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In this paper, we describe a protocol framework that can perform classification tasks in a privacy-preserving man- 

ner. To demonstrate the feasibility of the proposed framework, we implement two protocols supporting Naive 

Bayes classification. We overcome the heavy computational load of conventional fully homomorphic encryption- 

based privacy-preserving protocols by using various optimization techniques. The proposed method differs from 

previous techniques insofar as it requires no intermediate interactions between the server and the client while 

executing the protocol, except for the mandatory interaction to obtain the decryption result of the encrypted clas- 

sification output. As a result of this minimal interaction, the proposed method is relatively stable. Furthermore, 

the decryption key is used only once during the execution of the protocol, overcoming a potential security issue 

caused by the frequent exposure of the decryption key in memory. The proposed implementation uses a crypto- 

graphic primitive that is secure against attacks with quantum computers. Therefore, the framework described in 

this paper is expected to be robust against future quantum computer attacks. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

With the explosive increase in computing power over recent decades,
achine learning methods that leverage this power have become ex-

remely useful in various fields. Machine learning is now commonplace
n applications such as spam classification, medical diagnosis, and credit
valuations. The broad field of data classification often relies on a two-
tep machine learning approach. The first is a training step that involves
etermining the parameter values for the classification algorithm. This
tep uses sample data (which we call ‘training data ’) that have already
een mapped to classification results. The second, prediction step clas-
ifies the data using the trained parameters (which we call the ‘model ’).
onsequently, the classification results for the data are obtained. 

Classification can be used in many areas. For example, it can be used
or services that predict future diseases and potential health risk factors
ased on survey results or medical history data. It is also possible to
easure the value of assets based on a users financial status. In addi-

ion, users can assess their financial credit rating by providing certain
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nformation (e.g., by supplying their credit card balance and financial
ssets). 

Many of these services require sensitive information from users. In
he examples above, users must provide medical information to the
lassification algorithm in order to receive medical services. To predict
redit ratings, sensitive financial information must be provided to the
lassification algorithm. The risk of such sensitive information being ex-
osed to the public is one of the main obstacles to the wider application
f such classification services. Thus, it is of vital importance to offer
dequate protection to private and sensitive information. 

Moreover, the security of the classification model itself is important.
o obtain a high-quality model, a considerable amount of training data

s required. Thus, the value of such models is very high. As a result,
t is imprudent to offer general users any information regarding the
odel when providing the above services, because this privilege may

e abused, i.e., by selling the information to other service providers. 
Therefore, it is essential to perform data classification without ex-

osing the models or the sensitive information used as input for the
 by the Korea government ( MSIP ) ( NRF-2016R1C1B2011022 , NRF-2016R1A4A1011761 ). 
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lassification algorithm. This problem is called the privacy-preserving
ata classification problem. 

A definition of this problem was first articulated in [1] , and some
olutions were proposed in [2–4] . Specifically, in a classification service,
here are two types of actors —the client serving as a user and the server
roviding the classification service. The server has a model w and a
lassification algorithm C (), and the user has a feature vector ⃗𝑥 denoting
he data to be classified. The user sends a service request, which includes
⃗ , to the server. The server computes 𝐶( 𝑤, ⃗𝑥 ) and returns the result to
he user. During this process, the user should obtain only 𝐶( 𝑤, ⃗𝑥 ) and
hould not acquire any additional information about w . In the case of
 server, no information about �⃗� and 𝐶( 𝑤, ⃗𝑥 ) should be known during
he classification process. 

Previous studies [1–4] have not been able to run C () with the server
lone without exposing ⃗𝑥 , owing to the limitations of the cryptographic
ools used. Instead, C () can be computed by invoking a protocol between
he server and the client. For this process, the necessary information
ust be shared securely between the client and the server. These meth-

ds require additional operations, which increase the computational
ost and the number of communications over the entire system. This
s a great burden for the following reasons. 

The first is efficiency. To operate C () with an interactive protocol
onsisting of multiple rounds, the server and client must store and man-
ge the state of operations and communications. Moreover, there is a
isadvantage in that a protocol that is composed of multiple rounds is
ifficult to implement reliably in a situation where the communication
hannel is unstable. In particular, in a situation where the server is faced
ith a large number of users, such as in a cloud environment, maintain-

ng communication with all users creates a heavy burden on the server.
urthermore, the communication pattern between the server and client
s different from the communication pattern that occurs in general web
pplications. Therefore, existing methods are unsuitable for web-based
pplications [5] . As web applications are popular and convenient among
hose using the Internet, this is a clear disadvantage. 

The second reason is security. In previous methods, the client uses
 private key during protocol execution for decryption operations. This
eans that the clients private key is frequently loaded into memory. This

ituation is undesirable because the memory contains data in plaintext
orm that can be easily exposed in the event of an external attack. 

In this paper, we propose a new protocol to run a classification al-
orithm in a privacy-preserving manner with only a single round of
ommunication. In the proposed protocol, if all necessary information
s given, it is possible to perform C () on either the server or client side
ithout the help of the other party. Because no communication occurs
uring the C () operation, the proposed protocol consists of simply pass-
ng the input of the C () algorithm and returning the algorithm execu-
ion result, i.e., the classification result. Therefore, the protocol party
ho does not perform C () can be offline while the other party is run-
ing C (). Thus, it is possible to perform the classification protocol using
 communication method that does not require both the sender and the
eceiver to be online at the same time, much like e-mail. Furthermore,
ll information used to compute C () is provided in the form of cipher-
exts. Therefore, the protocol party who computes C () cannot acquire
ny information about the inputs of C () if they are supplied by another
arty to the protocol. 

In addition, the proposed method only requires a private key during
he decryption process, i.e., when acquiring the classification results of
he user. This private key, then, is not required until the decryption pro-
ess. Therefore, the private key information is only loaded into memory
or a very short period of time, mitigating the security problem stem-
ing from the memory residence of the private key. 

To obtain the above advantages, the proposed protocol employs fully
omomorphic encryption (FHE). With the operations supported by an
HE scheme, we can implement any algorithm that can be efficiently
omputed, such that it can run with any inputs that are encrypted us-
ng the encryption algorithm in the FHE scheme [6] . The output from
88 
unning the implementation also takes the form of FHE ciphertext. The
ser then needs to decrypt this in order to obtain the result. 

The process of the proposed protocol is as follows. First, the classi-
cation algorithm is implemented using the operations provided by the
HE method, such that it can operate when the FHE ciphertext input is
iven. The implementation results module is placed on the server. In ad-
ition, the model information is placed on the server in a special form,
uch that the server can perform the operations with FHE ciphertext-
ype inputs. A client wishing to use the classification service encrypts
is/her input using a public key generated by the client. The client then
ends this input information to the server, and the server carries out the
lassification with the encrypted input from the client and the model
nformation. The execution results are delivered to the client, and the
lient obtains the classification results after decryption with his/her pri-
ate key. 

The proposed protocol is suitable for a cloud environment in which
he server has high computing power, because classification is per-
ormed in the server. In addition, the proposed protocol cannot encrypt
he model, owing to the nature of FHE. Therefore, if the cloud server is
xposed to an external attack, the model information is likely to be cap-
ured by the attacker. To resolve this problem, we propose another clas-
ification protocol. In this protocol, the model information is encrypted
ith the server ’s key and delivered to the client prior to classification.
hen the classification is executed, the client uses the encrypted model

nd their own input, which is in plaintext form. The client then sends the
esults to the server. The server decrypts the results and returns them to
he client. With this method, when the client sends the classification re-
ult to the server, it randomizes the classification result. Thus, the server
annot know the classification results after decryption. Hence, insofar as
he model exists in an encrypted form, a pre-distribution of the model is
ossible before the protocol is executed. Therefore, the proposed method
an be considered a single-round protocol. 

In this study, we implement a Naive Bayes (NB) classifier, a machine
earning tool used to predict the classes of various data (e.g., diseases in
he Clinical Decision Support System [7] ) using the operations in an FHE
cheme [8–11] . The reason for choosing the NB classifier is that, despite
ts simplicity, it is known to be better suited to medical diagnosis than
ther sophisticated methods [12,13] , and it has never been implemented
xclusively with operations in an FHE scheme. 

We realized the proposed protocols with the implemented privacy-
reserving NB classifier. The main hurdle was the performance of the
HE operations: previous methods did not implement protocols exclu-
ively with FHE because of the slow performance of FHE operations.
n this paper, we describe how the performance can be improved using
arious techniques. 

We implemented the proposed protocol using HELib [9–11] . The
mplementation environment was an Intel (R) Xeon (R) ES-1650 v3 @
exa-core processor with 64GB RAM running Ubuntu 16.04 LTS as the
erver. We used an Intel i7-6700 3.40 GHz @ quad-core processor with
6GB RAM running Ubuntu 14.04 LTS as the client. After the imple-
entation, we evaluated the classification performance using the actual
ata in [14] . The server required approximately 69 s to perform the
lassification and the client required approximately 90 s. These results
onfirm that the proposed method can be used in a practical environ-
ent requiring high security. 

