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Abstract 

Distance measurement is essential for autonomous mobile robot. In this paper, 

development of a structured-light image based ranging system is addressed. In order to 

obtain omnidirectional distance data, the ranging sensor units are deployed in ring 

structure on a mobile robot. The omnidirectional distance information to surrounding 

objects is useful for making a local distance map and the self-localization of a mobile 

robot by matching the local map with a given global map. An efficient image processing 

algorithm, i.e., integration of difference images with structured-light modulation is 

proposed, which results in robust extraction of the structured-light pixels from a camera 

image against environmental ambient light. Experiments for the structured-light pixel 

extraction, distance computation, matching and localization are conducted to verify the 

performance of the proposed ranging system. 
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1. Introduction 

In order to achieve self-localization and autonomous navigation for a mobile robot, a 

distance measurement system is prerequisite to obtain spatial map of the robot’s 

environment. Among the many kinds of ranging sensors developed so far, the structured-

light image based sensor has many advantages over the others: efficient computation in 

image processing, robustness against ambient light and cost-effectiveness [1]. 

The structured-light imaging system projects a light of a distinct frequency in a 

particularly structured pattern onto environmental object and captures the reflected 

structured-light by a conventional camera. The distance to the object is computed based 

on the distortion of the structured pattern which is a function of the distance. Many results 

are available that use this method. M. Altschuler et al.  proposed a structured-light 

imaging system with MxN dot matrix laser beam pattern to reconstruct 3D shape of an 

object [2]. In [3], A. Blake et al. solved the epipolar geometry and correspondence 

problem of multiple stripes of structured-light pattern.  

The bulky laser equipments and the image processing time has discouraged the use of 

the structured-light image based method in the past, however recent advancements in 

semi-conductor laser equipments and fast processors have made this system more viable 

and economical. Thus, the structured-light image based ranging system has been used for 

mobile robots [4-6]. 

On the other hand, the structured-light imaging system is also widely used for 3D 

shape reconstruction by dense structured-light pattern through spatial-temporal 

codification [7-8]. Survey on this area is well-described in [7]. Y. Oike developed a smart 
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integrated circuit image sensor for the structured-light based 3D shape reconstruction [9]. 

Since 3D information of an object is necessary for robotic manipulation, the dense and 

multiple structured-light patterns should be employed for 3D shape reconstruction of the 

object. On the contrary, 2D distance information to an object is enough for autonomous 

navigation of a mobile robot on flat ground. The 3D shape reconstruction demands 

cumbersome projector and camera devices and loses the realtime since it spends much 

computation time in general. 

It is clear that the multi-directional distance is more useful for free motion of a mobile 

robot in cluttered environment. The panoramic structured-light imaging systems were 

proposed in [10-12] to acquire omnidirectional distances. The omnidirectional distance 

data can be used not only for deciding the heading direction but also for the self-

localization and autonomous navigation by making a local object map and matching with 

a given global map. 

In this paper, a structured-light image based ranging sensor module is developed with 

an embedded image processor and a laser diode generating stripe structured-light. The 

ranging sensor units are deployed in ring structure on a mobile robot to obtain the 

omnidirectional distances. Each ranging module processes structured-light image to 

extract distance information and transmits the distance data to main controller of the 

mobile robot. The main controller performs the self-localization by estimation of robot’s 

posture (position and heading angle) through matching the omnidirectional distance data 

with given global object map. This paper is organized as follows: Section 2 describes the 

structured-light image based ranging sensor and the distance measurement. Section 3 

addresses the matching and the self-localization algorithm using the omnidirectional 

distance data. Experimental results are presented in Section 4 and conclusion is in Section 

5. 

 

2. Development of Structured-Light Image Based Ranging System 

The structured-light image based ranging sensor consists of a camera and a structured-

light source as shown in Figure 1. In order to get horizontal distances to objects under the 

assumption of robot motion on flat ground, a horizontal sheet of laser structured-light is 

used in this paper. One easy way to remove background image and extract only the 

structured-light pattern is to use an optical band-pass filter that only transmits the 

particular frequency of the structured-light, but a sharp band-pass filter has a high cost. 

