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a b s t r a c t

The synthesis, Zn2þ binding, crystal structure, and cell imaging studies of a new pyrazole amine quin-
oline receptor with a flexible binding pocket are described. Upon coordination to Zn2þ, the absorption of
the receptor increases at 364 nm and it fluoresces at 500 nm. The fluorescence response to Zn2þ is se-
lective for Zn2þ and does not occur with other metal ions, not even Cd2þ. In solution, the receptor forms
1:1 complexes with Zn2þ, but in the solid-state two Zn2þ ions coordinate to the receptor. The aqueous
solubility of the receptor allows for imaging of Zn2þ in living cells. Cells exposed to receptor and Zn2þ

fluoresce when excited with visible light.
© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Zinc has a multitude of uses in organisms, including acting as a
Lewis acid in hydrolytic enzymes, as a structure component of
proteins, and as a signal in brain function. Due to the prevalence of
Zn2þ in organisms, its detection and monitoring are essential to
understand its role in biological organisms [1]. Without being
colored or redox active it has been difficult to detect Zn2þ ions in
biological environments. With its d orbitals full of electrons and
those electrons stable, Zn2þ resembles Ca2þ more than other
transition metal ions. Cellular levels of Zn2þ are not the same and
thus different concentrations of cellular zinc need to be monitored.
Therefore, receptors with high and low affinity for zinc are
important [2]. However, no matter what the binding strength of the
receptor is, selectivity for Zn2þ over other metal ions is critical.

The development of zinc sensors is an active research field. Most
sensors have two components, a fluorophore and a Zn2þ binding
site. Various molecules have been used as fluorophores, one of
which has been quinoline [3]. We have developed receptors with
m), roger_harrison@byu.edu
the amidoquinoline fluorophore due to the large enhanced fluo-
rescence of quinoline after the amide binds to Zn2þ [4]. Several of
the sensors are biocompatible and have been used to image cells
[5].

The Zn2þ binding domain in sensors must chelate Zn2þ and thus
often has several nitrogen atoms. Such ligands as dipicolylamine
(DPA) have been employed as the chelates [6] and some cases they
have been included with quinoline to make receptors [7]. A ligand
that hasn't been used is the dipyrazolylamine. The dipyrazolyl-
amine, with its pyrazole nitrogens separated from its amine ni-
trogen by three atoms, is able to form six-membered metal
containing rings [8]. Metal ions such as Co2þ, Ni2þ, Cu2þ and Zn2þ

have been coordinated to dipyrazolylamine ligands [9]. And in
some cases the dipyrazolylamine ligand coordinates strongly to
Zn2þ due to the flexible coordination of Zn2þ, but less strongly to
other transition metal ions, due to their preference to one definite
geometry, such as octahedral geometry. The unique ability of Zn2þ

to be a strong Lewis acid and yet to be stable in various geometric
conformations renders it able to coordinate strongly to ligands to
which other metal ions bind more weakly.

In this paper we present the synthesis and properties of a new
zinc receptor that has a flexible binding site composed of pyrazoles.
The receptor has an amidoquinoline unit as its fluorophore. The
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Fig. 1. Fluorescence intensity increase due to Zn2þ addition to receptor 1. Conditions:
10 mM receptor in bis-tris aqueous solution, 356 nm excitation, 0 to 2 equivalents of
Zn2þ added in 0.1 equiv. portions.

Fig. 2. Receptor fluorescence due to Zn2þ. Other metal ions do not cause fluorescence.
Conditions: 10 mM receptor in bis-tris aqueous solution, 356 nm excitation, 1 equiv.
metal nitrate.
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new receptor fluoresces in the presence of Zn2þ, but not with other
metal ions. A crystal structure of the receptor bonded to Zn2þ

shows coordination to the Zn2þ through pyrazole nitrogens and the
amide oxygen and nitrogen. The new receptor-Zn2þ complex has
the important properties of being soluble in water and fluorescing
when excited with visible light. The receptor is able to induce
fluorescence in living cells that have been exposed to Zn2þ.

2. Results and discussion

2.1. Synthesis

The new receptor 1 was synthesized by adding 2-chloro-N-
(quinolin-8-yl)acetamide to bis[2-(3,5-dimethylpyrazol-1-yl)
ethyl]-amine in the presence of base (Scheme 1). Column chro-
matography was used to isolate pure product, which showed
methylene proton NMR signals next to the carbonyl group to be at
3.4 ppm, signifying receptor assembly. The molecule is colorless
and does not fluoresce.