The remainder of this paper is organized as follows: Section 2 sum-
arizes the related work. In Section 3 , we introduce the NB classifier and

HE as preliminary information. Section 4 describes the system model
nd motivation for the proposed protocol, outlining the goals of the pro-
osed privacy-preserving classification protocols. The proposed proto-
ols and an explanation of the NB implementation with FHE operations
re described in Section 5 , and a performance evaluation is presented
n Section 6 . Finally, Section 7 concludes the paper. 



H. Park et al. Computer Standards & Interfaces 58 (2018) 87–108 

2

 

a  

i  

t  

c  

[  

t  

o
 

fi  

v  

o  

t  

p  

d
 

p
2  

t  

e  

s  

t  

t  

w  

t  

p  

f  

1  

fi  

a
 

t  

m  

c  

c  

n  

i  

N  

a  

a  

fi  

s  

m  

a  

p  

[  

d  

p  

a  

t
 

t  

I  

i  

k
 

c  

p  

d  

t  

n  

f  

i

 

c  

t  

d  

o  

t  

a  

a  

b  

w  

g  

t
 

t  

c  

m  

t  

o  

a  

t  

t  

t  

t  

t
 

t  

s  

p  

o  

a  

i  

a  

t  

p  

c  

o  

i
 

i  

i  

p  

d  

e  

p  

r  

n  

l  

d  

s  

c  

o  

i
 

a  

s  

m  

t  

i  

s  

t  

t
 

p  

t  

a  
. Related work 

Studies on privacy-preserving machine learning have been diverse,
s explained in [15] . Many of them are not focused on protecting user
nput for classification, or on the privacy of the model for the classifica-
ion process. Rather, they tend to focus on protecting the privacy of the
ollected training data. Examples of such methods are randomization
16,17] and anonymization [18] , which concentrate on transforming
he collected training data with minimal impact on the overall training
utcome. 

Privacy protection in classification protocols has recently been de-
ned as the problem of successfully completing the classification, pro-
iding the classification results to the client while preserving the privacy
f the feature vector �⃗� , which is the input of the user (i.e., client), and
he model information w , which is owned by the server [1] . That is, no
rivate information from either party should be exposed to the other
uring classification. 

A common solution to this problem is to use a secure two-party com-
utation (STC) protocol that can be applied to arbitrary algorithms [19–
3] . If the machine learning algorithm is converted to an STC protocol,
he algorithm can be executed in a privacy-preserving manner. How-
ver, significant computation and memory resources are needed to run
uch a protocol. In addition, the classification results given by such pro-
ocols are somewhat inaccurate [1] . In [1] , a privacy-preserving NB pro-
ocol was implemented using the STC protocol of [21,22] . However, it
as confirmed that more than 256GB of system memory was required

o run the NB classification for data with three features. In [24] , the
robability that simple operations such as addition, argmin , etc. would
ail when using limited memory of 4GB or less was 71.4% for [21] and
4.3% for [22] . Thus, without significant memory resources, it is dif-
cult to create a high-accuracy, privacy-preserving classifier using this
pproach. 

For this reason, many attempts have been made to create a cus-
omized protocol that combines various methods. With these combined
ethods, the core-element operations necessary for implementing the

lassifier take the form of a protocol that can be performed with en-
rypted data. Thus, the classification algorithm can be executed by run-
ing the relevant protocols [1–4] in sequence. In this case, a number of
nteractions occur between the server and the client. In one study [1] ,
B and hyper-plane classification protocols were implemented using
dditive homomorphic encryption, which (unlike FHE) provides only
 limited type of computation. To implement a decision tree classi-
er, both additive homomorphic encryption and FHE are used to con-
truct the protocol. In [2] , NB and hyper-plane classifiers were imple-
ented using commodity-based cryptography, where both the client

nd server share the necessary operations in a secure manner through
re-distributed correlated data in the setup phase. A subsequent study
3] improved the performance of the classifier proposed in [2] by up-
ating the building blocks. Moreover, [4] proposed an NB classification
rotocol for medical diagnosis using a customized protocol based on
dditive homomorphic encryption and a customized multiplication pro-
ocol. 

Unfortunately, all of the above combined methods are inefficient:
hey require multi-round interactions between the server and client.
n addition, intermediate values must occasionally be decrypted dur-
ng protocol execution, resulting in the security problem of the private
ey information residing in memory [1–3] . 

One technique that suffers this type of problem is the DGK proto-
ol [25] , which is used for numerical comparisons with classification
rotocols [1–3] . Under DGK, it is assumed that the user has encrypted
ata and the server has a private key. The user transmits his/her data to
he server containing the secret key in order to compare the encrypted
umbers in the data. The server decrypts the encrypted numbers, per-
orms the comparison, and then transmits the results to the user. Basic
nteraction is thus essential with this protocol. 
u  

89 
However, DGK allows the server to know the two numbers being
ompared, thus violating the privacy of the user data. To prevent this,
he user can transform the original data using a random number before
elivering the result to the server. The server performs a comparison
peration based on the modified data. In this case, however, because
he original data have been transformed, the server needs to perform
dditional interactions with the user to exchange more relevant data
nd perform more decryptions. Such an increase in interaction is a heavy
urden on the server —it must maintain communication while working
ith many users. Furthermore, frequent decryptions are not desirable,
iven the increased exposure of the decryption key, which might become
he main target for attackers. 

Existing protocols have another security problem: a side-channel at-
ack can be performed by analyzing protocol executions. If a classifi-
ation protocol is a combination of building blocks, the pattern of the
essages generated during the interaction for each building block, the

otal number of communications, and the communication time depend
n the building block currently being executed, which risks exposing
dditional information about the user input and model. For example, in
he case of a decision tree classifier [1] , information about the depth of
he model can be exposed by measuring the tree evaluation time. Al-
hough an improved version [3] managed to reduce the computation
ime required for tree evaluations, there is still a risk that the depth of
he model will be exposed. 

Many non-interactive privacy-preserving classification protocols
hat avoid the above problems have been studied [26–28] . In such
chemes, message transmission only occurs when the client sends the in-
ut and receives the classification result. However, most of these meth-
ds have problems in terms of classification accuracy or can support only
 weak level of security, where the privacy-protection problem defined
n [1] cannot be solved. For instance, [26] implemented a decision tree
nd a random forest classifier that requires only one round of interac-
ion, using additive homomorphic encryption and the oblivious transfer
rotocol (OTP). However, because this method exposes the depth of the
lassification tree, which is part of the model, its security is weak. More-
ver, a special method is used to implement the two classifiers, making
t difficult to apply this method to other cases. 

There have been other attempts at performing only one round of
nteraction [27,28] , and these approaches are suitable for implement-
ng arbitrary classifiers. These methods utilize somewhat homomor-
hic encryption (SWHE), which is similar to FHE, but with a limited
epth of multiplication operations in the circuit. They implement lin-
ar means and Fisher ’s linear discriminant classifiers, which include
rivacy-preserving model training. In addition to the advantage of one-
ound interaction, these methods also have the security advantage that
o user feature information is exposed to the server. However, with the
imited multiplication depth of SWHE, the method requires the user to
ecode the final output to determine the classification result. In doing
o, the user obtains information regarding the range of output values
orresponding to each classification result class. Therefore, such meth-
ds do not satisfy the security requirements in [1] , insofar as model
nformation is exposed to users. 

There has also been research on the FHE method itself. In [28] , the
uthors exploit Cox proportional-hazards regression and a linear regres-
ion classifier that takes encrypted patient data as input. However, this
ethod focuses only on protecting the user ’s input. Information about

he model required for the regression process is disclosed to everyone,
ncluding the patient. Specifically, when a user receives a regression re-
ult, the probability value used for classification is transmitted, rather
han the class value. This probability represents model information, and
herefore does not satisfy the privacy requirements proposed in [1] . 

As mentioned above, a common problem [27,28] is the lack of a com-
arison operation between ciphertexts. This forces the user to determine
he class value of the user input by comparing the regression results to
 reference value. Consequently, model information is exposed to the
ser. In [29] , the authors proposed an improved method that mitigates
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Table 1 

Comparison of existing privacy-preserving classification protocols in terms of security, mes- 

sage transmission efficiency, and number of intermediate decryptions. 

Classifier Communication # of Leaked 

(# of rounds) decryptions information 

Naive Bayes 4( 𝑡 − 1)+1 3( 𝑡 − 1) 

[1] Hyper-plane 4( 𝑡 − 1)+1 3( 𝑡 − 1) 

Decision tree 4.5 6 𝑡 − 1 Possibility of side- 

channel attack to 

extract depth of tree 

[2] Naive Bayes ( q +1)+ t +1.5 –

Hyper-plane ( q +1)+ t +2.5 –

[3] Decision tree 𝑞 + log 𝑡 +2.5 Possibility of side- 

channel attack to 

extract depth of tree 

Hyper-plane ( q +1)+ t +1.5 

[4] Naive Bayes log t + 2 t +1 

[26] Decision tree 1 1 Depth of tree 

Random forest 

[27] Linear Means 1 1 Model 

info. 

