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Abstract 

This paper presents a performance analysis of an open source 

EtherCAT Master on a real-time embedded Linux extension, 

Xenomai. The system is implemented on an embedded target 
with the latest Linux kernel. Xenomai is a dual kernel 

approach that provides real-time characteristics to user-space 

applications integrated with the standard Linux kernel. IgH 

EtherCAT Master is an open source solution that supports 

real-time Ethernet protocol on top of real-time Linux 

extensions. However, as opposed to PC-based Linux, 

implementation of toolchains and patches is difficult on an 

embedded platform due to lack of systematic documents and 
technical support regarding kernel revisions. Therefore, this 

paper provides comprehensive procedures and detailed 

information to deal with latest embedded Linux kernels. We 

also evaluated the real-time performance in terms of cyclic 

task, jitter, and transaction time. Transaction time is defined 

as the time interval between the master sending a command to 

a slave and receiving the corresponding feedback. Finally, the 

system is tested by connecting the EtherCAT Master to a 
slave with CANopen protocol and the results are shown using 

a control client that exhibits on-the-fly processing. The results 

signify high potential of utilizing open source EtherCAT-

based embedded control devices for commercial and industrial 

control systems. 

 

Keywords: High Curvature Path, Physical Limits, 

Convolution, Bézier Curve, Path Planning, Obstacle 
Avoidance. 

 

 

Introduction 

Nowadays, ratification of Ethernet-based fieldbus system as 

the standard physical communication layer in the fields of 

automation and control technology is radically increasing 

worldwide. Ethernet is already an established command-level 

technology for both factory networking and inter-control 

communication [1]. 

After adaptation of the fieldbus standard, Ethernet-based 
network simplifies, thoroughly reduces wires, and makes 

maintenance of the system as convenient as possible. 

Moreover, the move towards Ethernet as the basic 

communication platform is also based on the excellent price 

over performance relationship of the technology [2]. 

However, Ethernet is not optimized to send subsequent short 

messages and requires microprocessors at each node that 

entirely slows down the whole system. In comparison with 
other fieldbuses, it could not achieve typical automation 

requirements regarding performance and being deterministic. 

Some applications require real-time performance that is vital 

in controlling intelligent and dynamic systems. 

Real-time Ethernet protocols have been developed to ensure 

determinism over standard Ethernet such as, EtherNet/IP, 

Powerlink, PROFINET, and EtherCAT [2]. EtherCAT 

(Ethernet for Control Automation) is a real-time Ethernet 
protocol that is gaining popularity in factory automation and 

process automation. It offers various appealing features such 

as higher performance of optimal usage of the Ethernet 

bandwidth for data transfers, more flexible topology and 

lower costs than other Ethernet fieldbus technology. [3-5]. 

At present, a common EtherCAT system uses structured 

environment that provides high quality, top-performance, and 

technical support on high-end hardware [6]. However, these 
systems are not flexible in terms of development especially in 

solving the black box problem. In addition, another important 

issue is the cost of acquisition and maintenance where a single 

unit is considered expensive, bulky, and not fully optimized 

for its purpose. 

Thus, this paper presents an implementation of an open-source 

EtherCAT Master solution provided by IgH EtherLab [7], 
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under real-time dual-kernel approach of Xenomai [8] and 

embedded Linux. This solution gives more power and 

freedom to the user in developing within the applications, 

data, and physical layers of the whole system. Moreover, 
ARM-based processors such as BeagleBoard, ODROID, and 

Freescale i.MX Series, have found its way to the field as it 

offers optimal performance for an EtherCAT Master while 

being operated in low power and relatively low-cost compared 

to high-end computers. 

In order to ensure practical and proper design of a motion 

control system based on EtherCAT, benchmarking the time 

characteristics of the protocol using real-time mechanisms is 
required to verify the expected timing accuracy between 

EtherCAT Master and Slave communication. 

Currently, there are different performance analysis researches 

for EtherCAT systems but they lack either actual automation 

workload, or inadequate attention to the performance of real-

time mechanisms on the master side. Cereia et.al evaluated the 

performance of a PC-based real-time EtherCAT Master using 

the fully pre-emptible Linux kernel, RT_PREEMPT and 
RTAI in terms of the accuracy of periodic control tasks of the 

master, without automation workload [9]. Sung et.al 

addressed the performance analysis of an EtherCAT control 

system in terms of end-to-end delay of synchronized 

processes using older versions of both Xenomai and IgH 

EtherLab, 2.6.0 and 1.5.0 respectively [10]. 

