
Accessed : Wednesday, March 17, 2021 9:54 AMDownload by : 117.17.198.164

International Journal of Internet, Broadcasting and Communication

Vol.13 No.1

ISSN : 2288-4920(Print) 2288-4939(Online)

A Probabilistic Analysis for Periodicity of Real-time Tasks

Raimarius Delgado, Byoung Wook Choi

To cite this article : Raimarius Delgado, Byoung Wook Choi (2021) A Probabilistic Analysis for Periodicity of Real-time Tasks,

International Journal of Internet, Broadcasting and Communication, 13:1, 134-142

① earticle에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, 학술교육원은 각 저작물의 내용을 보증하거나 책임을 지지 않습니다.

② earticle에서 제공하는 콘텐츠를 무단 복제, 전송, 배포, 기타 저작권법에 위반되는 방법으로 이용할 경우, 관련 법령에 따라 민, 형사상의 책임을 질 수

있습니다.

www.earticle.net

https://www.earticle.net


www.earticle.net

International Journal of Internet, Broadcasting and Communication Vol.13 No.1 134-142 (2021)

http://dx.doi.org/10.7236/IJIBC.2021.13.1.134

A Probabilistic Analysis for Periodicity of Real-time Tasks

1Raimarius Delgado, 2Byoung Wook Choi

1Ph.D. Candidate, Department of Electrical and Information Engineering, Seoul National 
University of Science and Technology, South Korea

2Professor, Department of Electrical and Information Engineering, Seoul National University of 
Science and Technology, South Korea

1raim223@seoultech.ac.kr, 2bwchoi@seoultech.ac.kr

Abstract

This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity 
of real-time tasks. The proposed method fills a gap in existing techniques, which either concentrate on the 
estimation of worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. 
Our method is based on the Z-test statistical analysis which calculates the probability of the measured period 
to fall within a user-defined standard deviation limit. The distribution of the measured period should satisfy 
two conditions: its center (statistical mean) should be equal to the scheduled period of the real-time task, and 
that it should be symmetrical with most of the samples focused on the center. To ensure that these requirements 
are met, a data adjustment process, which omits any outliers in the expense of accuracy, is presented. Then, 
the Z-score of the distribution according to the user-defined deviation limit provides a probability which 
determines the periodicity of the real-time task. Experiments are conducted to analyze the timing 
measurements of real-time tasks based on real-time Linux extensions of Xenomai and RT-Preempt. The results 
indicate that the proposed method is able to provide easier interpretation of the periodicity of real-time tasks
which are valuable especially in comparing the performance of various real-time systems.

Keywords: Periodic real-time systems, measurement-based analysis, probabilistic analysis, Z-Test, real-time

1. Introduction

Real-time systems are essential to execute jobs which are safety-critical especially in industrial control 
systems, smart-grids, and robotics [1-3]. Such systems are expected to share their working environment with 
human beings. Missing a deadline may result in catastrophic results, whether severe malfunction of the system, 
or may cause human accidents. It is therefore essential that these applications are bounded with stringent real-
time requirements. This means that aside from the logical correctness, these applications should adhere to strict 
temporal deadlines. Development of real-time applications usually utilizes real-time operating systems (RTOS) 
owing to their multi-tasking environment and priority-based scheduler. Since the semantics and behavior of 
the scheduler varies for each RTOS, the same real-time applications may produce varying performance as well. 

To ensure that real-time applications can perform the required task functionalities without violating temporal 
deadlines, real-time performance evaluation should be conducted. In this context, schedulability of the real-
time tasks should be guaranteed. Real-time tasks are schedulable if their worst-case response times (WCRT) 
do not violate the respective temporal deadlines [4]. The response time is defined as the interval from the start 
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of the task, until it finishes executing the expected task functionality. 

Existing performance evaluation methods focus on estimating the worst-case execution time (WCET) to 
calculate for the WCRT. The WCET bounds the execution time of the real-time task in all of the task iteration. 
For example, Cucu-Grosjean et al., [5] presented a combination of actual measurements and probabilistic 
analysis using extreme value theory (EVT) to estimate for the WCET. Santinelli et al. [6] and Guet et al. [7] 
have presented results which showed that EVT can be sustainably and reliably applied in practical cases. 