Another method to extract structured-light is to compute the difference of two images 

with the structured-light modulation: one with the structured-light on and the other 

without it as illustrated in Figure 2. This technique is commonly used to detect a motion 

on a static scene. A structured-light modulation circuits are needed to use the image-

difference method. 

In order to compensate for the weakened structured-light and make it resistant to the 

ambient background lights, a special image processing algorithm is needed that 

emphasize the structured-light. In this paper, a temporal integration method of the 

difference images is used to selectively enhance the structured-light as in Figure 2. The 

number of integrations is predetermined as 3 taking the strength of the ambient light into 

consideration in this paper [13]. 

 

Figure 1. Distance Measurement based on Structured-light Image 
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(a) Image difference 

 
(b) First integration of difference images 

 
(c) Second integration of difference images 

Figure 2. Integration of Time-difference Structured-light Images 

 
The structured-light pixel distance is denoted as p  in Figure 2 (c) from the center line 

of the image in vertical direction. The measurement angle    is given as follows: 

             

1tan
p




  
  

   

(1) 

where  represents the focal length of the camera. From the distance measurement model 

in Figure 3, the distance to an object, l , can be obtained as 

               

1cot tan
p

l b 


  
    

    

(2) 

where    represents camera view angle, and b  denotes baseline respectively. 

 

 

Figure 3. Distance Measurement Model 
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The embedded camera CMUcam3 [14] and a 660nm wavelength infrared 

semiconductor laser are used to develop the structured-light image based ranging sensor 

module as shown in Figure 4. The embedded processor carries out the whole image 

processing and transmits only the distance data to the main controller of robot. Figure 5 

shows the ring array of the ranging sensor modules attached on a mobile robot which can 

measures omnidirectional object distances. 

 

3. Self-localization Using Omnidirectional Distance Map 
 
3.1. Local Omnidirectional Distance Map 

Figure 6 shows the structured-light pixel images from the ring array of the ranging 

sensors in an exemplar environment of a mobile robot shown in Figure 7. In Figure 7 (a), 

a circled number denotes each camera in the ring array corresponding to each image in 

Figure 6. From the distance equation (2), it is possible to acquire a local omnidirectional 

distance map as shown in Figure 7 (b). The local distance map consists of a set of 

measured points  ,m mx y  represented in the moving coordinates of the mobile robot. 
 

 

Figure 4. Ranging Sensor Module 
using CMUcam3 Embedded Camera 
and a Laser Structured-light Source 

with Modulation Circuit 

 

Figure 5. Omnidirectional Distance 
Measurement by Ring Array of 
Structured-light Image based 

Ranging Sensor Modules 

 

When the present posture of the robot is  , ,r r rx y   in the world coordinates, the 

measured local distance data in the moving coordinate can be transformed into the world 

coordinates as follows: 

              

( ) ( , )
w m

r r r

w m

x x
R T x y

y y


   
    

     

(3) 

where ( )R   and ( , )T x y represent the rotation and translation respectively as follows: 

cos sin
( )

sin cos
R

 


 

 
  
  , 

( , )
x

T x y
y

 
  
   

(4) 

 
(a) From camera 1 

 
(b) From camera 2 

 
(c) From camera 3 

 
(d) From camera 4 

Figure 6. Structured-light Pixel Images from Ranging Sensor Array 
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3.2. Matching for Self-localization 

The self-localization of the mobile robot can be made by matching of the 

omnidirectional distance map with a given global object map. There have been many 

researches on the map matching problem. In [15-16], the least-squared error based point 

matching algorithm was suggested. Since the matching algorithm considered each 

measured point individually, it requires lots of computations. The omnidirectional 

distance map in this paper contains many measured point data, thus, the computational 

burden would be much more severe. In order to improve efficiency in computation, a 

modified line matching algorithm is presented in this paper: Line segments are obtained 

from the measured omnidirectional distance map first and match only two end points of a 

line segment with the global map rather than all measured points. 
 