Fisher ’s linear 

discriminant 

[28] Cox proportional 1 1 Model info. 

hazards regression 

Linear regression 
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his, relative to [27,28] . To do so, [29] deals with statistical analysis
echniques such as matrix multiplication, comparison operations, a con-
ingency table, and linear regression over FHE ciphertexts. In particular,
inear regression and the comparison operation allow for the design of a
rivacy-preserving linear regression classifier. For example, when a user
ncrypts an input and sends it to the server, the server performs linear
egression using the model and the transmitted user input. Because the
erver can perform the comparison operation to classify the results of
he regression over the encrypted data using FHE, the user ultimately
eceives only the class value corresponding to the classification result.
owever, because the computation time required for the comparison
rocess and the required storage space both increase in proportion to
he exponent of the bit length of the input data and model data, the
omparison operation is only practical for limited-sized integer compar-
son. 

Compared to the privacy-preserving comparison operations based on
 garbled circuit in [30] , the comparison operations of [29] are slightly
aster than the comparison of integers that are less than 2 16 . However,
f the maximum value is increased to approximately 2 24 , [30] requires
t least 20 times more computation time and at least 10 6 times more
torage. 

In [31] , the authors address useful techniques such as Bayesian spam
ltering and decision tree evaluations over FHE-encrypted data. In their
ork, the database stores keywords and the probabilities that e-mails

ontaining these words are spam. If any of the keywords is included in
he e-mail, the Bayesian spam filter determines whether each word con-
ained in the encrypted e-mail is included in the keyword set stored in
he database. If we know which keywords in the DB are contained in
he email and their associated probabilities, we can easily calculate the
robability that the email is spam. Unfortunately, [31] does not describe
 method for calculating this probability when the keyword matching
esult is encrypted by FHE. Thus, the performance analysis in [31] fo-
used exclusively on the keyword-matching operation, without consid-
ring the calculation of the probability of spam using the probability
tored in the database. For decision tree classification, when a compar-
son result is given for each node, the study suggests a tree evaluation
ethod. However, this assumes that the comparison results between the
ser input and tree node value are known. Thus, the study does not pro-
ide details of the comparison itself. 

Table 1 summarizes the methods described in this section in terms
f the number of necessary message transmissions, the number of de-
90 
ryptions performed during protocol execution, and the information ex-
osed. In describing [26] in the table, we used the superior method in
erms of security and number of message transmissions among the two
roposed methods. In the case of [4] , it is possible to return the best
 ( ≥ 1) results, but we assumed 𝑘 = 1 when calculating the values in
he table. The number of message transmissions in [1–4] was calculated
ssuming that messages that can be transmitted simultaneously are sent
ogether. 

. Preliminaries 

This section describes some basic concepts used in the rest of this pa-
er, and defines the symbols and notation used. First, the NB classifier
s described. Then, we introduce FHE, which is essential for the imple-
entation of the proposed protocol. The symbols and notation used in

he remainder of this paper are given in Table 2 . 

.1. Naive Bayes classifier 

The NB classifier is very efficient and has been widely used in ap-
lications such as text classification [32,33] , medical diagnosis [34,35] ,
nd system performance management [36] . The NB classifier is briefly
escribed as follows. 

Given a set of feature vectors with d elements 𝐷(= 𝐷 1 ×𝐷 2 ×⋯ ×
 𝑑 ) and a set of classification results C r = { c 1 , ⋅⋅⋅, c t } for an input feature
ector �⃗� ∈ 𝐷, the classifier determines the corresponding classification
esults c y ∈C r . In other words, if 𝐶 𝑤 ( ⃗𝑥 ) is the result from running clas-
ifier C w with �⃗� , the NB classifier returns y to represent c y . In the NB
lassifier, y can be determined with the following formula: 

 = 𝑎𝑟𝑔𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑡 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 |𝑋 = �⃗� ] 

= 𝑎𝑟𝑔𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑡 
𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] ⋅ 𝑃 𝑟 [ 𝑋 = �⃗� |𝐶 = 𝑐 𝑖 ] 

𝑃 𝑟 [ 𝑋 = �⃗� ] 
= 𝑎𝑟𝑔𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑡 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] ⋅ 𝑃 𝑟 [ 𝑋 = �⃗� |𝐶 = 𝑐 𝑖 ] (1) 

Given ⃗𝑥 = ( 𝑥 1 , ⋯ , 𝑥 𝑑 ) , it is assumed all elements x 1 , ⋅⋅⋅, x d are condi-
ionally and independently drawn from one another. Thus, the following
ormula can be derived based on Bayes ’ rule: 

 𝑟 [ 𝑋 = �⃗� |𝐶 = 𝑐 𝑖 ] = 

𝑑 ∏
𝑗=1 

𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ] (2) 
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Table 2 

Notation. 

Notation Description 

sk Private key in FHE 

pk Public key in FHE 

Encrypt Encryption algorithm in FHE ( Encrypt ()) 

Decrypt Decryption algorithm in FHE ( Decrypt ()) 

[ a, b ] { 𝑎, 𝑎 + 1 , ⋯ , 𝑏 − 1 , 𝑏 } 
⊕ Encrypted_XOR () in FHE 

· Encrypted_Multiply () in FHE 

s Number of slots available in a ciphertext 

u Smallest unit of a slot rotating in the Rotate operation. Slot 

movement using Rotate can only be done in multiples of u slots. 

< < R i / Rotate the slot inside the ciphertext to the left/right by 

> > R i i · u slots (0 ≤ i < ⌊s / u ⌋) using the Rotate operation 

< < S i / Shift the slot inside the ciphertext to the left/right by 

> > S i i slots (0 ≤ i < s ) using the Shift operation 

t Size of the set of classification result classes ( = | C r |) 
C r Set of classification result classes (= { 𝑐 1 , 𝑐 2 , ⋯ , 𝑐 𝑡 }) 
c i i th class in the set of classification result classes ( i ∈ [1, t ]) 

C Random variable associated with the set C r 
�⃗� User ’s input feature vector ⃗𝑥 = ( 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑑 ) ∈ 𝐷 

d Number of attributes in ⃗𝑥 

x j j th element in ⃗𝑥 ( j ∈ [1, d ]) 

X Random variable drawn from D 

X j Random variable drawn from D j ( j ∈ [1, d ]) 

D j Domain of all possible x j , where j ∈ [1, d ] 

v j, k k th element of D j , where j ∈ [1, d ] and k ∈ [1, | D j |] 

D D 1 ×D 2 × ⋅⋅⋅×D d 
w Model of a classifier 

C w Classifier defined as a function from D →C r 
K Constant number multiplied by the log-scale probabilities to render 

them integers 

S Array of ciphertexts to store 𝐾 log 𝑃𝑟 [ 𝐶 = 𝑐 𝑖 ] in the NB 

classifier, where (1 ≤ i ≤ t ) 

q Maximum bit length that can be used to represent one value 

in the NB classifier 

LSB Ciphertext that has 1 in the least significant slot and 0 in the other 

slots 

MAX Ciphertext that has 1 in q slots that are in the designated positions. 

This will be referred to as a ciphertext containing 2 𝑞 − 1 . 
U Ciphertext of the user input feature vector ⃗𝑥 

R 1 Resultant ciphertext in the proposed classifier in the server-centric 

setting, which stores C w ( x ) 

R 2 Resultant ciphertext in the proposed classifier in the user-centric 

classification, which stores C w ( x ) > > R r , where r is randomly 

selected from {0, 1, ⋅⋅⋅, ⌊s / u ⌋} 
DP Data provider 

𝑦
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• Setup(1λ): takes a security parameter λ and returns
a system parameter param.
• KeyGen(params): takes param, the result of the
Setup operation, and returns a private/public key pair
(sk, pk).
• Encrypt(params, pk,m): takes a plaintext m,
params, and public key pk. It outputs the encryption
result (ciphertext) ctxt. Here, m may contain a vector
of plaintexts.
• Decrypt(params, sk, ctxt): takes a ciphertext ctxt,
a private key sk, and a security parameter param.
It outputs a plaintext m if ctxt is the result of En-
crypt(params, pk,m), where (sk, pk) is the result of
running KeyGen(params). Otherwise, it returns ⊥.
• Encrypted XOR(params, pk, ctxt1, ctxt2): re-
turns ctxt3, where Decrypt(params, sk, ctxt3)
produces m1 ⊕ m2, if ctxt1 is the result of En-
crypt(params, pk,m1) and ctxt2 is the result of
Encrypt(params, pk,m2), where (sk, pk) is the result
of KeyGen(params). Otherwise, it returns ⊥.
• Encrypted Multiply(params, pk, ctxt1, ctxt2):
similar to Encrypted XOR, but the result of the
decryption of ctxt3, the output of this algorithm, is
m1 · m2 (component-wise multiplication).
• Recrypt(params, pk, ctxt): returns ctxt′, which
contains the same plaintext as ctxt. For this operation
to work correctly, the depth of the multiplication opera-
tions from ciphertexts created by Encrypt to ctxt must
be less than or equal to α. Then, ctxt′ can be multiplied
by the depth α − β, where α is the value determined in
params and β is the value associated with the Recrypt
operation. To perform multiplication operations at
depths greater than α − β, this operation must be
performed again after performing multiplications at a
depth of α − β.
• Pack(params, pk, m0, m1, · · · , ms−1): takes arbitrary
plaintexts m0, · · · , ms−1 and generates a vector of
plaintexts m.
• UnPack(params, pk,m): returns m0, · · · , ms−1

encoded in m.
• Rotate(params, pk, ctxt, i): rotates the plaintexts
in the ciphertext ctxt to the left by i · u slots. Here,
u is the minimum unit of data movement provided by
automorphism without increasing the noise, and i has a
range of −s/u < i < s/u. If i < 0, it is rotated to the
right by −iu.
• Shift(params, pk, ctxt, i): moves the plaintexts in
the ciphertext to the left by i on the slot basis, and
fills the last i slots on the right with 0s. Here, i has a
range of −s < i < s; if i < 0, it is moved to the right
by −i. Unlike Rotate(), this increases the noise in the
ciphertext.