However, these approaches did not consider the stochastic behavior of the scheduler. This behavior results 
to the jitter. It is the difference between the expected release point and the actual starting point of the real-time 
task. There are numerous sources for the jitter and searching for the exact one is extremely difficult. In practice, 
the real-time system is benchmarked for the variation of the jitter to determine the lower-bound for the 
configurable period of real-time tasks. In a Linux system, for example, the most common approach to measure 
the scheduling latency is through the benchmarking tool called cyclictest [8]. To this end, analysis of the jitter 
should be performed for each real-time application to determine the periodicity of real-time tasks.

This paper propose a probabilistic method to analyze the periodicity of real-time tasks. In an ideal scenario, 
measured period real-time tasks should be equal to the scheduled period in all of its iterations. The inevitable 
presence of the jitter, however, limits this behavior. Hence, the measured period should result to a distribution 
with the center equal to the scheduled period, with minimal deviation due to jitter. In the proposed method, the 
timing measurements are analyzed using the Z-test statistical analysis in which the probability of the measured 
period to be within a given standard deviation limit is calculated. Since actual timing measurements may 
produce results that are not approximately normal, a data adjustment process is also presented to ensure that 
the distribution is symmetric and center-focused to perform the statistical analysis. To validate the feasibility 
of the method, it has been applied to analyze the periodic behavior of an experimental taskset implemented on 
the real-time Linux extensions of Xenomai and RT-Preempt [9]. The results indicate that the proposed method 
can provide easier interpretation of the periodicity of real-time tasks which are valuable especially in 
comparing the performance of various real-time systems.

2. Probabilistic analysis of the periodicity of real-time tasks

In this paper, we focus on analyzing the periodicity of periodic real-time tasks. The distribution of the 
measured period is analyzed for its ability to execute cyclically with minimal deviations from the given period. 
In an ideal environment, the actual period should be equal to the scheduled period of the real-time task. In 
practical applications, however, there is a difference between the actual and expected release points due to the 
stochastic behavior of the real-time scheduler. This difference is called the jitter. The jitter should be kept as 
small as possible to ensure that the real-time task can meet its deadline and show a deterministic behavior. 

This means that the measured period should be an approximately normal distribution with its center 
approximately equal to the expected period, Pi, and the standard deviation of the distribution should be kept 
minimal. With these assumptions, the measured period should satisfy two conditions to be considered 
deterministic: The center is equal to the scheduled period, and the distribution should be symmetrical. From 
these conditions, the distribution of the measured period, pi, is analyzed to determine periodicity of the real-
time task. The periodicity is calculated as the probability of the measured period falling within the interval of 
a user-defined three-sigma standard deviation limit, s

)
, or:

periodicity Prob( 3 3 )i i iP p Ps s= - £ £ +
) ) (1)

This means that the periodicity will result to a value between 0 and 1. The process starts by calculating the 

length of the measured period, which is denoted by X. X denotes the number of omitted samples when an 

adjustment occurs, and accuracy refers to the trade-off factor which is the ratio of X over X. To ensure that 
the center of the distribution is approximately equal to Pi, the statistical mean (μ) is calculated. For flexibility, 
a user-defined tolerance level is added to allow a margin of error. To determine if the distribution is symmetric, 
the skewness, μ3 , should be within twice of its standard error, or -2μ3_error ≤ μ3≤2μ3_error. 
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Figure 1. Pseudocode of the periodicity analysis

Figure 1 shows the graphical representation of the periodicity analysis. The skewness and its standard error 
are calculated as [10]:

( ) 3
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The skewness measures the asymmetry of the distribution with respect to the center, or in this case, the 
statistical mean, μ. If the skewness is positive, it means that the distribution is asymmetric and most of the 
samples are leaning to the left side of the center. On the other hand, negative skew denotes that the right side 
from the center is denser. As mentioned above, the skewness should be within the allowable range of its 
standard error to ensure that the distribution is symmetrical. 

