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Abstract 

An optical mouse sensor is widely used to estimate the dead reckoning motion of a 

mobile robot because of its potential to overcome the estimation error caused by the robot 

wheel slippage. However, motion estimation using an optical sensor is vulnerable to 

signal noise and kinematic error. To reduce the error associated with the coordinate 

estimation for a mobile robot, this study presents a new localization algorithm based on 

the Kalman filter, which uses an optical mouse sensor together with an encoder sensor of 

driving wheels. Experiments were conducted to verify the performance of the proposed 

algorithm in the case when an insufficient number of optical mouse sensors is used. 
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1. Introduction 

Localization is essential for autonomous navigation of a mobile robot. Herein, the 

localization refers to estimation of mobile robot’s coordinates,  
t

x y  , including the 

heading angle in the global coordinate system. Inaccurate estimation of the coordinates 

causes a tracking error of the mobile robot for given desired trajectories. Dead reckoning 

is a well-known localization method, which uses odometric sensor such as encoder or 

optical mouse sensors. The optical mouse sensor can solve the wheel slip problem, and 

thus, it is widely used for the dead reckoning estimation of a mobile robot’s motion [1]. 

The optical mouse sensor is a type of image sensor capable of measuring displacement in 

a small time interval, and outputting velocity data based on the displacement 

measurement. Kim et al. investigated the optimal configuration of the multiple optical 

mouse sensors for estimating the velocity of a mobile robot [2-3]. They showed that a 

regular polygonal array of multiple optical sensors is an optimal configuration for velocity 

estimation of a mobile robot, in the sense of the least squared errors. Similar results were 

reported for the optimal location of the optical mouse sensors in [4]. In general, additional 

complementary sensors are used together with the odometric sensors because the dead 

reckoning estimation is subject to cumulative error. To compensate the cumulative error 

of the optical mouse sensor, Sekimori et al. proposed the use of a global camera at the 

surrounding environment of a mobile robot [5]. In [6], a ranging sensor was combined 

with the optical mouse sensors to compensate for the error in the motion estimation of a 

mobile robot. 

In general, the driving wheels of a mobile robot have indispensable encoder sensors for 

tracking control; this assists the coordinate estimation of a mobile robot by combining the 

encoder sensors and the optical mouse sensors. In [7] and [8], the encoder sensor was 

used together with the optical mouse sensor for velocity estimation of a mobile robot. The 

use of an additional integration process is necessary to obtain the coordinate estimation 

from the velocity estimation. 
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In this study, a coordinate estimation algorithm based on a Kalman filter, using both of 

the encoders and the optical mouse sensors is presented. The proposed localization 

algorithm for estimating a mobile robot’s coordinates has an augmented state to avoid the 

additional integration process. This paper is organized as follows: In Section II, the dead 

reckoning estimation of robot motion is briefly explained using multiple optical mouse 

sensors [2]. Furthermore, the motion estimation with the encoder sensors of driving 

wheels is addressed in this section. In Section III, the coordinate estimation algorithm 

employed in this study is presented and the results of the experiments are presented in 

Section IV to validate the performance of the proposed algorithm. Through the 

experiments, the result of the coordinate estimation is demonstrated in the case of an 

insufficient number of optical mouse sensors. Finally, concluding remarks are presented 

in Section V. 

 

2. Motion Estimation of Mobile Robot 
 

2.1. Estimation by Optical Mouse Sensors 

It is assumed that a mobile robot has three optical mouse sensors at 1C , 2C , and 3C  

around the center position, P , as shown in Figure 1, without loss of generality. The angle 

between the optical mouse sensors is 120°. The reference position, R , of the robot is at 

1C . The distance between each sensor location iC  is denoted as l . The coordinate system 

for optical mouse sensor is drawn in Figure 1. 

The velocity vector measured by the three optical mouse sensors is represented as 

follows. 