Fig. 1. FHE algorithms [43] . 
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Using the above formula, (1) can be rewritten as follows: 

 = argmax 
1 ≤ 𝑖 ≤ 𝑡 

𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] 
𝑑 ∏

𝑗=1 
𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ] 

= argmax 
1 ≤ 𝑖 ≤ 𝑡 

( log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] + 

𝑑 ∑
𝑗=1 

log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ]) (3) 

From (3) , we can perform NB classification if the following sets are
vailable: 

{ log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] |𝑖 ∈ {1 , ⋯ , 𝑡 }} 

 log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ] |𝑖 ∈ {1 , ⋯ , 𝑡 } , 𝑗 ∈ {1 , ⋯ , 𝑑}} 

Therefore, we can treat the above sets as a model for the NB classifier.

.2. Fully homomorphic encryption 

In the proposed protocol, we adopt the FHE method [8–11,37] to
mplement a privacy-preserving classifier. It is easy to demonstrate the
easibility of this method, because its implementation is open; it is based
n the Homomorphic Encryption Library (HELib) [13]. HELib ’s method
s one of the most practical FHEs yet developed [38–41] , and provides
he following operations (see Fig. 1 ). 
91 
HELib [42] provides the ability to transform multiple independent
ingle-bit-sized plaintexts into a single plaintext such that it can be en-
rypted with a single encryption operation. In the transformed plaintext,
ne slot is assigned to each original plaintext bit, and this slot structure
s preserved in the ciphertext. The total number of slots for the cipher-
ext is given by s , whose value is determined by the selected parameter.
his is also related to the security of the FHE scheme and the speed of
perations in FHE. The Pack / UnPack algorithms support the ability to
ack/unpack multiple plaintext bits into/from a single plaintext vector
or encryption. 

HElib ’s FHE scheme relies on the Ring-LWE (Learning With Errors)
roblem [44] for its security. In schemes that rely on this problem, the
ncryption algorithm normally adds a small amount of noise to the ci-
hertext at the end of the enciphering operation. If the size of the noise
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s small, the corresponding noise can be canceled in the decryption op-
ration with the correct decryption key, allowing the correct plaintext
o be obtained by running the decryption operation. This noise value is
 key factor in ensuring the security of the Ring-LWE problem. 

Unfortunately, the noise value increases when performing operations
etween ciphertexts. If the size of the noise in a ciphertext exceeds a cer-
ain threshold, which depends on the security parameters, the ciphertext
annot be decrypted correctly. Therefore, when developing an applica-
ion based on encrypted data with FHE, it is necessary to manage the
oise inside the FHE ciphertexts. The noise included in the ciphertexts
f FHE increases slightly when the Encrypted_XOR is performed and in-
reases significantly when the Encrypted_Multiply is performed. Thus,
fter a certain number of these operations, we need to reduce the noise
n the ciphertext to allow more operations to be performed. The Recrypt

peration plays this role. This operation produces a new ciphertext that
as the same plaintext as the original ciphertext, but contains only a
mall amount of noise. As some ciphertext operations are executed with
he new ciphertext while running Recrypt , the number of ciphertext
perations possible with the new ciphertext is smaller than that of a
iphertext created by the encryption operation. 

We manage the number of consecutive multiplications 2 using cipher-
exts for noise management. Based on this, we can estimate the size of
he noise in the ciphertexts and can determine when the Recrypt oper-
tion is necessary. 

. System model and motivation 

The system model proposed in this study is as follows. There are
hree types of entities in this system. First, there is a Data Provider (DP).
uring the system setup step, the DP performs a training process to cre-
te a classification model based on a pre-owned dataset. Second, there
s a server, which receives a classification service request from a user
nd provides a prediction result to the user. Third, there is a user (i.e.,
lient), who requests a classification service using their own information
rom the server. Finally, we assume that the server and client follow the
onest-But-Curious (HBC) adversary models, in that the server wants

o obtain the private information of the client and vice-versa. However,
hey are assumed to obey the protocols [45] . The main focus of this
tudy is services that operate under the above system model with the
rivacy-preserving requirement. A typical example is the Clinical Deci-
ion Support System (CDSS) [7] , which performs classification based on
ata collected by a hospital consortium or government agency. Based
n the underlying model, CDSS provides automatic diagnostic services
o doctors and patients. The privacy-protection requirements of these
ervices are as follows. First, to use the automatic diagnostic service of
DSS, doctors or patients must submit the patient information required
s input for the classification task. At this time, to protect patient pri-
acy, neither the inputs provided to CDSS during the protocol execution
or the classification results corresponding to the diagnosis should be
xposed to CDSS. Second, for CDSS, the model information is a high-cost
sset. Therefore, the model information stored in the server should not
e exposed to the doctors or patients who use the service. 

However, existing machine learning methods that are not privacy-
reserving cannot satisfy the above conditions. Indeed, [46,47] show
ow serious privacy breaches can arise from open access to models,
lassification results, and user data in machine learning. Specifically,
46] shows that it is possible to infer private information used to gener-
te the model values using published model values, and [47] illustrates
 method for identifying the user corresponding to a classification re-
ult by combining the classification results with other non-personally

dentifiable information. 

2 This value is determined by the multiplicative depth of the circuit that is executed 

ith the ciphertext. Because Recrypt is very costly, we need to design our algorithm ’s 

ultiplicative circuit depth to be as shallow as possible for efficiency. 
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From the above argument, if conventional machine learning tech-
iques are used, attackers could acquire patients medical information
y applying the methods in [46] and [47] . This is a serious problem, and
ay also violate medical-records legislation. Therefore, it is important

o protect the privacy of the model information used by the classifier,
s well as securing the user input to the classifier and the prediction
esults. 

The security/functional requirements for privacy-preserving classifi-
ation can be summarized as follows. 

• Privacy-preserving : when the user input and classification results are
exposed to the server that provides the classification service, the ser-
vice provider can acquire sensitive information about the user, a po-
tentially serious privacy violation. Therefore, the information should
not be exposed to the server. Moreover, the servers model requires
a large amount of data for its generation, which entails considerable
cost. Therefore, if this information is exposed to the user, the service
provider operating the server risks suffering financial harm. Thus,
these privacy-preserving requirements should be maintained even
in the face of quantum computing attacks. 

• Non-interactive : if multiple rounds of interactions are performed be-
tween the server and the user when running the classification proto-
col, both the user and the server must be online during these interac-
tions, and status information must be managed to keep the protocol
running. This can be burdensome to both the service and the users,
and makes it difficult to provide the service in the form of a web ap-
plication. In addition, the communication patterns from running a
protocol can be used for side-channel attacks. Therefore, communi-
cation between the server and the user should be minimized. Ideally,
all work should be completed in one round of communication (i.e.,
input transmission and receipt of results). 

• Minimal use of decryption when executing the protocol : during proto-
col execution, the user and the server must minimize the decryption
of intermediate protocol results, because these are vulnerable to at-
tacks when private key information is present in memory over a long
period of time. 

. Proposed protocols 

In this section, we propose a new privacy-preserving classification
rotocol that meets the requirements stated in the previous section. The
ey idea of the proposal is to use FHE to enhance security, along with
arious optimization techniques to improve the performance of the pro-
osed protocols FHE operations. 

.1. Protocol overview 

We propose two protocols that operate in different settings. The first
rotocol is aimed at an environment where there is excellent available
omputing power for the server and the support of high-level system
ecurity to keep the model secure. In this case, the goal is to ensure the
rivacy of the users information against the server. An overview of this
erver-centric protocol is shown in Fig. 2 -(A). The second protocol tar-
ets an environment in which the server needs to ensure the security of
he model, because of its relatively low computational complexity and
ecurity. In such an environment, the user ’s information operates only
n its own computing environment, and the server must provide model
nformation to the user in order to perform the classification operation
or the client. The server only needs to decrypt the results of the oper-
tion and transmit them to the user. An overview of this user-centric
rotocol is shown in Fig. 2 -(B). 