If so, the standard deviation of the distribution, s , is verified whether it is lesser than the user-defined 

limit, s
)

. In this case, the procedure will end, and the resulting periodicity is equal to the accuracy factor. The 
accuracy factor is the trade-off of data adjustment due to the outliers that can affect symmetry and central 
tolerance.
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Figure 2. Pseudocode of the data adjustment process

Figure 2 shows the pseudocode of the data adjustment process. If the distribution of the measured period 
does not satisfy the central tolerance and symmetry requirements, the dataset is adjusted by omitting any outlier. 
An outlier is defined as the sample farthest from the center of the distribution. In other words, the outlier is 
determined as the maximum value of the difference between all of the samples and the statistical mean. The 
outlier is omitted from the original distribution and this procedure returns a data set without the outlier. As 
mentioned above, adjustment of the data comes with a trade-off in accuracy. The accuracy factor is calculated 

as the ratio of the number of the omitted samples over the actual data size, or 1 X
X

- . This process ensures 

that the distribution of the measured period is symmetrical with the center, and the statistical mean is 
approximately equal to scheduled period with the user-defined central tolerance. If all of the samples are 

omitted, or X ≥ X , the process will end, and the periodicity is equal to zero.

Otherwise, the distribution can therefore be defined as approximately normal. Thus, statistical analysis for 
normal distributions such as the Z-test [11] can be performed for the distribution of the measured period. The 
periodicity is calculated as the probability of pi within the interval of the user-defined standard deviation limit    
as denoted in (1). This is graphically shown in Figure 3. 

Figure 3. Graphical representation of the periodicity analysis

In this figure, the periodicity is defined as the area within three standard deviation limits (3s
)

). The three-
sigma limit is a good measure to determine the periodicity of the real-time task. In case that the calculated 
periodicity is 1, this means that 99.7% of the measured period are within the user-defined limit. Note that 
samples beyond this limit can be neglected since they are inconsistent with the tested model. This is in 
accordance with a presentation in ROSCON 2019 entitled Safety in Time [12], there is a difficulty to ensure 
real-time characteristics in modern embedded systems, and they should be given in probabilities. This notion 
has been proven in our previous study in [9], which states that multicore deployments and CPU features related 
to power saving greatly affects the real-time performance of modern embedded systems.
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Figure 4. Pseudocode of periodicity calculation

Figure 4 shows the pseudocode to calculate the periodicity shown in Figure 3. This assumes that the 
measured period results to an approximately normal distribution with the center equal to the scheduled period, 
and the calculated standard deviation is greater than the standard deviation limit. To determine the probability 
in (1), the corresponding standard score, or Z-score is calculated [11]:

ˆ ˆ( )

ˆ ˆ( )

z

z

m s m s

s s

m s m s

s s

+

-

+ -
= =

- -
= = -

(3)

These equations measure the distance, or the position, of the standard deviation limit from the statistical 
mean depending on the calculated standard deviation. To calculate for the periodicity, these measurements 
should be associated to its respective probability and (1) becomes:

periodicity ( ( ) ( )) accuracy+ -= - ×Z z Z z (4)

Herein, the Z(.) function converts the Z-scores from (3) into standard normal probabilities. These values 
can be found in a Z-score table [13]. In Matlab, these are obtained using the normcdf() function. Note that the 
resulting values increase with higher Z-scores. This means that the calculated periodicity has an inverse 
relationship with the measured standard deviation, s . The periodicity increases as s approaches s

)
. The 

results are multiplied to the accuracy factor, which is 1 if no data adjustment has been made. To this end, the 
periodicity interprets the distribution of the measured period, and ensures that it satisfies the standard deviation 
limits, which then determines the deterministic behavior of real-time tasks.

3. Experimental Results

This section focuses on validating the proposed method through implementation on an actual real-time 

system. In this work, an Intel-based embedded system called MIO-5272 manufactured by Advantech [9], is 

utilized to conduct all experiments. It is implemented with Linux 4.14.134 and two extensions of real-time 

Linux, Xenomai 3.0.9 and RT-Preempt 4.14.134-rt127. An experimental taskset with two real-time tasks is 

designed to run simulated load by busy waiting the CPU according to the configured execution time. Task 

parameters for each real-time task are shown in Table 1.