2.2. Fluorescence due to Zn2þ

Upon addition of Zn2þ to an aqueous solution of receptor, the
receptor fluoresces. The fluorescence at 500 nm increases upon
excitation at 356 nm until one equivalent of Zn2þ has been added
(Fig. 1). Importantly, the fluorescence response is selective for Zn2þ

and the sensor doesn't fluoresce when other metal ions such as
Naþ, Kþ, Mg2þ, Ca2þ, Al3þ, Cr3þ, Mn2þ, Fe2þ, Fe3þ, Co2þ, Ni2þ, Cu2þ,
Cd2þ, Pb2þ, Ga3þ, and In3þ are present (Fig. 2). Remarkably, unlike
many other Zn2þ sensors, the receptor does not fluoresce in the
presence of Cd2þ. Not only is the receptor selective for Zn2þ, but
other metal ions do not quench the fluorescence caused by Zn2þ.
The fluorescence of the Zn-receptor complex is not affected when
one equivalent of metal ion, such as Naþ, Kþ, Mg2þ, Ca2þ, Al3þ, Cr3þ,
Mn2þ, Fe2þ, Fe3þ, Co2þ, Ni2þ, Cu2þ, Cd2þ, Pb2þ, Ga3þ, and In3þ is
present (Fig. 3). Larger equivalents (2, 5, and 10 equivalents) of Cr3þ,
Fe3þ, Co2þ, and Cu2þ do reduce the fluorescence intensity of the Zn-
receptor complex, however, it still remains over fifty percent of its
original value.

2.3. pH range of fluorescence

Fluorescing at biologically relevant pH is important for the
usefulness of the receptor. The fluorescence enhancement of the
receptor caused by Zn2þ is maintained over a pH range from 6 to 11
(Fig. 4). The continuous fluorescence over five pH units implies that
the Zn-receptor complex is stable over this pH range.

2.4. Fluorescence cycling

The receptor also shows chelation ability over several binding
episodes. The fluorescence of the Zn-receptor complex is quenched
when EDTA is added to it, but when more Zn2þ is added to the
solution, the fluorescence returns (Fig. 5). This fluorescence
Scheme 1. Synthesis of receptor 1. Conditions
quenching and emission can be cycled several times without loss of
fluorescence intensity. The binding constant of EDTA to Zn2þ is of
the order of 1016 M-1 and is much larger than the 1.1 � 107 M-1

binding constant for receptor to Zn2þ. Thus EDTA removes Zn2þ

from the Zn-receptor complex. With this binding constant for the
receptor-Zn2þ complex and the strong fluorescence intensity of the
complex, the detection limit of Zn2þ by the receptor is 30 nM.
2.5. Absorption change upon Zn2þ binding

The receptor has absorption bands at 220 and 325 nm. Both of
these bands decrease in intensity when Zn2þ is added and new
bands at 274 nm (ε ¼ 2.4 � 104 M-1cm�1) and 364 nm
(ε ¼ 3.7 � 103 M-1cm�1) develop (Fig. 6). This red shift in the amide
and aromatic p to p* transitions upon Zn2þ binding has been noted
before with quinoline receptors. We attribute it to a greater lowing
: reflux in acetonitrile with triethylamine.



Fig. 3. Fluorescence of Zn-receptor complex remains in the presence of other metal
ions. Conditions: 10 mM receptor in bis-tris aqueous solution, 356 nm excitation, 1
equiv. of Zn2þ and other metal ion.

Fig. 4. The receptor in the presence of Zn2þ
fluoresces from pH 6 to 11. The receptor

without Zn2þ does not fluoresce at any pH. Conditions: 10 mM receptor in bis-tris
aqueous solution, 356 nm excitation, 1 equiv. metal nitrate.

Fig. 5. EDTA eliminates the fluorescence of the Zn2þ-receptor complex. Receptor
(10 mM) with 1 eq of Zn2þ

fluoresces. When 1 eq of EDTA is added to this solution, the
fluorescence is quenched. Adding more Zn2þ reestablishes the fluorescence.
(L ¼ receptor, E ¼ EDTA.)