In the first model ( Fig. 2 -(A)), the server only has the user ’s public
ey ( pk ), and performs classification using the encrypted user input and
 plaintext form of the model. Because the classification is performed
y the server, its results are encrypted with the user ’s public key. Thus,
he server cannot obtain information about the classification results. Be-
ause the user receives only the final encrypted results from the server,
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Fig. 2. Overview of the proposed protocols: (A) server-centric, (B) user-centric. 

Fig. 3. Structure of a ciphertext storing a q -bit integer. 

i  

c  

r
 

c  

b  

s  

a  

l  

t  

t  

d  

r  

f  

t  

r  

h  

c  

i  

s  

i  

c  

i  

s  

t  

e  

p  

t  

f  

Fig. 4. Illustration of encrypted model w ( S, T ). 

Fig. 5. Structure of U , an encrypted user input ⃗𝑥 = ( 𝑥 1 , 𝑥 2 , ⋯ , 𝑥 𝑑 ) . 
t is difficult to know information about the model used for the classifi-
ation. The user has the private key ( sk ) and can obtain the classification
esults by decrypting the output received from the server. 

In the second protocol ( Fig. 2 -(B)), the user performs the classifi-
ation directly, and the model information used to do so is protected
y encryption using the server ’s public key. Users have access to the
erver ’s public key ( pk ). In this environment, the DP generates a model
nd then encrypts it with the server ’s public key. The model is then re-
eased to the user during the initial stage. The user performs classifica-
ion using his/her input information and the model, and then transmits
he classification results to the server and requests decryption, which is
one using the servers private key ( sk ). The user hides the classification
esults with a random number in the encrypted classification results be-
ore the decryption request, making it difficult for the server to deduce
he classification results after decryption. After receiving the decryption
esults from the server, the user removes the random number used to
ide the classification results and obtains the final results. In the server-
entric protocol, the setup is completed only when the model is stored
n the server. Therefore, when this procedure is completed, the user can
end input information encrypted with his/her public key to the server
n order to proceed with the classification. For the user-centric proto-
ol, the encrypted model information must be distributed to all users,
ncurring the cost of ensuring the integrity of the information. Thus, the
erver-centric protocol has the advantage in terms of the cost required
o distribute the model. Nevertheless, the user-centric protocol has sev-
ral advantages over the server-centric protocol. First, the server-centric
rotocol needs to store a plaintext form of the model in the server. In
he environment assumed by this protocol, each user transmits the input
eature vector �⃗� encrypted with his/her own key to protect �⃗� . There-
93 
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Fig. 6. Ciphertext structure of the classification result: 𝑅 1 (= 𝐶 𝑤 ( ⃗𝑥 )) and 𝑅 2 (= 𝐶 𝑤 ( ⃗𝑥 ) >> 𝑅 
𝑟 ) . 

Fig. 7. Schematic view of the proposed NB protocols. 
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94 
ore, to perform classifications with various �⃗� encrypted with different
eys, the model exists in plaintext form and must be encrypted with the
ublic key used to encrypt ⃗𝑥 . For this reason, the model cannot be man-
ged in an encrypted form. Therefore, the security of the model in the
erver depends on the system-level security of the server. In contrast,
he user-centric model exists only as an encrypted value. Consequently,
he probability that the information will be leaked is very small. More-
ver, because there is no model value inside the server, the management
ost of the server data is low. Second, there is the advantage that the
perations required for machine learning are distributed to each user.
ven if the cloud has a lot of resources, running an application based on
HE is computationally expensive. For example, one study of machine
earning using FHE [27] showed that the proposed classifier required
pproximately 0.3–21 s per run. Even if we assume a cloud environ-
ent with sufficient resources, providing services to multiple users at

he same time can be problematic in practical terms. For user-centric
lassification ( Fig. 2 -(B)), in contrast, the server has minimal computa-
ional overheads, insofar as it exclusively performs decryption. In addi-
ion, in the case of a non-interactive protocol configuration, the server
an collect the classification results from users and transmit the results
ith only one broadcast. This is possible because the classification re-

ults are hidden by random numbers added by individual users. 
The following subsections discuss the practical implementation of

he privacy-preserving machine learning protocols in the two environ-
ents described above. The tool used in this study is FHE with the NB

lassifier. 

.2. Proposed implementation for the Naive Bayes classifier 

This subsection describes the implementation of the privacy-
reserving NB classifier. 

.2.1. Data representation 

We now address how the values used for classification are repre-
ented in ciphertexts. In the NB classifier, the model w refers to all prob-
bility values that are used to classify a user ’s input ⃗𝑥 ∈ 𝐷. The classifier,
enoted by C w , is defined as a function C w : D → { c 1 , ⋅⋅⋅, c t }. Hereafter, we
se i and c i interchangeably to describe the classification result C w ( x ),
nless there is some ambiguity. To implement the classifier efficiently
s a circuit for FHE operations, the proposed method uses a modified
ersion of the NB classifier, where the logarithms of all probabilities are
sed as described in Section 3.1 . Further, to express the probabilities
n ciphertexts, where an integer representation is preferable, they are
ultiplied by the same K such that all values are represented as integer

alues with a length of q bits. This is possible because the NB classi-
er produces the same result with modified values as it does with the
riginal probability values. 

According to [48,49] , there is no significant loss of classification ef-
ciency when the number of bits used to represent the probabilities is
xed to 10. From this, we can say that setting 𝑞 = 32 is sufficient to
epresent the probabilities used in the NB classifier. We verify this ex-
erimentally in Section 6.2 . 

Fig. 3 shows the structure of a ciphertext that encrypts a q -bit integer
ith the proposed NB classifier. To use the Rotate algorithm ( < < R ,
 > R ) —which does not increase noise, owing to the use of the FHE
utomorphism —the ciphertext stores 1 bit in the u slot interval, which
s the minimum slot-moving unit for the Rotate operation. The q -bit
ata in the ciphertext are stored such that the least significant bit (LSB)
s located in the first slot and the most significant bit (MSB) is located
n the (( 𝑞 − 1) ⋅ 𝑢 + 1) th slot. All integer types of data that represent the
robabilities in an encrypted form (stored in tables S and T ) follow the
tructure in Fig. 3 . 

The model w for the NB classifier is the logarithm of the probabilities
hat are necessary to calculate Eq. (3) from Section 3.1 . If we assume
 𝑗 = { 𝑣 𝑗, 1 , 𝑣 𝑗, 2 , ⋯ , 𝑣 𝑗, |𝐷 𝑗 |} (1 ≤ j ≤ d ), the entire model can be repre-
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Fig. 8. Description of the proposed classifier protocols. 
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Fig. 9. Illustration of the Selection circuit. 
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ented with { log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] |1 ≤ 𝑖 ≤ 𝑡 } , { log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑣 𝑗,𝑘 |𝐶 = 𝑐 𝑖 ] |1 ≤ 𝑖 ≤

, 1 ≤ 𝑗 ≤ 𝑑, 1 ≤ 𝑘 ≤ |𝐷 𝑗 |} . 
To represent the probabilities as integers, we assume that a suitable

 is multiplied by every element in the above sets: 

𝐾 ⋅max 
𝑖 ∈[1 ,𝑡 ] 

{ log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] + 

𝑑 ∑
𝑗=1 

log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑣 𝑗 |𝐶 = 𝑐 𝑖 ]} |< 2 𝑞 

where 𝑣 𝑗 ∈ 𝐷 𝑗 ) 

Following the above argument, we can say that sets T and S (see
elow) constitute the model w . Of course, every element in S, T is in an
ncrypted form when it is used. 

 = { 𝑆[ 𝑖 ]} 1 ≤ 𝑖 ≤ 𝑡 = { 𝐾 ⋅ log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] |1 ≤ 𝑖 ≤ 𝑡 } 

 = { 𝑇 𝑖,𝑗 ( 𝑣 𝑗,𝑘 )} 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤ 𝑑 , 1 ≤ 𝑘 ≤ |𝐷 𝑗 |
= { 𝐾 ⋅ log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑣 𝑗,𝑘 |𝐶 = 𝑐 𝑖 ]} 1 ≤ 𝑖 ≤ 𝑡, 1 ≤ 𝑗 ≤ 𝑑 , 1 ≤ 𝑘 ≤ |𝐷 𝑗 |
Fig. 4 illustrates tables T and S . We can access the encrypted elements

n the tables using an appropriate index, but the values of the elements
re unknown until they are decrypted. S is composed of t ciphertexts and
 is composed of 𝑡 ⋅

∑𝑑 
𝑗=1 |𝐷 𝑗 | ciphertexts. In the user-centric protocol,

t could be burdensome to the client to store these. However, if we pack
hem in a compact way, far fewer ciphertexts are necessary: because one
iphertext of FHE is usually able to store 800–1600 bits, if we assume q
95 
s around 10, only 1/80–1/160 of the ciphertexts in our original imple-
entation are required. More precisely, if we use the Pack algorithm

hown in Fig. 1 , ⌈q · t / s ⌉ and ⌈𝑞 ⋅ 𝑡 ∕ 𝑠 ⋅∑𝑑 
𝑗=1 |𝐷 𝑗 |⌉ ciphertexts are neces-

ary to construct S and T , respectively, as s bits can be contained in a
iphertext. 