The contributions of this paper are divided into two main 

parts: First, the suitable and latest working environment is 
developed and implemented for an ARM-based embedded 

board, Freescale i.MX6Q SABRELite. Unlike working 

environments for PC-based Linux, formulation of compatible 

versions of the Linux kernel, Xenomai, and EtherCAT has 

many issues for embedded Linux. These issues include lack of 

updates for hardware dependent parts of the kernel code, 

inadequate support of the Adeos patch [11] that is required for 

dual kernel approach, and the introduction of the Device Tree 
Binary (DTB) [12] for Linux kernel version 3.x which 

requires newer version of the bootloader. Next, a performance 

analysis between the ARM-based EtherCAT Master and a 

slave communicated using CANopen protocol [13] was 

conducted. The feasibility of the system was evaluated in 

three different categories. The first one is the periodicity of 

the real-time control task in different cyclic periods. The 

second one is the jitter that occurs for each cycle of the 
control task, and the final one is the transaction time that is 

defined as the end-to-end delay for a Master to send a 

command and receive the corresponding feedback while in 

connection with the CANopen-based slave. 

The second section briefly introduced the EtherCAT protocol 

and the CANopen-over-EtherCAT (CoE) protocol that 

employs CANopen mechanisms on the EtherCAT Data layer. 

Next, we describe the porting procedures for step-by-step 
implementation of the development environment for the 

embedded EtherCAT Master. The fourth section shows the 

experimental results and performance evaluation of the 

EtherCAT system. The final section concludes this paper. 

 

 

EtherCAT and CoE 

EtherCAT is a protocol offering very high real-time 

performance and determinism developed by Beckhoff 

Automation [6]. The typical EtherCAT network supports 

single-master network configurations, where the master 

communicates with the slaves by sending them suitable 
telegrams. 

The EtherCAT master sends a telegram that passes through 

each node. Each EtherCAT slave device reads the data 

addressed to it “on the fly”, and inserts its data in the frame as 

the frame is moving downstream. The frame is delayed only 

by hardware propagation delay times. The last node in a 

segment (or branch) detects an open port and sends the 

message back to the master using Ethernet technology’s full 
duplex feature. The telegram’s maximum effective data rate 

increases to over 90 %, and due to the utilization of the full 

duplex feature, the theoretical effective data rate is even 

higher than 100 Mbit/s. 

CANopen is a communication protocol and device profile 

specification for embedded systems used in automation. 

CANopen implements the layers above and including the 

network layer. The CANopen standard consists of an 
addressing scheme, several small communication protocols 

and an application layer defined by a device profile. The 

communication protocols have support for network 

management, device monitoring and communication between 

nodes, including a simple transport layer for message 

segmentation/desegmentation. The lower level protocol 

implementing the data link and physical layers is usually 

Controller Area Network (CAN). Fig. 1 shows the sequence 
diagram in developing a control application for a CANopen 

over EtherCAT (CoE) with IgH EtherCAT Master [7]. 

First, CoE protocol enables the complete CANopen profile 

family to be utilized via EtherCAT. The SDO protocol is used 

directly, so that existing CANopen stacks can be used 

practically unchanged. Optional extensions are defined that 

lift the 8-byte limit and enable complete readability of the 

object list. The process data are organized in process data 
objects (PDO), which are transferred using the efficient means 

of EtherCAT - naturally without 8-byte limit. The application 

can register the PDOs’ entries for exchange during cyclic 

operation. The sum of all registered PDO entries defines the 

PDOs. 

 

 
 

Fig. 1 CoE Device Architecture 
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Implementation of the Embedded EtherCAT Master 

In this paper, the EtherCAT Master uses i.MX6Q embedded 

board manufactured by Freescale Semiconductors [14]. The 

summary of the software architecture of the EtherCAT Master 
is shown in Fig. 2. For an embedded board without its own 

compiler, host-target development environment is required 

which in this case, described by Table 1. 