Fig. 6. Receptor absorption changes due to Zn2þ. Peaks at 274 and 364 nm grow in as
Zn2þ is added. Conditions: 40 mM receptor in bis-tris aqueous solution, Zn2þ added by
0.1 equiv.
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of the p* orbitals than the lowering of the p orbitals. The nitrogen
in the quinoline is important to this absorption shift and this shift
implies binding of the Zn2þ to the nitrogen in the quinoline [4c].

2.6. NMR characterization of 1

The 1H NMR signals of the receptor change upon Zn2þ binding.
In aqueous solution there is a large downfield shift (nearly
0.75 ppm) of the proton signal from the hydrogen on the pyrazole
ring, which is complete after one equivalent of Zn2þ (SI Fig. s1). This
downfield movement is attributed to coordination of electroposi-
tive Zn2þ, which results in the pyrazole hydrogens being more
deshielded. The three aromatic proton signals of the quinoline
divide into six, indicating multiple environments for quinolines,
which remain evenwhen two equivalents of Zn2þ have been added.
The receptor hydrogens being in multiple environments upon Zn2þ

binding is also displayed by the methylene protons of the ethyl
groups, which give rise to several signals. In acetonitrile, the re-
ceptor has a less complicated spectrum and gives only one signal
for each hydrogen. As in aqueous media, the proton signal of the
pyrazole moves downfield (0.5 ppm) upon Zn2þ coordination (SI
Fig. 2). In a similar manner, the methylene proton signals all
move downfield. The aromatic proton signals, however, stay in the
region 7.5e9.0 ppm. The NH proton signal moves upfield by nearly
0.5 ppm, indicating Zn2þ coordination.

The 1H NMR, fluorescence and absorption spectra support 1:1
binding of receptor to Zn2þ, since the hydrogen, emission, and
absorption peaks stop changing after one equivalent of Zn2þ has
been added. Also, in aqueous and dilute methanol solutions, Job
plots show a 1:1 binding ratio of Zn2þ to receptor (SI Fig. 3). Mass
spectra also support the 1:1 Zn2þ to receptor coordination. The base
peak (100% relative abundance) indicates a mass of 508.27 m/z,
which corresponds to receptor þ Zn2þ - Hþ.

2.7. Crystal structure analysis

To further understand the Zn2þ coordination to receptor 1,
crystals of the Zn2þ-receptor complex were grown. Single crystals
of the receptor bound to Zn2þ showed two zinc ions coordinated to
one receptor (Fig. 7). Both zinc ions had distorted octahedral ge-
ometry. One Zn2þ was bound to the nitrogens of the amine and
pyrazoles, and to oxygens from the amide and a nitrate. The other
Zn2þ was bound to the nitrogens of the quinoline and amide and to
oxygens of two nitrates. The ZneN bond lengths are from 2.0 to
2.2 Å, except for the ZneN amide bond length, which is shorter and
1.85 Å. The ZneO amide bond length is 2.11 Å, similar to the ZneO
bonds of one of the nitrate ions. The CeO bond length of the amide
is 1.20 Å and similar in length to a CeO double bond. The CeN
amide bond length of 1.36 Å is also short and less than a typical
CeN single bond, but similar to a CeN bond in an amide. As shown
by the crystal structure, the receptor can bind two Zn2þ ions.
Although this 1:2 receptor to Zn2þ ratio is different than what was
observed in solution, it was also observed in concentrated meth-
anolic solutions, where a Job plot shows a 1:2 ratio of receptor to
Zn. It seems that when Zn2þ concentrations are high, the receptor
binds two Zn2þ ions.



Fig. 7. Crystal structure of Zn-receptor complex. Atom color: C grey, O red, N blue, and
Zn light blue. Hydrogens were omitted for clarity. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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2.8. Cell studies

Given the strong fluorescence response by the receptor to Zn2þ

we investigated the particle application of the receptor and the
detection of Zn2þ in living cells. Human dermal fibroblast cells
exposed to 30 mM receptor and 100 and 150 mM Zn(NO3)2 fluo-
resced, while those exposed to 0 and 50 mM Zn(NO3)2 did not
(Fig. 8). When the cells were exposed to Zn2þ and greater con-
centrations of receptor, such as 50, 100, and 150 mM, even 50 mM
Zn2þ cells fluoresced. Zn2þwas found throughout the cell, as shown
by fluorescence everywhere in the cell.