 
(a) Mobile robot environment 

 
(b) Local distance map 

Figure 7. Omnidirectional Distance Data 

 

3.3. Line Segment from the Measured Distance Data 

In order to represent the measured distance data with several line segments, two end 

points of a line segment should be determined. In case that there is a discontinuous point 

in the measured data as in Figure 6 (a), it is simple to determine the end point of a line 

segment. In the other case that two line segments are connected as in Figure 6 (b), a 

corner point should be found out as the end point of a line segment. As illustrated in 

Figure 8, an angle 
i  at 

iP  between the vectors i i i nr P P  and 
i i ni

f P P  are defined as 

follows: 

          

1cos
i i

i

i i

r f

r f
 

 
 

 
   

(5) 

where ‘·‘ denotes the inner product, 
iP  is the thi  pixel position in the measured data, and 

i nP  and i nP  are the ( )thi n  and the ( )thi n  pixel positions respectively with a fixed 

interval n . The criterion for 
iP  to be a corner point is described as follows: 

           ( 1)i n i n i        and 1i i i n       (6) 

Eq. (6) implies that 
i  is a local minimum within i n i i n    . Figure 9 shows the 

influence of pixel noise on the angle 
i  in accordance with n . When there is not any 

noise on pixel iP , the angle should be i  in the figure. If the amount of noise on iP  is   in 

y  axis, the angle becomes 
i   or 

i   in case of 1n   or 4n   respectively as shown in the 

figure. Thus, the influence of pixel noise on the angle become smaller as the interval n  is 

increased. However, if n  is set too large, it may cause a loss of corner point in a short line 
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segment. Thus, the size of n  should be determined by taking the amount of pixel noise 

into consideration. Figure 10 is the graph of the angle 
i  by applying (5) to the image in 

Figure 6 (b). From two end points of a line segment, the center of the line segment and the 

number of measured data points on the line segment can also be obtained.  
 

 

Figure 8. Angle i  at  iP  in Case of 

4n   

 

Figure 9. Influence of Pixel Noise 
on the Angle at iP According to n 

 

 
3.4. Matching and the Self-localization 

In Figure 11 (a), 
i

lP  and 
e

lP  denote two end points of a line segment l . The center of 

the segment is   / 2c i e

l l lP P P  and ln  is the number of data points on the segment l . It is 

assumed that the global map is modeled by the polygonal objects. The model line in 

Figure 11 represents a side line of the polygonal object. 

As explained in Figure 11, the nearest model line is chosen as a target for each 

measured line segment l . To choose the target line, the shortest distance between a model 

line and the center of a line segment is used. The target line is described as 

l lP r u
 

(7) 

where P  is a point on the target line, lu  is the unit normal vector, and lr  is a certain real 

number. 
 

 

Figure 10: Angle i  with respect to i  at 4n   
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(a) Before matching algorithm 

 
(b) After matching algorithm 

Figure 11. Matching Algorithm 

Rotation by   and translation by  ,x y   with respect to the reference position 

rC  of the robot make the end points of the segment l  as 

( )( ) ( , )l l r rP R P C C T x y      
 (8) 

where lP  and lP  represent an end point before and after the transformation respectively. 

The squared distance between the transformed end point and the target line (7) is defined 

as the matching error as follows: 

 

 

2

2

( )( ) ( , )

( )( ) ( , )

i

l l r r l l

e

l r r l l

s R P C C T x y r
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
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         
 

         
 

u
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(9) 

where 
i

lP  and 
e

lP  are the two end points of the line segment. Then, the total matching 

error is represented by sum of the weighted matching errors of all line segments: 

 
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2

2
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( )( ) ( , )

l l
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
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(10) 

The weight ln  is the number of all data points on a line segment l . In order to get the 

amount of rotation   and translation  ,x y   that minimizes the total matching error 

(10) by the least-square method, the rotational matrix ( )R   is linearized as follows 

[16]: 

cos( ) sin( ) 1
( )

sin( ) cos( ) 1
R

  


  

      
     

       
(11) 

By inserting (11) into (10) and taking a derivative with respect to   and  ,x y  ,  it 

is possible to get the amount of translation and rotation that minimizes the total matching 

error as follows: 

1

2 2 2 1 2 1

1 2 1 1 1 1

x
A B E

y
C D F




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 
    

      
       

(12) 

where 
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(13) 

In (13), M  is given by 

0 1

1 0
M

 
  
   

(14) 

 

 

Figure 12. Matching Process 

 

When the amount of transformation  , ,x y     is obtained from (12), the estimated 

posture  , ,r r rx y   should be updated as follows : 

   , , , ,r r r r r rx y x x y y       
 

(15) 

The matching process from (7) through (15) should be repeated until the matching 

error (10) becomes smaller than a predefined value. Overall matching process is 

represented by a flowchart in Figure 12. 