 

 
 

Fig. 2 Software Architecture of the Embedded EtherCAT 

Master 

 

TABLE. 1. Host-Target Development Environment 

 

Item Description 

Host Processor Intel Core i5-4460 @ 3.2 GHz 

OS 32-bit Ubuntu 14.04 LTS 

Kernel Linux 3.16-0-45-generic 

Target Board Freescale i.MX6Q SABRELite 

Toolchain arm-linux-gnueabihf-4.8.3 

Bootloader U-Boot 2014.07 

Kernel Linux 3.14.15 ARMv7 

Multiplatform 

Adeos Patch ipipe-core-3.14.17-arm-2 

Real-time Skin Xenomai 2.6.4 

RFS Minimal Ubuntu 14.04.02 

EtherCAT 

Master 

IgH EtherCAT Master 1.5.2 

 

 

The latest version of embedded Linux that can be 

implemented on the i.MX6Q is Linux kernel 3.14.15 offered 
by ARMv7 Multiplatform [15]. Moreover, the compatible 

Xenomai version is 2.6.4 with the Adeos patch 3.14.17-arm-2. 

The real-time system is stacked with IgH EtherCAT Master 

1.5.2 which is the latest stable version. 

Depending on the manufacturer, most of embedded Linux 

kernel versions above 3.0 introduce the DTB, depending on 

the manufacturer. DTB is a data structure that describes the 

hardware and initializes the devices for the board during 

kernel boot time. In case of the i.MX6Q, all Linux kernel 

versions above 3.8 require DTB when the kernel starts to 

know all the devices within the board and initialize useful 

drivers. 
The factory version of the bootloader, U-boot 2009.08, could 

not read DTB files therefore; an updated version offered by 

Boundary Devices [15], U-boot 2014.07 is implemented 

instead. 

 

 
 

Fig. 3 Memory Device Diagram and Partition Table 

 

 

According to the boot commands and arguments of the latest 

bootloader, the Multimedia Card (MMC) memory device 

where the environment should be stored, is separated into two 

partitions as shown in Fig. 3. The first part is called the BOOT 
partition, which is a FAT formatted partition where the 

Xenomai-stacked kernel image and the board defining DTB 

are stored. It usually requires a size of 20 MB. The remaining 

memory is formatted in EXT4 to serve as the Root Filesystem 

(RFS) partition of the Linux kernel where the libraries and 

APIs of both Xenomai and EtherCAT Master is located. 

Latest bootloader is downloaded from the Boundary Devices 

repository [15]. Default settings for the i.MX6Q SABRELite 
are configured and the bootloader binary is built. 

# cd u-boot-imx6 

# make mx6qsabrelite_config 

# make 

 

The latest Linux kernel ported for the i.MX6Q SABRELite 

board is downloaded by running the shell script, build_kernel 

within the cloned armv7-multiplatform tree [15] from the 
v3.14.x branch. The kernel path is stored as an environment 

variable. 

# cd armv7-multiplatform 

# ./build_kernel.sh 

# export KERNEL=$(pwd)/KERNEL 

 

To implement the dual-kernel approach using Xenomai and 

the embedded Linux kernel, the kernel is prepared and 
patched with Adeos I-pipe. 

# tar xvjf xenomai-2.6.4.tar.bz2 

# export XENO=$(pwd)/xenomai-2.6.4 
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#./xenomai-2.6.4/scripts/prepare-kernel.sh 

--linux=$KERNEL 

--adeos=ipipe-core-3.14.17-arm-2.patch 

--arch=arm 
# cd $KERNEL 

# make distclean 

# make imx_v6_v7_defconfig 

# make menuconfig 

 

When configuring the kernel of menuconfig, some 

configurations should be defined. Real-time Operating 

Systems (RTOS) are sensitive with voltage level changes such 
as switches. These features are disabled to avoid bugs and 

errors in real-time performance. The following configurations 

are strictly disabled: 

 CONFIG_CC_STACKPROTECTOR_NONE 

 CONFIG_CPU_FREQ 

 CONFIG_KGDB 

 

Moreover, task pre-emption and real-time scheduler within 
the Linux kernel are enabled to obtain optimal performance. 

 CONFIG_SCHED_MC 

 CONFIG_PREEMPT 

 

Compilation of the Xenomai-stacked Linux kernel image, 

modules, and DTB are described below. The kernel image is 

loaded by the bootloader in a specific memory address of the 

RAM. Thus, the kernel image should be built accordingly. 
The resulting kernel image and DTB are stored in the BOOT 

partition of the MMC. 

# make uImage LOADADDR=0x12000000 

# make modules 

# make dtbs 

 

The RFS is downloaded from RobertCNelson’s server [16] 

which is an image of a Minimal Ubuntu Filesystem. After 
downloading the image, it is uncompressed and the path of the 

RFS is stored as an environment variable. 