3. Conclusion

A new Zn2þ receptor composed of pyrazoles and 4-
aminoquinoline has been synthesized. The receptor binds to two
Zn2þ ions shows bonding through all of the receptor nitrogens in
the crystal structure. The receptor fluoresces in the presences of
small quantities of Zn2þ, but not with other metal ions. Also, the
receptor-Zn2þ complex maintains fluorescence in the presence of
other metal ions such as Cd2þ, Cu2þ, Ni2þ, Co2þ, and Fe2þ. With the
binding of Zn2þ comes a change to the 1H NMR signals of the
Fig. 8. Human dermal fibroblast cells exposed to different Zn2þ concentrations and 30 mM
croscope (bottom).
receptor. As Zn2þ binds to the receptor, its absorption at 364 nm
increases and tails off into the visible light region, which allows for
receptor excitation with visible light. The receptor-Zn2þ complex is
soluble in aqueous solutions and results in fluorescence of living
cells that are exposed to receptor and Zn2þ.

4. Experimental section

4.1. Materials and instrumentation

All the solvents and reagents (analytical and spectroscopic
grade) were obtained from Sigma Aldrich and used as received.
NMR spectra were recorded using a Varian 400 spectrometer.
Chemical shifts (d) were reported in ppm, relative to tetrame-
thylsilane (Si(CH3)4). Absorption spectra were recorded at 25 �C
using a Perkin Elmer model Lambda 2S UV/Vis spectrometer.
Electrospray ionization mass spectra (ESI-MS) were collected using
a Thermo Finnigan (San Jose, CA, USA) LCQTM Advantage MAX
quadrupole ion trap instrument. Fluorescence measurements were
performed using a Perkin Elmer model LS45 fluorescence spec-
trometer. 2-Chloro-N-(quinolin-8-yl)-acetamide [10] and bis[2-
(3,5-dimethylpyrazol-1-yl)ethyl]-amine [11] were prepared ac-
cording to procedures reported in the literature.

4.2. Synthesis of receptor 1 (2-(bis(2-(3,5-dimethyl-1H-pyrazol-1-
yl)ethyl)amino)-N-(quinolin-8-yl)acetamide)

2-Chloro-N-(quinolin-8-yl)acetamide (0.46 g, 2.1 mmol), bis[2-
(3,5-dimethylpyrazol-1-yl)ethyl]-amine (0.52 g, 2.0 mmol) and
triethylamine (0.31 mL, 2.2 mmol) were dissolved in acetonitrile
(30 mL), stirred and refluxed for 1 day under a nitrogen atmo-
sphere. The solution was extracted with dichloromethane, the
organic phase was separated, and the solvent was removed under
vacuum. The pure product was obtained by column chromatog-
raphy (silica gel, chloroformemethanol (10/1, v/v). Yield: 0.24 g
(55%). 1H NMR (400 MHz, DMSO-d6, 25 �C): d ¼ 10.92 (s, 1H), 8.86
(d, J ¼ 3.6 Hz, 1H), 8.64 (d, J ¼ 8 Hz, 1H), 8.40 (d, J ¼ 8 Hz,1H), 7.58
(m, 3H), 5.64 (s, 1H), 4.08 (t, J ¼ 6.6 Hz,4H), 3.38 (s, 2H), 2.95 (t,
J ¼ 6.6 Hz,4H), 2.10 (s, 6H), 1.95 (s, 6H) ppm. 13C NMR (400 MHz,
CDCl3, 25 �C): d ¼ 169.7, 158.1, 157.3, 148.7, 148.5, 139.1, 137.6, 136.3,
134.5,131.5,129.9,128.2,127.5,123.6,122.9,122.2,121.9,119.3,117.5,
117.1, 59.1, 58.5, 56.5 ppm. HRMS (ESI): m/z calcd for
C24H22N4O2 þ Hþ: 399.17; found 399.07. Elemental analysis calcd
receptor. The pictures were taken with a light microscope (top) and fluorescent mi-



Table 1
Selected bond lengths (Å) and angels (�) for the Zn receptor complex.