1, 2, 3,1, 2, 3,

t
y y yx x x

k k k kk k k
S s s s s s s 

 
                              (1)

 
 

  

(a) Placements of Optical Mouse Sensors (Left) (b) Velocity of Mobile Robot in Global 
Coordinate System (Right) 

Figure 1. Mobile Robot with Optical Mouse Sensors 

The superscript in each element represents the direction of the velocity data from an 

optical mouse sensor in its own coordinate system, and the subscript indicates each sensor 

index. For example, 
2,
y

k
s  represents the velocity data in the y  axis of the second optical 

mouse sensor at a time instant k . 

According to the coordinate frames assigned in Figure 1 (a), it is easy to obtain the 

velocity relationship between the measurement vector and the velocity vector at R : 

S G V                                                                     (2) 
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where S  denotes the measurement velocity as in (1) and 
t

V x y       represents 

the velocity vector of the robot in the global coordinate system, as shown in Figure 1 (b). 

The velocity relationship G  in (2) is written as 
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where ( )c   and ( )s   imply cos( )  and sin( ) , respectively. Thus, it is possible to estimate 

the velocity of the robot from the sensor measurement (1) as follows:  

 
1

tV G G G S


                                                         (4) 

where the pseudo-inverse matrix of G  is used in the sense of the least-squared error for 

the overdetermined or the underdetermined case of G . It is necessary to integrate (4) with 

time to obtain a position-level coordinate estimation of the robot motion. 

 

2.2. Estimation by Encoder Sensor 

Eq. (5) represents the motion of a mobile robot in two-dimensional x y  space: 

cos

sin

x v

y v

w













                                                               (5) 

where v  and w  are the linear and the angular velocities, respectively. Assuming that 

there is no slippage on the wheels of the robot, the linear and the angular velocities are 

given as follows: 

 

 
2

r l

r l

r
v

r
w

D

 

 

 

 

                                                             (6) 

where r  and l  are the angular velocities of the right and left wheels of the robot, 

respectively. The driving motor of each wheel has a ready-to-use encoder sensor and the 

angular velocity of the wheel, r  or l , is measurable by the encoder sensor. Thus, it is 

possible to estimate the velocity of the robot, 
t

V x y     , by using (5) together with 

(6) from the encoder sensor measurement, which is the well-known dead reckoning 

estimation. In order to have a position-level coordinate estimation of the robot motion, (5) 

should be integrated with time as before. 

 

3. Kalman Filter Algorithm for Coordinate Estimation 

The estimation of the robot’s motion can be improved using the optical mouse and the 

encoder sensors. Data from two different types of sensors were combined to obtain the 

coordinates of a mobile robot, using an estimation algorithm based on the Kalman filter 

with augmented states presented below. 
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By using the first-order discretization, (7) is obtained for data from the optical mouse 

sensor: 

1

1
1
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1 1
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                       (7) 

where T  denotes the sampling interval. The discretization in (7) is valid because the 

optical mouse sensor measures displacement during a sampling interval. Eq. (7) is 

rewritten as follows: 

1 1

1 0 0 1 0 0
1

, 0 1 0 0 1 0

0 0 1 0 0 1

k kS H X H G
T

 

 
 

   
 
  

                           (8) 

where  1 1 1 1
t

k k k k k k kX x y x y      represents an augmented state. 

Similarly, by using the first-order discretization, the expression of (5) in discrete-time 

domain is as follows: 
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                                                  (9) 

where 1kv   and 1kw   are the linear and the angular velocities of the robot measured by 

the encoder sensors, respectively, as shown in (5). From (9), it is possible to obtain the 

following equation at 1k  : 
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                                  (10) 

By combining (9) and (10), we obtain the following augmented state equation: 

1k k kX AX BU                                                          (11) 

where the input vector, kU , is defined as 

 1 1
t

k k k k kU v vw w                                                   (12) 

The system matrix, A , and the input matrix, B , represent the following: 
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The measurement (8) and the augmented state (11) including the sensor signal noise 

become 

 

1 1 1

1

k k k

k k k k k

S H X r

X AX z B U q

  



 

   
                                           (14) 

The matrices, kr , kz , and kq , in (14) indicate Gaussian noise with a zero mean, and a 

covariance of 6 6Z R , 4 4Q R , and 6 6R R , respectively. Based on the Kalman filter 

algorithm, the position-level coordinate estimation for robot motion is given as follows: 
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1
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                                       (16) 

In (13), 1
ˆ

kX 
 and 1

ˆ
kX   indicate a priori and a posteriori estimation of the augmented 

state variables, respectively. The matrices, 6 6
1kP R 
   and 6 6

1kP R 
  , represent a priori 

and a posteriori estimation of the error covariance, and 6 6
1kK R 
   is the Kalman filter 

gain. 

