
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1675

Comparative Analysis of a User Space EtherCAT Master Application for

Hard Real-time Control

Raimarius Delgado Byoung Wook Choi

Ph.D. Student, Professor,
Department of Electrical and Information Engineering, Department of Electrical and Information Engineering,
Seoul National University of Science and Technology, Seoul National University of Science and Technology,

Seoul, South Korea. Seoul, South Korea.

 Corresponding author

Abstract

In this paper, we evaluate the real-time performance of an open

source EtherCAT master developed by IgH Etherlab on Xenomai,

running as a real-time co-kernel of standard Linux. The

environment is implemented on top of two embedded platforms

with different architectures, ARM and x86. First, Xenomai is

ported on the target architecture in order to achieve real-time

characteristics and to provide real-time mechanisms for inter-

process communication used by the EtherCAT master. Although

applications that run in the kernel space give better performance,

programming is very difficult due to limited user-friendly

functions. It is also fragile that a single mistake can easily crash

the whole system. On the other hand, user space applications are

uncomplicated and debugging is also simplified, with lesser risk

of damaging hardware or reference memory. Thus, we developed

a real-time application in the user space of Xenomai to actuate

multi-axis servo drives focusing on the periodicity and execution

time as performance measurements. The execution time of the

EtherCAT master is evaluated and compared for each platform by

calculating the difference between the timestamps during send

and receipt of the EtherCAT frames. The experiment is performed

both in short-term and long-term to test the consistency of each

platform in carrying out hard real-time control applications.

Keywords: EtherCAT, Xenomai, Embedded Linux, Real-time,

Performance analysis.

Introduction
The popularity of EtherCAT has been steadily increasing due to

the growing demands of real-time controllers that do not need

customized interface cards [1]. In comparison to other real-time

Ethernet network protocols, EtherCAT has shown the best

performance in terms of response time and communication jitter

in accordance to the standard speed. This trend led to various

interesting researches related to both the implementation and

evaluation of low-cost solutions using an open source EtherCAT

master [2-4].

Such solution requires to be implemented in a software

framework that provides real-time mechanisms for data handling

and communication. IgH EtherCAT master is modelled after the

standard Linux, thus simplifying programming for developers

with experience working in the similar environment. However,

the standard Linux scheduler determines the most worthwhile

process to run valuing fairness over priority. This behavior limits

Linux to be used directly for real-time applications that needs

strict timing determinism for multiple tasks that offers

dynamic priorities and task preemption. In order to solve the

problem above, the scheduler of the standard Linux is

modified to meet real-time requirements. The most popular

real-time Linux approaches available are RT_PREEMPT,

RTAI, and Xenomai [5-7].

According to a study conducted by Barbalace et al. [8], RTAI

possesses the best performance among the three using

interrupt latency and rescheduling jitter of periodic tasks as

the test metrics. But in this paper, we decided to build a

working environment based on Xenomai for it supports more

processor architectures and embedded platforms as opposed

to RTAI and RT_PREEMPT. Better performance in data

communication and synchronization between tasks using

real-time mechanisms is also expected as shown by the

results of evaluation performed by Koh et al. [9] using the

jitter of periodic tasks and response time of various real-time

mechanisms as performance indicators.

The IgH EtherCAT master was designed to support all of the

aforementioned real-time Linux approaches and can be

developed either in kernel or user space. Control applications

in the kernel space optimizes performance for it avoids the

application from frequently switching between kernel space

and user space and allows direct communication with the

physical layer of the network interface. However, high

mathematical complex algorithms are not solved through a

straightforward manner because calculations using floating

points and other user space libraries are inaccessible [10].

Kernel space is also very sensitive because it normally has

full access to all memory and all the components within the

machine [11-12]. It is advisable that only the most trusted

and well tested code is run in the kernel space to avoid

crashing the whole system. Thus, the performance of the

EtherCAT master in user space is required to be tested using

the selected real-time Linux extension.