Zn(1)-O(1) 2.108 (6) Zn(2)-N(1) 2.147 (5)
Zn(1)-O(101) 1.984 (6) Zn(2)-N(2) 1.853 (9)
Zn(1)-N(3) 2.024 (7) Zn(2)-O(82) 2.109 (10)
Zn(1)-N(5) 2.095 (7) Zn(2)-O(92) 2.122 (2)
Zn(1)-N(7) 2.225 (8) Zn(2)-O(81) 2.387 (12)
C(10)-O(1) 1.200 (10) Zn(2)-O(91) 2.420 (15)
N(3)-Zn(1)-O(1) 75.2 (3) N(2)-Zn(2)-N(1) 90.80 (18)
O(1)-Zn(1)-N(7) 90.1 (3) N(1)-Zn(2)-O(81) 91.9 (3)
N(3)-Zn(1)-N(5) 94.7 (3) N(2)-Zn(2)-O(81) 102.2 (4)
N(5)-Zn(1)-N(7) 106.0 (3) N(1)-Zn(2)-O(91) 79.8 (4)
O(101)-Zn(1)-N(5) 88.7 (3) N(2)-Zn(2)-O(91) 136.7 (4)
O(101)-Zn(1)-O(1) 91.6 (3) O(81)-Zn(2)-O(91) 120.2 (4)
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(%) for C24H22N4O2 (398.46): C, 72.34; H, 5.57; N, 14.06; found: C,
72.15; H, 4.95; N, 13.75.

4.3. Fluorescence titration of Zn2þ with receptor

Receptor 1 (1.33 mg, 0.003 mmol) was dissolved in methanol
(1 mL) and 10 mL of the receptor solution (3 mM) was diluted with
2.990 mL bis-tris buffer solution (pH 7.1) to make a final concen-
tration of 10 mM. Zn(NO3)2$6H2O (12.14 mg, 0.04 mmol) was dis-
solved in bis-tris buffer (4 mL). 0.3e3 mL of the Zn2þ solution
(10 mM) were transferred to the receptor solution (10 mM). After
mixing for a few seconds, fluorescence spectra after excitation at
365 nm were taken at room temperature.

4.4. UVevis titration of Zn2þ with receptor

Receptor 1 (1.33 mg, 0.003 mmol) was dissolved in methanol
(1 mL) and 40 mL of the receptor solution (3 mM) were diluted with
2.960 mL bis-tris buffer solution to make a final concentration of
40 mM. Zn(NO3)2$6H2O (12.14 mg, 0.04 mmol) was dissolved in bis-
tris buffer (4 mL). 1.2e12 mL of the Zn2þ solution (10 mM) were
transferred to the receptor solution (40 mM). After mixing for a few
seconds, fluorescence spectra were taken at room temperature.

4.5. Competitive metal ion experiments

Receptor 1 (1.33 mg, 0.003 mmol) was dissolved in methanol
(1 mL) and 10 mL of receptor solution (3 mM) were diluted with
2.990 mL bis-tris buffer solution to make a final concentration of
10 mM. M(NO3) (M ¼ Na, K, 0.04 mmol), M(NO3)2 (M ¼ Mn, Ni, Cu,
Zn, Cd, Mg, Ca, Pb, 0.04 mmol), or M(NO3)3 (M ¼ Al, Fe, Cr,
0.04 mmol) were separately dissolved in bis-tris buffer (4 mL). 3 mL
of each metal solution (10 mM) were taken and added to 3 mL of
each receptor solution (10 mM) prepared as above tomake a 1 equiv.
metal ion solution. Then, 3 mL of Zn(NO3)2 solution (10 mM) were
added to themixed solution of eachmetal ion and receptor tomake
a 1 equiv. Zn2þ solution. After mixing for a few seconds, fluores-
cence spectra were taken at room temperature.

4.6. Job plot measurement of Zn2þ with receptor

Receptor 1 (2.22 mg, 0.005 mmol) was dissolved in methanol
(1 mL). 40, 36, 32, 28, 24, 20, 16, 12, 8, and 4 mL of the receptor
solution were taken and transferred to vials. Each vial was diluted
with buffer solution to make a total volume of 4.960 mL. Zn(NO3)2
�6H2O (12.14 mg, 0.04 mmol) was dissolved in bis-tris (4 mL). 0, 4,
8, 12, 16, 20, 24, 28, 32, 36, and 40 mL of the Zn(NO3)2 solution were
added to each diluted receptor 1 solution. Each vial had a total
volume of 5.00 mL. After shaking the solutions for a few minutes,
fluorescence spectra were taken at room temperature.