 

4. Experiment 

Experiments are performed to verify the performance of the coordinate estimation 

algorithm presented in this study. The aim of these experiments includes (a) comparing 

the performance of the coordinate estimation with the proposed algorithm and the simple 

dead reckoning with the integration of (4), and (b) verifying the proposed algorithm for 

the case when there is an insufficient number of optical mouse sensors. It is noteworthy 

that the integration of (4) fails to estimate the coordinates of the robot in the case when an 

insufficient number of the optical mouse sensors is used. 

 

               

(a) Top Side    (b) Bottom Side 

Figure 2. Mobile Robot with Optical Mouse Sensor 

Figure 2 shows the mobile robot and the optical mouse sensors on the base of the robot. 

The radius of the wheels of the robot is 0.075r m , the distance between the two wheels 

is 0.29d m , and the distance between each optical mouse sensor is 0.16l m (Figure 1 

(a)). The command trajectory is a circle of 0.87 m  diameter in 7.5s that requires 

0.3534 / sv m  and 0.8125 / s w rad , as given in (5). The corresponding angular 

velocities of two wheels are / e .2 s cl rad   and / sec.r rad   from (6). The starting 

position and heading angle of the robot are    0 0 0 0 0 0
t t

x y   . 

The noise of the sensor signal in (14) is obtained from preliminary experiments. The 

covariance matrices of (14) are as follows: 
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                            (17) 

where  diag  denotes a diagonal matrix. 

Figure 3 shows the velocity vector, kS , measured by the optical mouse sensors, 

whereas Figure 4 shows the velocity of the robot, 
t

V x y      computed by (4). 

 

(a) At 1C    (b) At 2C    (c) At 3C  

Figure 3. Measurement of Velocity Vectors from Optical Mouse Sensors 

4.1. Comparison of the Coordinate Estimation 

Figure 4 demonstrates the dead reckoning estimation of the robot motion, 
t

V x y     , computed by (4) from the optical mouse sensors. Furthermore, to obtain 

the position-level coordinate estimation, the velocity vector was integrated with time [7-

8]. 

 
(a) x  and y     (b)   

Figure 4. Velocity of Robot, 
t

V x y      
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In comparison, the proposed algorithm in (15) and (16) estimate the augmented 

position-level coordinates of the robot without the additional integration. Figure 5 shows 

the comparison of the coordinate estimations between the dead reckoning by the optical 

mouse sensor (only) and the proposed algorithm by the optical mouse sensor and the 

encoder. In Figure 5, “DR with an optical mouse sensor (only)” represents the integration 

of 
t

V x y      in Figure 4, and “The proposed” denotes the coordinate estimation by 

the proposed algorithm in (15) and (16). The errors in the coordinate estimation are 

summarized in Table 1; the proposed algorithm produced the better performance. 

 

 

(a) x y  Coordinate   (b) Heading Angle,   

Figure 5. Position-Level Coordinates Estimation of Robot Motion 

Table 1. Errors in Coordinate Estimation 

 Optical Mouse Sensor Only The Proposed 

Position(m) 
Mean 0.3503 0.2196 

RMS 0.1596 0.1153 

Angle(°) 
Mean -48.7765 -28.4800 

RMS 21.5149 13.2868 

 

4.2. Coordinate Estimation in Case of Insufficient Optical Mouse Sensors 

The integration of (4) fails to estimate the coordinates of the robot in the case of an 

insufficient number of optical mouse sensors. However, the proposed algorithm is able to 

estimate the coordinates of the robot with an insufficient number of the sensors because it 

utilizes the encoder sensors of the driving motor as well as the optical mouse sensors. 