The viability of such solution on an embedded platform has

been presented in our previous research [13], where we have

conducted a performance analysis of the IgH EtherCAT

master on an ARM-based platform running on Xenomai. We

have also provided detailed guidelines to build the working

environment on which most developers have had a hard time

due to lack of technical documents. However, the results

mailto:raim223@seoultech.ac.kr
mailto:bwchoi@seoultech.ac.kr

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1676

were only displayed for an application with a very short runtime.

Most of the time industrial controllers are left unattended for long

hours and are still expected to perform the time-critical tasks.

Practical feasibility of the real-time controller for such

applications is highly dependent on the performance results

during long-term operation [14].

In this paper, first we implemented IgH EtherCAT and Xenomai

on two different embedded platforms with processors based on

x86 (Intel) and ARM (i.MX6Q), respectively. The same versions

of the software and Linux kernel were applied for the sake of

comparison minimizing the probable causes of varying results.

Since both platforms use different network interface card, we

have also added an external NIC with the same chipset as in Intel

to i.MX6Q platform to further minimize the point of comparison.

This method has been chosen since it is easier to find off-the-shelf

NICs with the identical chipsets to those that are installed in Intel

platforms than the opposite. Then we developed a real-time

application running on the user space of Xenomai to actuate six

servo drives connected in daisy chain topology using velocity

commands that are stored in a buffer for lower calculation inside

the control task with the highest priority. The performance of the

embedded platforms is evaluated and compared using periodicity

of the real-time task and EtherCAT execution time as

demonstrated in our previous research in [13]. The time interval

introduced between the send and receive routine of EtherCAT

frames from the buffer of the NIC determines the overall real-

time performance of the system. The experiment is conducted for

the target platforms in both short-term and long-term test with a

runtime of 1 minute and 12 hours, respectively.

The second section fully discusses the architecture of IgH

EtherCAT master. Section 3 describes the development of the

real-time application in Xenomai user space. The fourth section

explains how the experiment is conducted. This section is divided

into two parts: describing the developed testbed for both

platforms and the experiment results from both short-term and

long-term operations. The last section closes the paper with the

conclusion and discussion of future work.

IgH EtherCAT Master Architecture
IgH EtherCAT Master is designed to be integrated into the Linux

kernel for performance purposes. Process in the kernel space has

better real-time performance and lesser latency than processes

executed in the user space. If the cyclic task which is triggered by

timer interrupts inside the kernel is in the kernel space, the

execution delay of processing these interrupts is less because

there is no need of time consuming context switches. Moreover,

the master module can directly communicate with the physical

layer of the Ethernet hardware through device drivers, which are

already in the kernel space. Fig. 1 gives an overview of the

components inside the master architecture.

In the figure, we can easily determine that the EtherCAT master is

divided into three main parts: EtherCAT master module, device

drivers, and real-time tasks. The master module is the core of all

EtherCAT operations. It handles master instances which can run

simultaneously, opening doors to redundant EtherCAT master

applications. The master module has three operating states:

orphaned state, idle state, and operation state. In the orphaned

state, the master is still waiting for an Ethernet device to be

connected through its device interface. The master is in the

idle state when the master module is connected to at least one

Ethernet device but is still waiting for a request from an

application.

Figure 1. IgH EtherCAT Master Architecture

Finally, the master is in operation state when at least a single

master instance is requested by an application. Process

domain object (PDO) exchange and bus configuration is only

possible when the master module is in the state of operation.

Device drivers connects the physical layer of the NIC to the

master module via the device interface. Drivers that are

accepted by the master module and can handle EtherCAT

operation are classified into two: RTDM-capable EtherCAT

driver and generic EtherCAT driver. RTDM, or real-time

driver model, are modified network device driver for

dedicated interaction with the master module. During

EtherCAT operation, these drivers are not required to pass

the standard Linux network stack resulting to highly

deterministic communication. On the other hand, generic

drivers have to transverse the Linux network stack resulting

to worse performance. These drivers also could not guarantee

support for real-time extensions like Xenomai, because the

Linux network stack is addressed and could cause mode

switching in real-time context. The upside is that through the

generic driver, any Ethernet drivers that are supported by

Linux can be used for EtherCAT operation.