4.7. NMR titration of Zn2þ with receptor

Four NMR tubes of 1 (4.45 mg, 0.01 mmol) dissolved in
CD3ODeD2O (1/1, v/v, 0.5 mL) were prepared and four different
equivalents (0, 0.5, 1 and 2 equiv.) of Zn(NO3)2 dissolved in
CD3ODeD2O (1/1, v/v, 0.5 mL) were added separately to the re-
ceptor solutions. After shaking the solutions for a few seconds, the
1H NMR spectra were taken.

4.8. EDTA reversibility of receptor

Receptor 1 (1.33 mg, 0.003 mmol) was dissolved in methanol
(1.0 mL) and 10 mL of receptor solution (3 mM) were diluted with
2.990 mL of bis-tris buffer solution to make a final concentration of
10 mM. Zn(NO3)2 (0.04 mmol) was dissolved in bis-tris buffer
(4.0 mL). Three mL of the Zn2þ solution (10 mM) were added to
3.0 mL of each receptor solution (10 mM) to make 1 equiv. After
mixing for a few seconds, a fluorescence spectrumwas taken of the
solution at room temperature. Ethylenediaminetetraacetic acid
disodium salt dihydrate (EDTA, 0.050 mmol) was dissolved in bis-
tris buffer (5 mL) and 3 mL of the EDTA solution (10 mM) were
added to the receptor-Zn2þ solution (10 mM) prepared earlier. After
mixing for a few seconds, a fluorescence spectrum of the solution
was taken. For the reversibility study, another 3 mL of the Zn2þ ion
solution (10 mM) was added to the above solution. After mixing it
for few seconds, the fluorescence spectra were taken at room
temperature. The same experimental procedure was repeated two
more times.

4.9. X-ray data collection and structural determination

Zn(NO3)2 (0.030 g, 0.10 mmol) was added to a stirred solution of
receptor 1 (0.040 g, 0.090 mmol) in methanol (3 mL), and carefully
layeredwith diethyl ether (5mL). Colorless crystals suitable for X-ray
analysis were obtained in a week. A colorless triclinic-type crystal,
approximate dimensionsof 0.16mm�0.14mm�0.12mm,wasused
for X-ray crystallographic analysis. The diffraction data were
collected on a Bruker SMART APEX diffractometer equipped with a
monochromator using theMoKa (k¼ 0.71073 Å) incident beam. The
crystal was mounted on a glass fiber. The CCD data were integrated
and scaled using the BRUKER-SAINT software package, and the
structure was solved and refined using SHEXTL V6.12. All hydrogen
atoms, except the amide hydrogen atom were located in the calcu-
lated positions. Selected bond lengths and angles are listed inTable 1.
Structural information was deposited at the Cambridge Crystallo-
graphic Data Center (CCDC 972999).

Crystallographic data for 1-Zn(NO3)2: C25H24N10O10Zn2,
M¼ 755.28, triclinic, space group P-1, a¼ 9.7270(19) Å,b¼ 12.859(3)
Å, c ¼ 13.628(3) Å, a ¼ 107.31(3)�, b ¼ 93.51(3)�, g ¼ 90.04(3)�,
V ¼ 1624.0(6) Å3, room temperature, Z ¼ 2, m ¼ 1.545 mm-1,
rc¼1.545g/cm3, crystal size 0.16�0.14� 0.12mm3, 8869 reflections
collected with 6005 being independent (Rint ¼ 0.0337); the final R1
and wR(F2) values were 0.1202 [I > 2s(I)] and 0.3415, respectively;
data completeness to q¼ 26.00� 97.3%; goodness-of-fit on F2¼1.344.

4.10. Cell imaging

Normal human primary dermal fibroblast cells in low passage
(passage 6) were cultured in FGM-2 medium (Lonza, Switzerland)
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin in an in vitro incubator with 5% CO2 at 37 �C. Cells
were seeded onto a 8 well plate (SPL Lifesciences, Korea) at a
density of 2 � 105 cells per well and then incubated at 37 �C for 4 h
after addition of various concentrations (0e150 mM) of Zn(NO3)2.
After washing two times with phosphate buffered saline (PBS) to
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remove the remaining Zn(NO3)2, the cells were incubated with
receptor 1 (30 mM) at room temperature for 30 min. The cells were
observed using a microscope (Olympus, Japan). The fluorescent
images of the cells were obtained using a fluorescence microscope
(Leica DMLB, Germany) at the excitation wavelength of 425 nm.
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