# tar xvf ubuntu-14.04.2-minimal-armhf-2015-6-9.tar.xz 

# cd ubuntu-14.04.2-minimal-armhf-2015-6-9 

# tar xvf armhf-rootfs-ubuntu-trusty.tar 

# export RFS=$(pwd)/rootfs 

 

The kernel modules are installed inside the RFS with the 
following steps: 

# cd $KERNEL 

# export INSTALL_MOD_PATH=$RFS 

# make modules_install 

 

After the modules are all installed, the Xenomai library is also 

installed in the RFS. To optimize Xenomai with the target 

board, suitable configurations and FPU settings are 
implemented for ARMv7 architecture as follows: 

# cd $XENO 

# ./configure CFLAGS="-march=armv7-a -mfpu=vfp3" 

LDFLAGS="-march=armv7-a -mfpu=vfp3" 

--host=arm-linux-gnueabihf 

--prefix=$RFS/usr/xenomai 

# make 

# make install 

 

Latest version of the EtherCAT Master offered by IgH 

EtherLab is cloned from the IgH Mercurial repository found 

in [7]. Identical to the board optimization settings in building 
the Xenomai library, same configurations are implemented in 

building the EtherCAT Master API. 

# cd igh_ethercat 

#./configure 

--prefix=$RFS --with-linux-dir=$ KERNEL 

--with-xenomai-dir=$RFS/usr/xenomai 

--enable-generic=yes --enable-rtdm=yes 

CFLAGS="-march=armv7-a -mfpu=vfp3 -g -O2" 
CXXFLAGS="-march=armv7-a -mfpu=vfp3 

-g -O2" 

LDFLAGS="-march=armv7-a-mfpu=vfp3" 

--host=arm-linux-gnueabihf 

# make 

# make install 

# make EXTRA_CFLAGS="-march=armv7-a 

-mfpu=vfp3" modules 
# make modules_install 

 

After completion of all the steps, the RFS is moved to the 

rootfs partition of the MMC. The MMC is attached to the 

target board and the booting sequence is initialized. 

Fig. 4 shows the Latency test results to check real-time 

characteristics of the Xenomai-stacked Linux kernel. The test 

mode is done in the user-space and the sampling period of the 
dummy task is 1000 microseconds. As shown in the figure, 

the maximum latency for a running time of 5 seconds is 

approximately 5 microseconds, which is less than the 

minimum viable latency of 50 microseconds. Fig. 5 checks 

EtherCAT Master connection with a slave. 

 

 
 

Fig. 4 Xenomai Latency Test 

 

 
 

Fig. 5 IgH EtherCAT Operation Check 
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Experiment Results and Performance Analysis 

For this study, we constructed an EtherCAT system with the 

controller based on the embedded EtherCAT Master discussed 

in the previous section, a slave operated using CANopen 
protocol, and a control client that send and acquire data on the 

fly. The experimental environment is shown in Fig. 6. In 

addition, Table 2 describes detailed specifications of the 

system. 

 

 
 

Fig. 6 Experiment Environment 

 

TABLE. 2 Specifications of the EtherCAT System 

 

Item Description 

Control Client Software C#-based Application 

Connection User Datagram Protocol 

Features State Switch, Position Control 

Slave Board LS Mecapion L7NA004B 

PDO Tx 12 Bytes, Rx 12 Bytes 

 

 

Fig. 7 shows our developed control client application that is 

connected to the EtherCAT topology that controls servo state 

of the slave, send position commands, and monitors feedback 

from the slaves and timing characteristics. The application is 
developed using C# and uses UDP communication to preserve 

real-time characteristics. 

 

 
 

Fig. 7 EtherCAT Control Client 

 

 
 
Fig. 8 Timing Diagram of the Real-time Control Task 

 

 
 

Fig. 9 Pseudocode of EtherCAT Control_Task 

 

 

The real-time cyclic control task operating within the 

EtherCAT Master is expressed in a timing diagram shown in 

Fig. 8. In this figure, current state and data in process image 

from the slave is represented by C, which stands for collect. 

Processing or P denotes the current process where the next 

control command is generated. Transmit or T is the period 

where the generated command is transferred to the process 
image that is sent back to the slave. Fig. 9 shows the 

pseudocode for the real-time control task operated in the 

EtherCAT Master that expresses the timing diagram in a 

different manner. The transaction time of an EtherCAT 

control task is denoted as Ttrans which is defined as: 

 

( )trans n sT k P k C T      (1) 

 

where, kn is the delay that occurs depending on the number of 

slave. ks denotes the delay that depends on the size of the 

process image that affects the Control and Transmit periods. 