The real-time tasks are either executed inside the kernel

space, or in the user space through the provided user space

library. Real-time task in the user space can choose to

connect through a character device or shared memory. In case

of the former, standard Linux system calls are used, thus,

mode switching will occur with the same effects as using the

generic driver. Using shared memory can guarantee better

performance, but this method only works for device drivers

that are RTDM-capable.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1677

Real-time Control Application in User Space
The latest version of IgH EtherCAT Master is equipped with a

user space library that provides users to develop control

applications in the user space of real-time Linux, which is

Xenomai for this study. Because functions that are mainly

required to configure the communication between the master and

the slave used standard Linux system calls, it is advised that these

functions are called before starting the real-time task. The

EtherCAT master module is also required to be activated before

the Xenomai task is started.

Figure 2. Real-time User Space Application in UML

Fig. 2 shows a user space application in UML to connect the

EtheCAT master to the slaves via CANopen-overEtherCAT

protocol. The application is designed to request a master instance,

map the process data, communicate with the slaves, and configure

or activate the bus. Before a user space application can access the

EtherCAT Master, an instance should be reserved for exclusive

use. Next, a process data domain is created which is used for

registering PDOs and exchanging them in cyclic operation for

data transaction. The application should also address the

connected slaves with their proper alias, position, and

identification/product code. If the data is not matched, the

EtherCAT operation is halted and the slaves would not be

configured. These PDOs are registered to the created process data

domain. Before runtime, the user could also choose whether to

enable the distributed clock (DC), if it is available on the slave

device. DC is a clock synchronization mechanism making the first

connected slave as the reference clock for the entire network [4].

Then, the master will be signaled that the configuration phase is

finish and that the real-time operation will be started. PDO

configurations are not allowed beyond this point.

The master is signaled that the real-time is starting, the domain

process data should be acquired before starting the cyclic task.

The real-time task starts after the initial master and slave

configuration.

The important functions offered by the IgH EtherCAT master

library that are required in starting a user space application is

organized with respect to the figure above:

ecrt_request_master: Requests an EtherCAT master

instance for real-time user space operation.

ecrt_master_create_domain: Creates a domain used

for registering PDOs and exchanging them in cyclic

operation.

ecrt_master_slave_config: Creates a slave

configuration object for the given alias and position. When

the given values do not comply with the information stored in

the slave’s E2PROM, an error will occur and the application

will be halted.

ecrt_slave_config_pdos: Specifies a complete PDO

mapping configuration for the master to reserve. The data

that will be exchanged during cyclic task is according to the

PDO map.

ecrt_domain_reg_pdo_entry_list: Registers a bunch

of PDO entries for the created domain.

ecrt_slave_config_dc: Enables and configures the

usage of distributed clocks.

ecrt_master_activate: Signals the master that the

real-time operation will begin.

ecrt_domain_data: This acquires the domain

process data and should be called after activating the master.

Inside the real-time task, the states of the both the

master and the slaves are checked using ecrt_master_state

and ecrt_slave_config_state, which reads the current master

and slave states, respectively.

Another important sequence to follow during the cyclic task

is acquiring the stored datagram from the Ethernet device

buffer and determining the state or the working counters of

the EtherCAT frame. These are done as soon as the state of

the master and slaves are checked in the order of

ecrt_master_receive and ecrt_domain_process. The contents

of the datagrams are copied to local variables using

EC_READ_{type}_{bit}, which reads the values from an

EtherCAT frame where the data {type} could either be S for

signed and U for an unsigned integer. In addition, {bit}

depends on the size of the data and could be either 8, 16, 32,

or 64 bits. On the other hand, EC_WRITE writes the

processed values to the EtherCAT frame where the used data

type and size are the same as in EC_READ. The datagrams

are copied back to the buffer of the device and sent back to

the slaves using the function, ecrt_domain_queue, which

queues the datagrams for exchanging at the next call of

ecrt_master_send, which sends all datagrams that are in the

queue after processing the datagrams and writing the next set

of commands.