Table 1. Task parameters for the experimental taskset (in milliseconds)

Task Name Period Deadline Execution Time Priority

τ1 10 10 3 99

τ2 20 20 5 89
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Figure 5. Execution timeline of the experimental taskset

Herein, we follow rate-monotonic scheduling [4], which states that the highest priority task should have the 
fastest period, and all of the deadlines are equal to the period. This is depicted by τ1 having the period of 10 
milliseconds with the highest priority of 99. Note that in both Xenomai and RT-Preempt, the highest priority 
for a real-time task is 99, while 1 is the lowest. The lower priority task, τ2 is configured with to run periodically 
every 20 milliseconds and lower priority of 89. Both of the tasks are expected to busy wait the CPU for 3 
milliseconds and 5 milliseconds, respectively. Based on rate-monotonic analysis [4], both of the real-time tasks 
are schedulable, with the calculated worst-case response times (WCRT) are 3 milliseconds and 8 milliseconds, 
respectively. Note that for τ1 , the WCRT is equal to the configured execution time since it has the highest 
priority. It should execute without any blocking or interference from lower real-time tasks. τ2, on the other 
hand, may only run after τ1 has finished its execution. The execution timeline of the taskset is shown in Fig. 5. 

The experiments were performed on each real-time Linux extension for 10 minutes to verify whether they 
can show schedulability in comparison to the values above. During the experiment, the real-time system is 
kept isolated to avoid any unwanted interruptions that could affect the performance of the entire system. For 
this reason, all the measured values are stored in a buffer for offline processing and analysis. The results of the 
timing analysis are shown in Table 2 and Table 3 for Xenomai and RT-Preempt, respectively. These are 
composed of the statistical mean (avg.), maximum (max.), minimum (min.), and standard deviation (st.d.). 
From the timing measurements, the proposed periodicity analysis method in the previous section were 
conducted and the results are also shown in the table denoted as periodicity. The accuracy refers to the number 
of omitted samples due to the violation of the symmetrical and central tolerance conditions. Note that the 
accuracy is reflected on the final value of periodicity as denoted in (4).

Table 2. Timing measurements and periodicity for Xenomai (in milliseconds)

Task τ1(10 ms, 99) τ2 (20 ms, 89)

Metric Period Response Time Period Response Time

avg. 10.000000 3.004998 19.999968 5.002689

max. 10.071585 3.076599 20.061001 5.047895

min. 9.929621 3.003334 17.093339 5.001750

st. d. 0.002581 0.002545 0.001392 0.000868

periodicity 0.7806, accuracy=100% 0.9291, accuracy=99.8%

For the experimental taskset, the standard deviation limit is configured as 0.001 milliseconds and the 
tolerance is kept to a minimum value of 0.0001 milliseconds. As shown in the results for Xenomai in Table 2, 
the average of the measured period for both real-time tasks are equal to their respective scheduled periods of 
10 and 20 milliseconds, respectively. 
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All of the tasks are schedulable with the measured maximum response times that are lesser than the period 
and equal to the calculated WCRT. For the periodicity using (3) and (4), τ1, has a value of 0.7806 with an 
accuracy of 100%. This means that the distribution of the measured period did not require any adjustments. 
However, the low score is accountable for the high standard deviation of 0.002581, which is greater than the 
standard deviation limit. This means that only 78% percent of the measured period are within the range of the 
user-defined standard deviation limit. For τ2, however, approximately 120 samples were omitted from the 
distribution to satisfy the symmetrical and central tolerance requirements. This results to an accuracy of 99.8%. 
The total periodicity score in this case is 0.9291. Notice that the lower priority task has shown better 
performance than the higher priority task. This is a peculiar finding which can be attributed to this particular 
version of Linux and Xenomai for the MIO-5272 hardware. 