Tperiod represents actual time that it takes for one cycle of the 

control task. Its relationship with the jitter is defined by the 
following equation: 
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jitter cycle periodT T T    (2) 

 

where, Tcycle is the expected cycle of the real-time control task. 
 

 
(a) 0.5 ms 

 
(b) 2 ms 

 
(c) 1 ms 

 
(d) 4 ms 

 

Fig. 10 Distribution Plot of Actual Period Results in 

Different Expected Cycle Time 

 

 
The experiment is performed in varying expected cycle as 

shown by the distribution plot in Fig. 10. For each task with 

expected cycle time of 4 ms, 2 ms, 1 ms, and 0.5 ms, test 

metrics such as the actual period, jitter, and overall transaction 

time are tabulated in terms of average, maximum, minimum, 

and standard deviation as shown in Table 3. 

The control task was run continuously for 10 seconds for one 

slave with 24 bytes of process image. The data are acquired 
and calculated using the control client. 

 

TABLE. 3 Real-tiime Performance Measurement Results 

(ms) 

 

Tcycle Index Avg Max Min St. D 

4 ms Tperiod 4.0000 4.0049 3.9953 0.0012 

Ttrans 0.0796 0.2993 0.0696 0.0070 

Tjitter 0.0011 0.0049 0.0000 0.0005 

2 ms Tperiod 2.0000 2.0031 1.9969 0.0003 

Ttrans 0.0732 0.3005 0.0642 0.0080 

Tjitter 0.0002 0.0031 0.0000 0.0002 

1 ms Tperiod 1.0000 1.0047 0.95959 0.0004 

Ttrans 0.0769 0.7551 0.0685 0.0090 

Tjitter 0.0003 0.0047 0.0000 0.0003 

0.5 ms Tperiod 0.5000 1.0747 0.1735 0.0058 

Ttrans 0.0885 0.9923 0.0666 0.0157 

Tjitter 0.0007 0.5747 0.0000 0.0057 

 

 

As shown by the experiment results, the average actual period 

in all expected cycle time was able to meet the corresponding 

target. 

The highest average jitter at 0.0011 ms is found in the task 

running at 4 ms expected cycle. The overall highest jitter 
occurs when the control task is running at 0.5 ms expected 

cycle at 0.5747 ms. Moreover, the transaction time that is 

supposed to be within the boundary of the actual period shows 

questionable results where it is more than the actual and 

expected cycle time at 0.9923 ms. 
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As expected, the distribution plot above shows that majority 

of the data samples are not equal to the expected cycle time 

when the real-time control task is in 4 ms and 0.5 ms cyclic 

operation. 
Based on the results, the most optimized period for an 

EtherCAT control task is advised to be within 1 and 2 ms 

periodic cycle. Moreover, the experiment was operated using 

the generic driver that comes with the IgH EtherCAT Master 

in user space. Less end-to-end delay could be accomplished if 

a native driver is implemented. In case of the jitter, the results 

show relatively low values compared to an established work 

in [9]. This proves that i.MX6Q SABRELite is a viable 
embedded real-time controller for industrial control systems 

using an open-source EtherCAT Master solution. 

 

 

Conclusion 

In this paper, an open-source EtherCAT Master was 

implemented on an embedded board using dual-kernel 

approach with the latest versions of Xenomai and embedded 
Linux. Performance analysis was conducted for the system in 

terms of periodicity, the jitter, and the overall transaction time 

of commands sent and received from a slave communicated 

with CANopen protocol. 

The open-source EtherCAT Master, IgH EtherLab was 

stacked on top of an i.MX6Q SABRELite board updated to 

the latest bootloader version to accommodate Linux kernel 

versions that require DTB. 
Using the developed master, experiments were conducted in 

various expected cycle time to test its performance with a 

single slave and the data are acquired with a C# based 

application using UDP for control and monitoring functions. 

The experiment results show that the embedded EtherCAT 

Master mostly stable in cyclic task with period between 1 and 

2 ms. Nonetheless, average jitter and transaction time 

validates that the EtherCAT Master constructed from open 
source software is applicable to industrial control systems in 

comparison to established researches in [9-10]. 

In our future research, we will extend our analysis by studying 

on the overall time constraints on the slave, which is essential 

in rigorous and synchronized control especially in advanced 

robotic systems. In addition, communication between 

EtherCAT masters and application of the EtherCAT 

Automation Protocol in cloud environment is another interest 
on hand. 
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