In this paper, we will use Xenomai to initiate a real-time

control task. Xenomai offers various kinds of interfaces and

emulators to resemble traditional real-time operating systems

(RTOS) such as VxWorks, uItRON, or VRTX. Although

migration and compatibility is not an issue in application

development for those emulators, it is better to make full use

of the high integration level with the Linux environment. In

such, Xenomai provides two programming interfaces or skins

for this method: real-time extension of POSIX API and the

Native API. The latter is equipped with the same set of real-

time services in a seamless manner to applications both in the

user space and kernel space making it context independent.

Xenomai objects and mechanisms are always reachable even

when the location of the object is in another process or space

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1678

than were the task using it is running. The Native API was

designed to resemble after a traditional RTOS with different

services for managing real-time tasks, timing, synchronization,

device handling, and inter-task communication mechanisms [15].

To create a real-time task using the Native API, a descriptor

referring to a task is created using a structure called RT_TASK.

This structure describes all the essential information about the

task such as its priority, CPU to be used, stack size, and the

function to be executed. The task is created by a call to the

function rt_task_create with arguments including the pointer to

the descriptor created earlier using RT_TASK, symbolic name in

ASCII string in order for the task to be called in other processes

or space, memory stack size, priority of the task with 99 as the

highest and 0 is the lowest, and flags which configures: whether

the task will use the floating point unit (FPU), which CPU to use,

or will the task be immediately started upon creation.

After the task is created, it can be started by calling the function

rt_task_start specifying the task to be started using the descriptor,

the function that the start will execute when started, and the

arguments given to the function. Unless the task is created in the

suspended mode, the function will be executed immediately after

started. When the task is started, any call to a Linux API is

avoided to avoid switching modes. In the case of a mode switch

the Linux scheduler will be the one to handle the task degrading

its performance, thus, trading off determinism. Initially, a task is

started in one shot mode, meaning that the periodicity of the task

is not guaranteed. For the control task to be scheduled in

deterministic manner, a call to rt_task_set_periodic is required.

The function accepts arguments pertaining to the task descriptor,

starting time of the task in absolute time which is expressed in

clock ticks. When the task is executed immediately without any

delay, a macro TM_NOW is passed as the argument. The last

configuration to be set is the period of the task, which accepts

values in nanoseconds. Inside the function of the real-time task, a

call to rt_task_wait_period is required to release the processor

when the task has performed all its instruction and wait for the

next scheduled starting point.

For the measurement of the periodicity and to guarantee that the

task can meet the configured deadline, timer management service

provided by the Native API is used. The timer related services

allow to control the Xenomai system time which is used in all

timed operations. This serves as a probe that returns the system

time at the calling point of rt_timer_read. This is used to measure

the execution time, starting time, and end time of the task for the

performance analysis which is conducted during experiment for

this study.

Experiment
A. Testbed
For comparison of real-time performance, experimental testbeds

were set up using two embedded platforms based on x86 and

ARM architecture. IgH EtherCAT master and Xenomai were

implemented on each target architecture and both masters are

connected to six servo drives manufactured by Sanyo Denki as

shown in Fig. 3. The latest IgH EtherCAT master available is

v1.5.2 and v2.6.5 is for Xenomai 2.x series. Both environments

were stacked on the same version of Linux, v3.14.15, which are

available respectively in Linux kernel archives [16] and

armv7-multiplatform for Intel and i.MX6Q [13].