For classification, the user input �⃗� = ( 𝑥 1 , x 2 , ⋅⋅⋅, x d ) ∈D is given in
he form of U in Fig. 5 . The input is an encrypted bit string in which each
it value is stored in the corresponding slot in a ciphertext. Because we
an order every element in D j as { v j , 1 , v j , 2 , ⋅⋅⋅, v j, d } ( j ∈ [1, d ]), we can
ewrite �⃗� = ( 𝑣 1 ,𝑘 1 , ⋯ , 𝑣 𝑑,𝑘 𝑑 ) if 𝑥 𝑗 = 𝑣 𝑗,𝑘 𝑗 for all j ∈ [1, d ], where k j ∈ [1,

 D j |]. Here, U contains the information ( k 1 , k 2 , ⋅⋅⋅, k d ) as an underlying
laintext, as seen in Fig. 5 ; we set only the k j th bit to 1 and the other
its to 0, among all | D j | slots that correspond to D j ( j ∈ [1, d ]). 

The classification results 𝐶 𝑤 ( ⃗𝑥 ) for the given input ⃗𝑥 are constructed
s R 1 or R 2 , as shown in Fig. 6 . Here, 𝐶 𝑤 ( ⃗𝑥 ) is only represented as an
nteger in [1, t ] because [1, t ] is mapped to a set of output classes of t -
lements. To represent 𝐶 𝑤 ( ⃗𝑥 ) in a ciphertext, we put the bit value 1 into
he (( 𝐶 𝑤 ( ⃗𝑥 ) − 1) ⋅ 𝑢 + 1) th slot, and set the other slots to zero among all
 · u slots used in the ciphertext. This is shown in R 1 . This form is used for
erver-centric classification. In the case of user-centric classification, we
rocess R 1 first. Further processing is achieved by generating a random
umber r ∈ [0, ⌊s / u ⌋] and rotating right by r · u slots to hide the true
lassification result from the server. The outcome of this operation is
hown as R in Fig. 6 . 
2 
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Fig. 10. Obtaining 𝑇 𝑖,𝑗 ( 𝑣 𝑗,𝑘 𝑗 ) with the Selector module ( 𝑣 𝑗,𝑘 𝑗 ∈ 𝐷 𝑗 ). 
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.2.2. Proposed NB protocol 

In this subsection, we describe the proposed privacy-preserving NB
rotocol. We first provide an overview of the proposed protocol, then
roceed to the server-centric and user-centric protocols. A schematic
iew of both protocols is given in Fig. 7 . Finally, we detail the compo-
ents used to build the proposed protocol ( Fig. 8 ). 

.2.3. Selection circuit 

The Selection circuit takes a table T and a user input U and outputs
 table XT , where each element XT [ i ][ j ] corresponds to the encryption of
 𝑖,𝑗 ( 𝑥 𝑗 ) ≜ 𝐾 ⋅ log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ] ( i ∈ [1, t ], j ∈ [1, d ]). Each XT [ i ][ j ]
an be obtained by running the Selector module with U and every T i, j 
n T ( i ∈ [1, t ], j ∈ [1, d ]), as shown in Fig. 9 . 

Fig. 10 illustrates the Selector module. It shows the user input cor-
esponding to the element of D j , which is 𝑣 𝑗,𝑘 𝑗 in the figure. To pro-
ess this, the module extracts the corresponding 𝑇 𝑖,𝑗 ( 𝑣 𝑗,𝑘 𝑗 ) ( 𝑉 𝑗,𝑘 𝑗 = 𝑥 𝑗 )
hrough a number of steps. This process is repeated for all i, j . 

For the bit values of U , there is a portion used to represent an ele-
ent in D j that is composed of | D j | slots. To represent 𝑣 𝑗,𝑘 𝑗 , only the

 j th slot is set to 1, while the other values are set to 0 among the | D j |
lots. These | D j | slot values are given as the input to the MaskGen func-
ion. In the figure, MaskGen outputs | D j | ciphertexts of which only the
 j th contains MAX , while the others contain zeros. They are multiplied
y 𝑇 𝑖,𝑗 ( 𝑣 𝑗, 1 ) , ⋯ , 𝑇 𝑖,𝑗 ( 𝑣 𝑗, |𝐷 𝑗 |) , respectively, and these multiplication results
re combined by running XOR operations. Thus, we obtain the final out-
ut. 

Fig. 11 shows the implementation of the MaskGen function. In this
mplementation, we use the Assign function (shown in Fig. 12 ) to ex-
ract the bit value corresponding to each slot value. The corresponding
96 
alue is then moved to the slot at the lowest position using the appropri-
te shift operation. Finally, the SlotCopy function (shown in Fig. 13 )
opies the corresponding bit value to other slots, ultimately generating
he results of the MaskGen function. 

Note that all of the above steps work with ciphertexts. Therefore, nei-
her the Server nor Client performing these steps knows any informa-
ion about the values being processed, apart from what they originally
ave as plaintexts. 

.3. Classifier circuit 

In the Classifier circuit, the final classification result is obtained
y using the XT table, derived from the Selection circuit and the S
able, which is information from another model. Fig. 14 shows this
odule. As shown in the figure, we can obtain 𝑅 [ 𝑖 ] = 𝐾 log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] 
 Σ𝑑 

𝑗=1 𝐾 log 𝑃 𝑟 [ 𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐 𝑖 ] ( = 𝑆[ 𝑖 ] + Σ𝑑 
𝑗=1 𝑋 𝑇 [ 𝑖 ][ 𝑗 ] ) by running the

ultipleAdder circuit with S [ i ] and XT [ i ][1], ⋅⋅⋅, XT [ i ][ d ]. After ob-
aining all R [ i ] values ( 𝑖 = 1 , ⋯ , 𝑡 ), the classification result R 1 can be
erived by running the ArgMax module with all R [ i ]. The client ob-
ains the classification result by decrypting R 1 . 

To run this circuit, we need to extract S [1], ⋅⋅⋅, S [ t ] values that re-
ide in table S of packed ciphertexts. Each S [ i ] is the encryption of
 log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑖 ] , which is of q -bit length, and is of the form described

n Section 5.2.1 . 
We describe the details of the extraction procedure. Suppose the

acked table S is composed of ⌈q · t / s ⌉ ciphertexts S packed [1], ⋅⋅⋅,
 packed [ ⌈q · t / s ⌉]. We first calculate the ciphertext S unpacked [ i ][ j ] for all
 ∈ [1, t ], j ∈ [1, q ], where S unpacked [ i ][ j ] contains the j ’s bit of S [ i ] in
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Fig. 11. MaskGen module processing 𝑣 𝑗,𝑘 𝑗 . 
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3 We ensure no carry is generated in every addition by making q sufficiently long. 
he j · u th slot and the other slots are set to zero. We run the following
rocedure to calculate it: 

1. Initialize S unpacked [ i ][ j ] to set all the slots have zero bit-value. 
2. Run Assign ( S unpacked [ i ][ j ], 𝑆 𝑝𝑎𝑐𝑘𝑒𝑑 [ ⌈𝑞 ⋅ 𝑖 ∕ 𝑠 ⌉] , ( 𝑞 ⋅ ( 𝑖 − 1) + 𝑗) mod 𝑠 ). 
3. S unpacked [ i ][ j ] ← S unpacked [ i ][ j ] > > S (( 𝑗 − 1) ⋅ 𝑢 − ( 𝑞 ⋅ ( 𝑖 − 1) + 𝑗))

mod 𝑠 

The explanation of Assign function is given in Fig. 12 and Appendix
. After the above steps are completed for all j ∈ [1, q ], we can construct
 [ i ] by the following calculation: 

[ 𝑖 ] ← 𝑆 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 [ 𝑖 ][1] ⊕ 𝑆 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 [ 𝑖 ][2] ⊕⋯ ⊕𝑆 𝑢𝑛𝑝𝑎𝑐𝑘𝑒𝑑 [ 𝑖 ][ 𝑞] 

We can apply this procedure to the packed table T in order to extract
ll T i, j s where i ∈ [1, t ] and j ∈ [1, d ]. 
97 
Because the Classifier circuit is implemented using FHE operations,
n inefficient design would make it necessary to execute a recryption
peration, which results in a very long execution time. To avoid this, we
inimize the multiplicative circuit depth by efficiently implementing

he MultipleAdder and ArgMax modules. The pseudo-code for the
lassifier circuit is provided in the appendix. 