Here, it is assumed that the robot has only one optical mouse sensor at 2C  and the 

measured data from the sensor is 2, 2,

t
yx

k k k
S s s 

 
, without loss of generality. Figure 6 

shows the estimated coordinates of the proposed algorithm in this case. To show the 

difference between the actual and the estimated heading angle, the estimation error of the 

heading angle is redrawn in Figure 6 (c). 
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(a) x y  Coordinate   (b) Heading Angle,    

 

(c) Heading Angle Error for the Proposed Algorithm 

Figure 6. Coordinate Estimation of Robot Motion 

5. Conclusion 

The optical mouse sensor is cost-effective and capable of overcoming the motion 

estimation error caused by the wheel slippage of the mobile robot. However, the motion 

estimation using (only) the optical mouse sensor is subjected to signal noise and the 

kinematic errors in general. In this study, a localization algorithm based on a Kalman 

filter for a mobile robot that utilizes the optical mouse sensor together with the ready-to-

use encoder sensor of driving wheels is investigated. The optical mouse sensor and the 

encoder sensor are complementary to each other, in terms of coordinate estimation. 

Instead of the velocity-level motion estimation that requires an additional integration 

process, the proposed algorithm has an augmented position-level state for the motion 

estimation. The performance of the algorithm is verified by two different experiments: (a) 

comparison of the performance of the coordinate estimation by the proposed algorithm 

and that by the dead reckoning using (only) the optical mouse sensor and (b) verification 

of the proposed algorithm for the case when an insufficient number of optical mouse 

sensors is used. 

 



International Journal of Control and Automation 

Vol.10, No.6 (2017) 

 

 

Copyright ⓒ 2017 SERSC      69 

References 

[1] T. Takacs, V. Kalman and L. Vajta, “Optical Speed Measurement and Applications”, Frontiers in 

Robotics, Automation and Control, (2008), pp. 165-188. 

[2] S. Kim and S. Lee, “Robust velocity estimation of an omnidirectional mobile robot using a polygonal 

array of optical mice,” Int’l Journal of Control, Automation, and Systems, vol. 6, no. 5, (2008), pp. 713-

721. 

[3] S. Kim and H. Kim, “Optimal Optical Mouse Array for High Performance Mobile Robot Velocity 

Estimation,” Journal of Institute of Control, Robotics and Systems, vol. 19, no. 6, (2013), pp. 555-562. 

[4] M. Cimino and P. R. Pagilla, “Location of optical mouse sensors on mobile robots for odometry,” Proc. 

of IEEE Int. Conference on Robotics and Automation, (2010), pp. 5429-5434. 

[5] D. Sekimori and F. Miyazaki, “Self-localization for indoor mobile robots based on optical mouse sensor 

values and simple global camera information,” Proc. of 2005 IEEE Int’l Conf. on Robotics and 

Biomimetics(ROBIO), (2005), pp. 605-610. 

[6] S. Baek, H. Park, and S. Lee, “Mobile robot localization based on consecutive range sensor scanning 

and optical flow measurements,” Proc. International Conference on Advanced Robotics, (2005), pp. 17-

22. 

[7] S.  Lee and J. Song, “Mobile robot localization using optical flow sensors,” Int’l Journal of Control, 

Automation, and Systems, vol. 2, no. 4, (2004), pp. 485-493. 

[8] S. Lee and J. Song, “Robust mobile robot localization using optical flow sensors and encoders,” Proc. 

IEEE International Conference on Robotics and Automation, (2005), pp. 1039-1044. 

[9] G. Welch and G. Bishop, “An Introduction to The Kalman Filter,” Technical report, Dept. of Computer 

Science, Univ. of North Carolina at Chapel Hill, (2002). 



International Journal of Control and Automation 

Vol.10, No.6 (2017) 

 

 

70   Copyright ⓒ 2017 SERSC 

 