Figure 3. Sanyo Denki EtherCAT Slaves

Table 1. Specifications of Embedded Platform

Specifications Intel i.MX6Q

CPU
Intel Core i7

6700 @4.00 GHz

ARM Cortex A9

@1.00 GHz

Memory 8 GB DDR4 1 GB DDR3

NIC RTL8169 Gigabit FEC Gigabit

Detailed specifications which mainly focuses on the central

processing unit (CPU) model and speed, memory capacity,

and NIC is compared and shown in Table 1. With this

information, we could expect that the performance of Intel is

better than i.MX6Q with faster CPU frequency at 4 GHz

compared to 1 GHz although both possess 4 CPU cores.

Multitasking will also be smoother with 8 GB of available

memory in comparison to 1 GB which is not extendable. But

real-time performance is more on the ability to guarantee

response time within a given time constraint rather than raw

speed. In other words, real-time is the ability to meet specific

deadlines in yielding desired output instead of the number of

instructions processed in a given amount of time. Another

component that could be affect the real-time performance of

EtherCAT is the NIC. Intel uses RTL8169 (R8169) on the

main board in contrast to the Fast Ethernet Controller (FEC)

Gigabit module based on Motorola MPC8xx installed on the

i.MX6Q. Both modules are capable of transmitting Ethernet

frames at the maximum rate of 1 Gigabit per second.

To furtherly minimize the points of comparison for both

platforms, an external R8169 is attached to i.MX6Q which

has an external port for mini PCI Express (mPCIe) devices. It

is easier to find off-the-shelf NICs with R8169 chipset than

those with FEC. In order to connect the external NIC to the

embedded platform, a mPCIe daughterboard is required to be

connected. The daughterboard uses an on-board clock to

implement the latency timer that limits the time that device

can hold the bus. Commonly available R8169 NICs are for

standard personal computers that has PCIe connectors, thus,

another daughterboard that converts mPCIe-to-PCIe is also

required. Finally, the external R8169 is connected to the

mPCIe-to-PCIe daughterboard which is again connected to

PCIe daughterboard. The i.MX6Q with an external R8169 is

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1679

shown in Fig. 4. Although this approach has minimized the

probable causes of performance differentiators between the two

embedded platforms, it resulted to a bulkier system which could

be unstable due to different levels of connections and data

conversions. Hardware delay could also have an impact to the

real-time performance of i.MX6Q.

Figure 4. i.MX6Q with External R8169

B. Procedure and Results

The experiment is conducted in the user space of Xenomai by

creating a real-time task with a sampling period of 1 ms and the

highest priority of 99. We also used the hardware FPU for each

embedded platform, and a single core for task execution since

Xenomai supports symmetric multiprocessing (SMP), all the

resources of a multi-core system are guaranteed to be exploited

even using a single core.

The total size of PDO transmitted for each iteration is configured

to a total of 96 bytes, classified into 10 bytes of input and 6 bytes

of output for each slave. The input includes 2 bytes for the status

word which governs the current status of the servo drive

according to the CiA 402 profile of the CANopen protocol state

machine [17-18]. 4 bytes are allocated for the current position

which is the feedback from the absolute encoder attached on the

motors and another 4 bytes for the current velocity, on which the

calculation is executed by the servo drive with interpolation. The

output PDOs are divided into 2 bytes for the control word or the

target state to operate the servo controller and 4 bytes for the

target velocity. We have configured the servo drives to operate in

velocity mode by changing the value stored inside the register that

corresponds to the operation mode.

Before the Xenomai user space task is started, the PDOs are

configured and one IgH EtherCAT master instance is initiated.

Also, velocity profile for each of the servo drives, which is

generated with a sampling time of 1 ms is stored arbitrarily inside

a buffer to minimize the computation load inside the real-time

task. The velocity profile considers the maximum angular

velocity of 2 rad/s as shown in Fig. 5. The whole profile has a

duration of 40 s, running on different direction every 10 seconds.