Fig. 15 illustrates the MultipleAdder circuit. This circuit takes an
rray of ciphertexts and its length n , and returns the encryption of the
ummation of all elements. We utilize the method in [50] to construct
he circuit efficiently. 

The MultipleAdder consists of the Encrypted-K-S Adder , which
dds two ciphertexts, and the WallaceTree circuit, which reduces the
umber of n -encrypted numbers to two. We implement the Kogge–Stone
dder [51] using FHE operations when the FHE ciphertexts arrive as

nputs. We call this the Encrypted-K-S Adder . It has a multiplicative
epth of ⌈log 𝑞 + 2 ⌉ when adding two q -bit encrypted numbers. 

The WallaceTree circuit adds n ciphertexts of q -bit integers to gen-
rate two ciphertexts. Adding the resulting two ciphertexts results in the
ncrypted value of adding n numbers. The circuit is implemented using
 full-adder circuit to add three q -bit encrypted numbers, and requires
 multiplicative circuit depth of less than log 1.5 n . 3 

As a result, the MultipleAdder circuit requires a multiplicative
epth of less than log 1 . 5 𝑛 + ⌈log 𝑞 + 2 ⌉ when adding n q -bit num-
ers. For details on the WallaceTree module and the Encrypted-K-S
dder module, see [50] . 

The ArgMax module takes an array IN of n q -bit integer ciphertexts
nd returns the index of the ciphertext with the largest value. The input
f this module is the array of ciphertexts ( IN ) given by executing Mul-
ipleAdder in the previous step. The resulting value is represented by
 ciphertext in which only the slot corresponding to the index of the ci-
hertext with the largest value among the input values has a bit value of
. This can be implemented by reducing the depth of the multiplication
ircuit using the method in [52] . 

In this implementation, if the k th ciphertext has the largest value,
nly the (( 𝑘 − 1) ∗ 𝑢 + 1) th slot is set to 1 in the resulting ciphertext. The
ain reason for this is that, if we generate the result in this format, we

an use the Rotate operation in place of the Shift operation to reduce the
ultiplicative depth of the circuit. This is possible because ciphertexts

ontaining the input numbers to be compared already store bit values
t u slot intervals. 

The structure of the ArgMax module is shown in Fig. 16 . This pro-
ess is divided into two steps: generating a two-dimensional array M ,
n which the elements are ciphertexts that have either 0 or 1 in their
rst slot, and the Max circuit, which produces a ciphertext from the
onstructed array M . 

As a result of the first step, M becomes a two-dimensional array con-
aining the results of a pair-wise comparison between the ciphertexts
nput to IN . For example, if IN [ i ] > IN [ j ], the lowest slot of M [ i ][ j ] is set
o 1. Otherwise, M [ i ][ j ] stores a value of 0. We do not calculate M [ i ][ j ]
f 𝑖 = 𝑗. If i < j , the value is calculated by flipping the bit value in the
owest slot of M [ j ][ i ] that has already been calculated. The Compara-
or module is used to generate M . This module receives two encrypted
umbers and returns a ciphertext in which the lowest slot has a bit-value
f 1 if the number contained in the first ciphertext is larger than that in
he second. Otherwise, the lowest slot value of the returned ciphertext
s set to 0. We implement this using some of the comparator implemen-
ations proposed in [43] . The difference is that the Rotate operation is
pplied, rather than the Shift operation. This reduces the required mul-
iplication depth. The required multiplication depth for this module is
log 𝑞 + 1 ⌋. The values of M [ i ][ j ] ( i < j and i, j ∈ [1, n ]) are calculated by
erforming M [ j ][ i ] ⊕1. 

In the second step, the resulting M is used to obtain the index of the
iphertext with the largest value. This process is done by applying the
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Fig. 12. Assign module. 

Fig. 13. Illustration of SlotCopy module working with the encrypted input whose lowest 

slot is set to 1. 
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ollowing calculation repeatedly for all i ∈ [1, n ] with the ciphertext R 1 ,
hich is initialized to zero beforehand: 

 1 ← 𝑅 1 ⊕ (( 𝑀[ 𝑖 ][1] ⋅𝑀[ 𝑖 ][2] ⋅ .... ⋅𝑀[ 𝑖 ][ 𝑖 − 1] ⋅

𝑀[ 𝑖 ][ 𝑖 + 1] ⋅ ... ⋅𝑀[ 𝑖 ][ 𝑛 ]) >> 𝑅 ( 𝑖 − 1)) 

As a result of the above computation, we can obtain ArgMax ,
hose ( 𝑢 ∗ ( 𝑘 − 1) + 1)) th slot is set to 1. The other slots are set to 0

f IN [ k ] has the largest integer in the array. When implemented in this
ay, the multiplication depth required for the entire ArgMax circuit

s (( log 𝑞 + 1) + log 𝑛 ) . This is much smaller than (( 𝑛 − 1)(( log 𝑞 + 1) + 1) , 
hich is the required multiplicative circuit depth of an intuitive method

n which the index of the maximum value is obtained by running the
98 
omparator circuit ( 𝑛 − 1) times in series. For convenience, we provide
n illustration of the Max module in the appendix. 

. Performance evaluation 

In this section, we analyze the experimental performance of the pro-
osed privacy-preserving NB classification protocols based on FHE op-
rations. The hardware specifications used to conduct the experiments
ere as follows: Server: Intel (R) Xeon (R) ES-1650 v3 @ hexa-core pro-

essor with 64 GB of RAM running Linux Ubuntu 16.04 LTS; Client:
ntel i7-6700 3.40 GHz @ quad-core processor with 16 GB RAM run-
ing Linux Ubuntu 14.04 LTS. The proposed method was implemented
sing HELib [9–11] . To the best of our knowledge, HELib is the most
fficient library among the existing FHE implementations. We used the
thread library version 2.24 to implement the multi-threaded version of
he proposed protocols. 

For the experiments, we set the parameter values by considering the
ollowing. First, priority was given to providing a sufficient number of
lots s in a ciphertext. We considered parameters to support 80-bit or
igher security. For efficiency, we selected those that maximized the
ultiplicative depth of the circuit that can be performed without recryp-

ion. In addition, for ease of use, the rotation (automorphism) operation
as employed. The parameter values are presented in Table 3 . 

In the proposed protocols, the parameters related to the input data
re q , which pertains to the precision of the input data, d , which is the
imension of the feature vector, and t , which is the class number of the
lassification results. In this subsection, we examine the relationship be-
ween these parameters and the performance of the core modules of the
roposed method. The performance evaluation reported in this subsec-
ion was conducted in the server environment. 

.1. Performance of the subroutines 

Encrypted-K-S Adder, Comparator, and WallaceTree: Fig. 17
hows the performance of the WallaceTree , Encrypted-K-S-Adder ,
nd Comparator modules with respect to q . As shown in the figure, the
xecution time of Encrypted-K-S-Adder and Comparator increases
inearly with log q . The execution time of WallaceTree is not depen-
ent on q , because the number of values to be added using Wallace-
ree is fixed to d , and all values can be contained in a single ciphertext,
ven when 𝑞 = 128 . Thus, the required FHE operations do not change
ith respect to q . 
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Fig. 14. Illustration of the Classifier circuit. 

Table 3 

HELib parameters chosen for the experiment. 

Cyclotomic ring ( m ) Lattice dimension Plaintext space Number of slots in a Security level Maximum multiplicative Size of compressed Public key Private key 

( 𝜙( m )) ciphertext depth to reach ciphertext size size 

the first recryption 

31775 24000 GF(2 20 ) 1200 93 24 4.3MB 67.5MB 67.03MB 

= 52 ∗ 31 ∗ 41 

Fig. 15. Illustration of the MultipleAdder circuit. 
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Table 4 

Subroutines where multi-threading is used and the number of 

threads used in each subroutine. 

Subroutines Selector MultipleAdder ArgMax 

# of threads t t 
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Fig. 18 shows the performance of each module with respect to d . In
he proposed method, as the value of d increases, the number of objects
o be added by WallaceTree increases linearly. This is because it is used
o calculate the sum of log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑗 ] + 

∑
𝑘 log 𝑃 𝑟 [ 𝑋 𝑘 = 𝑥 𝑘 |𝐶 = 𝑐 𝑗 ] for

ach j . Therefore, as shown in the figure, the execution time of Wallace-
ree increases in proportion to log 1.5 d . 

ArgMax and multi-threading issue: the ArgMax module finds the
argest among t values of log 𝑃 𝑟 [ 𝐶 = 𝑐 𝑗 ] + 

∑
𝑘 log Pr [ 𝑋 𝑘 = 𝑥 𝑘 |𝐶 = 𝑐 𝑗 ] 

n each j ∈ [1, t ], which is the probability that each output class is the
lassification result. As described in the previous section, our implemen-
ation focuses on minimizing the multiplicative depth of the circuit. The
ost of this is an increase in the number of comparator module execu-
ions. The circuit requires ( 𝑡 − 1) 𝑡 ∕2 Comparator module executions
nd a single Max circuit execution. Therefore, if recryption does not oc-
ur, the majority of the execution time is the ( 𝑡 − 1) 𝑡 ∕2 Comparator
perations. Fortunately, these comparisons can be performed indepen-
ently, so multi-threading can be used to improve the performance in a
ulti-core environment. 

