c) 1 ms

(d) 4 ms

Fig. 10 Distribution Plot of Actual Period Results in

Different Expected Cycle Time

The experiment is performed in varying expected cycle as

shown by the distribution plot in Fig. 10. For each task with

expected cycle time of 4 ms, 2 ms, 1 ms, and 0.5 ms, test

metrics such as the actual period, jitter, and overall transaction

time are tabulated in terms of average, maximum, minimum,

and standard deviation as shown in Table 3.

The control task was run continuously for 10 seconds for one

slave with 24 bytes of process image. The data are acquired
and calculated using the control client.

TABLE. 3 Real-tiime Performance Measurement Results

(ms)

Tcycle Index Avg Max Min St. D

4 ms Tperiod 4.0000 4.0049 3.9953 0.0012

Ttrans 0.0796 0.2993 0.0696 0.0070

Tjitter 0.0011 0.0049 0.0000 0.0005

2 ms Tperiod 2.0000 2.0031 1.9969 0.0003

Ttrans 0.0732 0.3005 0.0642 0.0080

Tjitter 0.0002 0.0031 0.0000 0.0002

1 ms Tperiod 1.0000 1.0047 0.95959 0.0004

Ttrans 0.0769 0.7551 0.0685 0.0090

Tjitter 0.0003 0.0047 0.0000 0.0003

0.5 ms Tperiod 0.5000 1.0747 0.1735 0.0058

Ttrans 0.0885 0.9923 0.0666 0.0157

Tjitter 0.0007 0.5747 0.0000 0.0057

As shown by the experiment results, the average actual period

in all expected cycle time was able to meet the corresponding

target.

The highest average jitter at 0.0011 ms is found in the task

running at 4 ms expected cycle. The overall highest jitter
occurs when the control task is running at 0.5 ms expected

cycle at 0.5747 ms. Moreover, the transaction time that is

supposed to be within the boundary of the actual period shows

questionable results where it is more than the actual and

expected cycle time at 0.9923 ms.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44603-44609

© Research India Publications. http://www.ripublication.com

44609

As expected, the distribution plot above shows that majority

of the data samples are not equal to the expected cycle time

when the real-time control task is in 4 ms and 0.5 ms cyclic

operation.
Based on the results, the most optimized period for an

EtherCAT control task is advised to be within 1 and 2 ms

periodic cycle. Moreover, the experiment was operated using

the generic driver that comes with the IgH EtherCAT Master

in user space. Less end-to-end delay could be accomplished if

a native driver is implemented. In case of the jitter, the results

show relatively low values compared to an established work

in [9]. This proves that i.MX6Q SABRELite is a viable
embedded real-time controller for industrial control systems

using an open-source EtherCAT Master solution.

Conclusion

In this paper, an open-source EtherCAT Master was

implemented on an embedded board using dual-kernel

approach with the latest versions of Xenomai and embedded
Linux. Performance analysis was conducted for the system in

terms of periodicity, the jitter, and the overall transaction time

of commands sent and received from a slave communicated

with CANopen protocol.

The open-source EtherCAT Master, IgH EtherLab was

stacked on top of an i.MX6Q SABRELite board updated to

the latest bootloader version to accommodate Linux kernel

versions that require DTB.
Using the developed master, experiments were conducted in

various expected cycle time to test its performance with a

single slave and the data are acquired with a C# based

application using UDP for control and monitoring functions.

The experiment results show that the embedded EtherCAT

Master mostly stable in cyclic task with period between 1 and

2 ms. Nonetheless, average jitter and transaction time

validates that the EtherCAT Master constructed from open
source software is applicable to industrial control systems in

comparison to established researches in [9-10].

In our future research, we will extend our analysis by studying

on the overall time constraints on the slave, which is essential

in rigorous and synchronized control especially in advanced

robotic systems. In addition, communication between

EtherCAT masters and application of the EtherCAT

Automation Protocol in cloud environment is another interest
on hand.

Acknowledgment

This study was financially supported by Seoul National

University of Science and Technology.

References

1. J.-D. Decotignie, “Ethernet-based real-time and

industrial communications,” Proceedings of the

IEEE, vol. 93, no. 6, pp. 1102-1117, 2005.

2. G. Prytz, “A performance analysis of EtherCAT and

PROFINET IRT,” Proc. 13th IEEE Int’l Conf.

Emerging Technologies and Factory Automation

(ETFA), 2008.

3. L. Seno, and C. Zunino, “Real-Time Ethernet

networks evaluation using performance indicators,”
Proc. 14th IEEE Int’l Conf. Emerging Technologies

and Factory Automation (ETFA), 2009.

4. P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, “

A distributed instrument for performance analysis of

real-time Ethernet networks,” IEEE Transactions on

Industrial Informatics, vol. 4, no. 1, pp. 16-25, 2008.

5. M. Cereia, I.C. Bertolotti, and S. Scanxio,

“Performance Evaluation of an EtherCAT Master
using Linux and the RT Patch,” Proc. 19th IEEE Int’l

Symp. Industrial Electronics (ISIE), 2010.

6. EtherCAT Group,

https://www.ethercat.org/default.htm.

7. IgH EtherLab, http://www.etherlab.org/en/index.php.

8. Xenomai Project, http://xenomai.org/.

9. M. Cereia, I.C. Bertolotti, and S. Scanxio,

“Performance of a real-time EtherCAT Master under
Linux,” IEEE Transactions on Industrial Informatics,

vol. 7, no. 4, pp. 679-687, 2011.

10. M. Sung, I. Kim, and T. Kim, “Toward a holistic

delay analysis of EtherCAT synchronized control

processes,” International Journal of Computers,

Communications and Control, vol. 8, no. 4, pp. 608-

621, 2013.

11. Adeos Project, http://home.gna.org/adeos/.
12. Embedded Linux Wiki,

http://elinux.org/Device_Tree.

13. M. Rostan, J.E. Stubbs, and D. Dzilno, “EtherCAT

enabled advanced control architecture,” Proc. 21st

IEEE/SEMI Advanced Semiconductor

Manufacturing Conference (ASMC), 2010.

14. Freescale Semiconductors,

http://www.freescale.com/.
15. Boundary Devices Repository,

https://github.com/boundarydevices/u-boot-imx6/.

16. Minimal Ubuntu, http://rcn-

ee.com/rootfs/eewiki/minfs/.

https://www.ethercat.org/default.htm
http://www.etherlab.org/en/index.php
http://xenomai.org/
http://home.gna.org/adeos/
http://elinux.org/Device_Tree
http://www.freescale.com/
https://github.com/boundarydevices/u-boot-imx6/
http://rcn-ee.com/rootfs/eewiki/minfs/
http://rcn-ee.com/rootfs/eewiki/minfs/