First, the motor is actuated in the clockwise direction for 10 s, rest

for 10 s, run on the opposite direction, and rest again for another

10 s. This profile is executed continuously until the target runtime

of the experiment is met.

The same application is enacted on each embedded platform, with

i.MX6Q running using the on-board FEC module and another

with an external R8169. The short-term experiment is carried out

for 1 minute with a runtime of 1 minute and the long-term

experiment running for 12 hours.

Figure 5. Velocity Commands for Each EtherCAT Slave

The actual period is calculated by subtracting the time stamp

of the current instance from the previous iteration. Then the

jitter is calculated by subtracting the expected time cycle to

the calculated actual period. The timestamps between the

sending and receiving routine of IgH EtherCAT master is

subtracted to acquire the execution time. A detailed

explanation of this process can be found in [13].

The results of the performance metrics are analyzed and

tabulated in the criteria of the maximum, minimum, average,

and standard deviation. The results of the short-term

experiment are calculated directly since only a few data

samples are generated during the experiment. The jitter

shows that the i.MX6Q with external R8169 shows the best

performance with only a maximum value of 4.008 μs in

comparison to the 17.629 μs of Intel platform. This is

unexpected because Intel has better specifications i.MX6Q,

this only shows that high-performance is necessarily equal to

real-time performance. However, the i.MX6Q using the on-

board FEC using the generic EtherCAT driver gives the

worst performance with a staggering 205.061 μs of maximum

jitter. Although running on the same platform, we could

predict that using a different driver affects the real-time

performance of the whole system. But we could also see that

the standard deviation is better by one-tenth of a microsecond

for Intel with 0.250 μs compared to 0.369 μs of i.MX6Q.

This means that Intel manages to meet the deadline more

frequently than i.MX6Q. Fig. 6 shows the distribution plot

for the actual period. The figure proves that the i.MX6Q with

external R8169 has the best performance during the short-

term experiment.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1680

Table 2. Timing Analysis Results for the Short-term Experiment

Board Metric
Criterion (μs)

Max. Min. Ave. St. D.

Intel
Jitter 17.629 0 0.069 0.250

Exec 22.141 5.331 6.214 0.674

i.MX6Q

(R8169)

Jitter 4.008 0 0.261 0.369

Exec 77.667 44.667 52.722 1.739

i.MX6Q

(FEC)

Jitter 205.061 0 0.436 1.933

Exec 1100.245 89.401 106.353 8.665

Figure 6. Comparison of Distribution Plot of the Real-time Task

in Short-term Experiment

Table 3. Timing Analysis Results for the Long-term Experiment

Board Metric
Criterion (μs)

Max. Min. Ave. St. D.

Intel
Jitter 24.628 2.098 10.638 4.177

Exec 35.861 9.382 17.253 4.784

i.MX6Q

(R8169)

Jitter 12.667 3.333 6.485 1.339

Exec 107.735 78.722 82.581 1.443

i.MX6Q

(FEC)

Jitter 276.333 2.333 7.124 9.595

Exec 1101 75.333 113.313 137.076

Figure 7. Comparison of Distribution Plot of the Real-time Task

in Short-term Experiment

Using the same criteria, the results in the long term

experiment is tabulated in Table 3. In comparison to the

short-term experiment, only the worst-case values are

calculated for the experiment in long-term due to memory

limitations of the system. Meaning, only the maximum

values for each minute during runtime are stored and

analyzed. The results show that i.MX6Q with R8169 still has

the best real-time performance with 12.667 μs maximum

jitter compared to 24.628 μs of Intel platform. The standard

deviation also becomes better at 1.339 μs. As shown in Fig.

7, i.MX6Q with R8169 has the best real-time performance in

meeting the deadline of the periodic control task.