Table 3. Timing measurements and periodicity for RT-Preempt (in milliseconds)

Task τ1(10 ms, 99) τ2 (20 ms, 89)

Metric Period Response Time Period Response Time

avg. 10.000000 3.004008 20.000015 5.004178

max. 10.063427 3.065291 21.352405 5.060112

min. 9.938631 3.003075 19.937828 5.003306

st. d. 0.001315 0.000940 0.001285 0.002474

periodicity 0.9516, accuracy=100% 0.9958, accuracy=99.6%

Table 3 shows the results for RT-Preempt. The same standard deviation limit and central tolerance is 
implemented to compare the performance of both real-time Linux extension. As in Xenomai, the average of 
the measured period for all real-time tasks are equal to the respective scheduled period. There are also no issues 
regarding schedulability with all maximum response times lesser than the period. In contrast to Xenomai, the 
standard deviation of the real-time tasks in RT-Preempt show lesser difference with the user-defined standard 
deviation limit.

Hence, the periodicity of the τ1 is 0.9516 which is almost 20% higher than the results from the same task in 
Xenomai. The same trend has been observed with τ2. The calculated periodicity is 0.9958 with the accuracy of 
99.6%. Even in RT-Preempt, the lower priority task has shown better performance in comparison to the higher 
priority one. The results have shown that the periodicity of τ2 is higher, but with lower accuracy. This means 
that approximately 240 samples were omitted to generate an approximately normal distribution. To visualize 
the effects of the data adjustment process, the histograms of the original and adjusted data are graphically 
shown in Figure 6. 

Figure 6. Example of data adjustment of the measured period by omission of outliers; (a) original data 
(b) adjusted data
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As shown in Fig. 6(a), the original timing measurements has shown a concentrated distribution at the 
scheduled period of 20 ms. However, there are some outliers located far from the center at the right side of the 
distribution. Using the data adjustment process in Figure 4, the distribution clearly becomes symmetrical as 
shown in Fig. 6(b). From the results in Table 2 and Table 3, it can be concluded that for this particular version 
of the Linux kernel, Xenomai, and RT-Preempt, RT-Preempt has shown better periodicity on the Intel-based 
Advantech MIO-5272. 

The results have shown that using the proposed periodicity analysis method, interpretation of the timing 
measurements has become easier, which can be described using a scale of 0 and 1. This is very convenient 
especially when comparing various real-time systems such as the conducted experiment for Xenomai and RT-
Preempt. 

4. Conclusion

This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity 
of real-time tasks. It has been observed that existing techniques are more focused either on the estimation of 
worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. The proposed 
method filled this gap by presenting a probabilistic method based on the Z-test statistical analysis. 

Herein, actual measurements from the real-time tasks are acquired and analyzed to calculate for the 
probability within a given standard deviation limit. There are two contingencies for this calculation: 1) The 
center (statistical mean) of the distribution should be equal to the scheduled period of the real-time task, and 
2) it should be symmetrical with most of the samples focused on the center. The symmetry of the distribution 
is determined by analyzing its skewness, which should be between twice of its standard error. In case these 
conditions are not met, a data adjustment process has also been presented. This omits any outliers that may 
affect the central tolerance and symmetry of the distribution, in the expense of accuracy. The periodicity is 
then calculated depending on the Z-score of the distribution with accordance to the user-defined standard 
deviation limit. 

Experiments were conducted on actual real-time systems based on the real-time Linux extensions of 
Xenomai and RT-Preempt. An experimental taskset of two real-time tasks with harmonic periods were 
generated to busy-wait the CPU according to the configured execution time. The actual timing measurements 
were analyzed using the proposed method, and it has been observed that RT-Preempt has shown better periodic 
results than Xenomai. As we are more focused on the analysis method, rather than the comparative results 
from both real-time Linux extensions, it can therefore be concluded that the proposed method can simplify the 
interpretation of the timing measurements. This is very valuable especially when comparing various real-time 
systems such as the conducted experiment for Xenomai and RT-Preempt. 

There are various directions for future works. Extensive experiments with multiple tasks and multiple 
platforms are being considered. Also, aside from the periodicity, analysis methods for the response times 
should also be conducted. Moreover, the analysis method should be extended to multi-tasking environments
[14], where each task should be weighed on their contribution to the overall performance of the real-time 
system. 
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