 

4. Experimental Results 

To verify the performance of the proposed ranging system in this paper, experiments 

on the self-localization and the autonomous navigation of a mobile robot are conducted. 
 

4.1. Experimental Environment and Mobile Robot 

As shown in Figure 13 (a), several polygonal objects are placed in the environment of a 

mobile robot. Figure 13 (b) shows the mobile robot and the ranging system consisting of 4 

structured-light image based embedded sensors. 
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(a) Experimental environment 

 
 

(b) Mobile robot and ranging system 

Figure 13. Experimental Environment and Mobile Robot 

 
4.2. Acquisition of Distance Data 

Image acquisition rate of CMUcam3 is 26 FPS(Frames Per Second). The ranging 

frequency is around 4Hz since 6 image frames are needed for the sequential integration of 

difference images: Two image frames to get difference image with the modulated 

structured-light and three difference images for the sequential integration to improve 

detectability for the structured-light pixels in the image. 

The maximum measurable distance of the ranging sensor module in this paper is about 

1,200mm. As explained in Figure 3, the measurable distance depends on the camera view 

angle and the baseline. Figure 14 shows the actual distance in accordance with the 

measured pixel distance, p  in (2) and the distance measurement error. From the figure, 

the approximate distance measurement error is within ±10mm at the distance range of 

1,200mm. 

 

 
(a) Measured distance 

 
(b) Distance measurement error 

Figure 14. Measured Distance and Measurement Error 

 

5. Result of Experiments 

Figure 15 shows the result of the map matching and the self-localization algorithm. 

The omnidirectional distance data measured at an unknown robot posture is depicted by 

red line segments in Figure 15 (a) and the resultant robot posture after the matching is 

represented by a dark triangle in Figure 15 (b). The amount of transformation to update 

the robot posture is    , , 630.0, 320.0,16.54ox y      from the matching algorithm. 
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(a) Before data matching 

 
(b) After matching and update 

Figure 15. Data Matching and Self-localization 

 
Figure 16 shows the result of the autonomous navigation of the robot with the real-time 

omnidirectional distance measurement and the localization through the matching 

algorithm. The black polygons represent the global object map. The line from the start to 

the goal is the given desired path for the robot and the series of the small triangles 

represent the actual robot positions with heading angle. As described in (11), the 

matching algorithm appoximates the rotational matrix in linearization. Size of the 

matching error that can be converged by the approximated matching algorithm 

might be dependant on an occasion in general. Using a computer simulation, it is 

shown in this paper that the approximated matching algorithm converges within 45° 

of rotational angle error. 

 

 

Figure 16. Result of Tracking Control for Mobile Robot 

 

6. Conclusions 

The ring array of the structured-light image based ranging sensors proposed in this 

paper is able to obtain omnidirectional distance that makes to achieve fast localization for 

autonomous navigation of a mobile robot. A compact camera with an embedded processor 

used for the ranging sensor in this paper sends only final distance data to the main 

controller of the robot, thus lowering its computational burden. 

It is required a matching between the omnidirectional distance data from the proposed 

ranging sensors and a given global object map for the self-localization of the mobile 
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robot. A least-squared error based algorithm is developed in this paper to associate 

between line segments extracted from the measured omnidirectional distance data and 

polygonal model of the global object map. Since the matching algorithm in this paper 

used only two end points of a line segment to associate with an edge of the polygonal 

model, it is efficient in computation than a conventional point to point matching 

algorithm. 

The main contributions of this paper are summarized as: 

- Cost-effective embedded ranging sensor module 

- Ring array of the ranging sensors for omnidirectional distance measurement 

- Robustness against ambient illumination by sequential integration of difference 

images with modulated structured-light 

- Efficient computation in map-matching by line-line matching 

The proposed ring array of the structured-light image based ranging sensor and the 

matching algorithm in this paper were verified through experiments. 
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