But in this study, we focus more on the performance of IgH

EtherCAT master that is working inside the real-time control

task of Xenomai user-space. Looking at the execution time of

both Tables 2 and 3, Intel platform shows the best

performance in both the short-term and long-term

experiments, with maximum execution time of 17.629 μs and

24.628 μs, respectively. Intel platform also has tighter

squared difference from the mean with a standard deviation

of 0.250 μs and 4.177 μs. The next best is the i.MX6Q with

external R8169. Although having the better real-time

performance in terms of its periodicity and using the same

NIC with Intel platform, processing the IgH EtherCAT

master shows higher execution time with maximum of

77.667 μs and 107.735 μs respectively for short-term and

long-term experiment. From these results, we could assume

that the real-time performance is affected by the number of

data conversions and connections to different daughter

boards that could introduce hardware delay to the whole

system. The standard deviation still shows that the i.MX6Q

with R8169 can meet the deadline with lower values than the

EtherCAT master using Intel platform.

Figure 8. Execution Time in Short-term Experiment

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1681

Figure 9. Execution Time in Long-term Experiment

Fig. 8 and Fig. 9 show the execution time distribution of the

EtherCAT task in the short-term and long-term experiments. The

figures show the expected results from Intel and i.MX6Q with

r8169 having the best and second best performance. However, the

i.MX6Q with the on-board FEC driver that uses EtherCAT

generic driver shows unreliable results with values over than the

expected cycle task period of 1ms. This only means that the

platform is not applicable for real-time control systems. This is

due to the fact that the EtherCAT generic driver uses the standard

Linux stack which switches the mode of the Xenomai task from

primary to secondary. This means that instead of being handled

by the real-time scheduler, the standard Linux scheduler took

governance of the task which makes it unpredictable and run in

lower priorities.

Therefore, using the Intel platform for real-time applications

shows the best performance for real-time EtherCAT applications.

The ARM-based i.MX6Q platform is a better choice for real-time

cyclic tasks, but to achieve better performance to accommodate

the requirements of IgH EtherCAT master it is advisable to use an

external device that is RTDM-capable such as R8169 connected

to the mPCIe port. That is with a trade-off of a bulkier system

which could be unstable due to different levels of connections and

data conversions. Hardware delay could also have an impact to

the overall latency of the real-time task.

Conclusion
In this study, we performed a comparative performance analysis

of an open source EtherCAT master provided by IgH EtherCAT

master on different embedded platforms based on x86 and ARM,

respectively referred to as Intel and i.MX6Q. In order to achieve

real-time operability, a co-kernel approach of Xenomai is ported

to each target architecture to provide real-time mechanisms

required by the EtherCAT master.

The performance of each embedded platform is measured in

terms of the periodicity of the cyclic task and the execution time

of the EtherCAT master in the user space of Xenomai. To reduce

the points of comparison, it is ensured that the software on each

platform is of the same version. Also, an external NIC is also

added to the i.MX6Q to further reduce the probable performance

comparison factor. The same application is run for the two

platforms, with the i.MX6Q executed twice for the generic

EtherCAT driver and external R8169 device driver.

Results show that although having a high-performance

specification, real-time performance of i.MX6Q with external

R8169 is better than the Intel platform. But due to different

levels of data conversion and hardware delay, EtherCAT

execution time gives an opposite result. i.MX6Q with the on-

board FEC using EtherCAT generic driver gives the worst

results in both periodicity and EtherCAT execution time due

to the mode switching that triggers the standard Linux

scheduler to handle the Xenomai task, making it unable to

handle real-time constraints. Thus, i.MX6Q is only viable for

real-time control applications using open source EtherCAT

master if an external NIC is connected, with the drawback of

a bulkier system and requires more extra connectors.

The results of this study will serve as a guide for real-time

developers interested in building EtherCAT controllers based

on open source software using Linux and the real-time

extension, Xenomai, on embedded platforms based on

different CPU architectures.

Acknowledgment
This study was supported by the Research Program funded

by the SeoulTech(Seoul National University of Science and

Technology).

References

[1] S. Vitturi, L. Peretti, L. Senio, M. Zigliotto, and C.

Zunino, “Real-time Ethernet networks for motion

control,” Computer Standards & Interfaces, vol. 33, no.

5, pp. 465-476, 2011.

[2] M. Cereia, I.C. Bertolotti, and S. Scanxio,

“Performance of a real-time EtherCAT Master under

Linux,” IEEE Transactions on Industrial Informatics,

vol. 7, no. 4, pp. 679-687, 2011.

[3] M. Sung, I. Kim, and T. Kim, “Toward a holistic delay

analysis of EtherCAT synchronized control processes,”

International Journal of Computers, Communications

and Control, vol. 8, no. 4, pp. 608-621, 2013.

[4] G. Cena, I.C. Bertolotti, S. Scanxio, A. Valenzano, and

C. Zunino, “Evaluation of EtherCAT distributed clock

performance,” IEEE Transactions on Industrial

Informatics, vol. 8, no. 1, pp. 20-29, 2012.

[5] D.B. Oliveira, and R.S. Oliveira, “Timing analysis of

the PREEMPT RT Linux kernel,” Software Practice

and Experience, vol. 46, no. 6, pp. 789-819, 2015.

[6] J. Arm, Z. Bradac, and V. Kaczmarczyk, “Real-time

capabilities of Linux RTAI,” IFAC Conference on

Prgrammable Devices and Embedded Systems, 2016.

[7] B.W. Choi, D.G. Shin, J.H. Park, S.Y. Yi, and S.

Gerald, “Real-time control architecture using Xenomai

for intelligent service robot in USN environment,”

Intelligent Service Robotics, vol. 2, no. 2, pp. 139-151,

2009.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 8 (2017) pp. 1675-1682

© Research India Publications. http://www.ripublication.com

1682

[8] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A.

Soppelsa, and C. Taiercio “Performance comparison of

VxWorks, Linux, RTAI, and Xenomai in a hard real-time

application,” IEEE Transactions on Nuclear Science, vol.

55, no. 1, pp. 435-439, 2008.

[9] J.H. Koh, and B.W. Choi, “Real-time performance

mechanisms for RTAI and Xenomai in various running

conditions,” International Journal of Control and

Automation, vol. 6, no. 1, pp. 235-246, 2013.

[10] H. Yoon, J. Song, and J. Lee, “Real-time performance

analysis in Linux-based robotic systems,” In 11th Linux

Symposium, 2009.

[11] A. Robbins, Linux Programming by Example: The
fundamentals. Upper Saddle River, NJ: Prentice Hall, 2004.

[12] D. Abbott, Linux for Embedded and Real-Time
Applications. Newton, MA: Butterworth-Heinemann, 2003.

[13] R. Delgado, C.H. Hong, W.C. Shin, and B.W. Choi,

“Implementation and performance analysis of an EtherCAT

Master on the latest real-time embedded Linux,”

International Journal of Applied Engineering Research, vol.

10, no. 24, pp. 44603-44609, 2015.

[14] S. Yin, H. Luo, and S.X. Ding, “Real-time implementation

of fault-tolerant control systems with performance

optimization,” IEEE Transactions on Industrial Electronics,

vol. 61, no. 5, 2014.

[15] Xenomai Native API, https://xenomai.org/api-reference/

[16] Linux Kernel Archives, https://www.kernel.org

[17] K. Erwinski, M. Paprocki, L.M. Grzesiak, K. Karwowski,

and A. Wawrzak, “Application of Ethernet Powerlink for

communication in a Linux RTAI Open CNC system,” IEEE

Transactions on Industrial Electronics, vol. 60, no. 2, 2013.

[18] C. Zhou, and F. Luo, “Design of redundant CAN network

based on CANopen,” Proc. IEEE Int’l Conf. Natural

Computation, Fuzzy Systems, and Knowledge Discovery

(ICNC-FSKD), 2016.

https://xenomai.org/api-reference/
https://www.kernel.org/