Furthermore, the Max circuit can be executed in parallel because it
omputes ( M [1][2] · M [1][3] · ⋅⋅⋅ · M [1][ t ]) ⊕ ( M [2][1] · M [2][3] · ⋅⋅⋅) ⊕
⋅⋅ ⊕ ( 𝑀[ 𝑡 ][1] ⋅ ⋯ ⋅𝑀[ 𝑡 ][ 𝑡 − 1]) . We can assign separate threads to calcu-
ate each multiplicative term to improve the speed. 
99 
Similar to the above case, the MultipleAdder module obtains the
robability that each class is the output of classification. This is the in-
ut for the ArgMax module, and can be determined independently for
ach resulting class. Therefore, if these MultipleAdder modules are
un in t -multiple threads at the same time, the overall execution time
an be reduced. Additionally, in the case of the server-centric classifi-
ation, the execution of the Selection module, which selects the input
o the MultipleAdder modules (the XT table) can also be processed in
arallel with t -multiple threads. 

Table 4 summarizes the subroutines in which multi-threading is ap-
lied and the number of threads used in each subroutine. Note that the
umbers are dependent on the number of classes t . In our experiments, t
as set to 2 and 4. Because the number of threads is less than the num-
er of cores, the actual number of cores used is the same as the number
f threads in the server-centric protocol. However, in the user-centric
mplementation, the number of cores was four when 𝑡 = 4 . The use of
yper-threading allowed two threads to be assigned to a core. 

Fig. 19 shows the execution results of various modules with multi-
hreading. This experiment was performed in the server environment,
here 12 threads were available for computation. 

.2. Classification performance 

To evaluate the performance of the proposed classifier, the Breast
ancer Data Set and the Car Evaluation Data Set from the UCI machine

earning repository [14] were classified. We assumed that the model val-
es required for classification were generated through training during
he initial process. The probabilities were represented as 32-bit values.
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Fig. 16. Illustration of the ArgMax circuit. 
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Fig. 17. Comparison of subroutine performance with 𝑞 = {8 , 16 , 32 , 64 , 128} ( 𝑑 = 4 , 𝑡 = 2) 
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Fig. 18. Comparison of the performance of WallaceTree with 𝑑 = {4 , 6 , 8 , 10 , 12 , 14 , 16} . 
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or this experiment, we constructed an encrypted version of tables S and
 . Because 

∑𝑑 
𝑗=1 |𝐷 𝑗 | is 90 and 21 in the Breast Cancer and Car Eval-

ation cases respectively, and the packing technique was applied, only
ne ciphertext was used to construct S in both cases, with five and three
iphertexts used to construct T in the Breast Cancer and Car Evaluation
ases, respectively. 

Tables 5 and 6 present the results of the server-centric and user-
entric classifications, respectively. These results relate to only the com-
utation time of the server and the client, respectively. 

The execution time was approximately 60 s for the server-centric
rotocol and approximately 80 s for the user-centric protocol. The de-
ryption time was approximately 0.2 s in the server environment and
pproximately 0.4 s in the client environment. Therefore, if the com-
unication time is considered, the total execution time is expected to
Fig. 19. Performance comparison between single and mult

101 
e approximately 70 s for the server-centric protocol and approximately
0 s for the user-centric protocol. 

Table 7 compares the proposed protocol to existing privacy-
reserving NB protocols [1,2,4] in terms of the number of decryptions
equired for the execution of the protocol and the number of inter-
ctions between the server and client. When analyzing the number
f interactions, we assumed that messages that can be transmitted at
he same time during the execution of the protocol were transmitted
imultaneously. That is, we regarded such messages as one-time mes-
age transmissions. 

According to the analysis results, the proposed protocol requires only
ne decryption and two interactions. In contrast, [2] uses commodity-
ased cryptography to share information using pre-distributed corre-
ated data, meaning that no decryption is required during the protocol
xecution. However, many interactions between the server and client
i-threaded execution of subroutines ( 𝑞 = 32 , 𝑑 = 16 ). 
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Table 5 

Evaluation results of server-centric classification, ( comp = comparator , q = 32, S: server, C: client). 

Specification Time for classification by Server (second) Communication (# of ciphertext) 

Data set Classes Attributes Selection Wallace E-K-S- argmax Total S → C C → S 

t d circuit Tree Adder comp Max 

Breast Cancer 2 9 22 26 10 9 1 68 1 1 

Car Evaluation 4 6 21 19 12 14 3 69 1 1 

Table 6 

Evaluation results of user-centric classification, ( comp = comparator , q = 32, S: server, C: client). 

Specification Time for classification by User (second) Communication (# of ciphertext) 

Data set Classes Attributes Wallace E-K-S- argmax Total S → C C → S 

t d Tree Adder comp Max 

Breast Cancer 2 9 47 22 15 1 85 1 1 

Car Evaluation 4 6 38 24 23 4 89 1 1 

Table 7 

Comparison between existing privacy-preserving NB classifiers and the proposed classifier 

(S: server, C: client). 

Dataset # of decryptions 

# of interactions 

between S and C 

[1] Breast 3 10 

Cancer 

Car 9 26 

Evaluation 

[2] Breast – 75 

Cancer 

Car – 79 

Evaluation 

[4] Breast 3 6 

Cancer 

Car 5 8 

Evaluation 

Proposed (server-centric/ Breast Cancer 1 2 

user-centric) Car Evaluation 1 2 

Fig. 20. Relation between q and accuracy of NB classification. 
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Table 8 

Comparison of the resiliency to attacks with quantum computers. 

Used crypto-system Security assumption Quantum security 

[1] Paillier [53] Decisional N 

Composite 

Residuosity [50] 

Goldwasser– Decisional N 

Micali [54] Composite 

Residuosity 

[2] Paillier [53] Decisional N 

Composite 

Residuosity 

[4] Secure Decisional N 

Multi-party Composite 

Computation [25] Residuosity 

Oblivious RSA [55] N 

Transfer [56] 

Oblivious Decision N 

Transfer [57] Diffie–Hellman [58] 

Ours GHS-FHE [9–11] Ring LWE [59] Y 
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re required when sharing information. In both [2] and [4] , the required
nteractions and decryption times increase in proportion to the number
f resultant classes for classification (i.e., t ). 

Fig. 20 shows the accuracy of the NB protocol classification results
or various q . Clearly, the accuracy increases as the bit-length of q in-
reases, up to a value of 𝑞 = 7 in the ‘Car Evaluation ’ case and 𝑞 = 4 
n the ‘Breast Cancer ’ case. From this, we can conclude that 𝑞 = 32 is
ufficiently high in our setting. 
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Table 8 describes the cryptosystems needed to construct existing
rivacy-preserving NB classifiers and the proposed protocol. It also
hows their underlying security assumptions. The final column of the ta-
le shows whether each of these assumptions still holds against quantum
omputing attacks. Reference [4] describes techniques used to share the
nitial co-related data between server and client. As this table indicates,
he security assumptions of all cryptosystems are not safe from quantum
omputing attacks, with the exception of Ring LWE [58] , which is used
n our proposed method. 

. Conclusion 

In this paper, we have proposed two non-interactive privacy-
reserving classification models and implemented them using an FHE-
ased privacy-preserving NB classifier. Various efficiency-enhancing
echniques were applied to implement the classification protocols such
hat all the computational circuits were constructed exclusively with
perations in FHE. 

Unlike existing techniques, the proposed method minimizes the com-
unication between the server and the user (i.e., client). It is also advan-

ageous in terms of security, because there is no decryption operation
uring the protocol execution. In addition, our proposal is robust to at-
acks using quantum computers. 

We implemented the proposed method using HELib. The implemen-
ation results were verified by performing experiments in a conventional
erver and a client environment. The experimental results show that the
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wo proposed models required approximately 70–90 s to classify test
atasets. Although this classification speed may not appear to be prac-
ical, we believe that the performance will improve with advances in
HE technology. Future studies will attempt to implement various clas-
ification algorithms with FHE operations to achieve practical privacy-
reserving classification. 

ppendix A. Selection module and its subroutines 

Selection module
• Input
U : ciphertext containing a feature vector �x (refer to Fig. 5)
T : set of the ciphertext of K · Pr[Xj = v|C = ci] for all
i ∈ [1, t], j ∈ [1, d], and v ∈ Dj

D: {D1, D2, · · · , Dd}, t: number of elements in the output
class
d: number of features that constitutes �x(= |D|)
q: maximum bit length of values being processed
• Output
XT : t × d array whose elements XT [i][j] have
Ti,j(xj)=K · Pr[Xj = xj |C = ci]

function Selection(XT , U , T , D, t, d,q)
//For multi-threading, t-threads start instead of for i
for i ← 1 to t do

offset ← 0
for j ← 1 to d do

len ← |Dj |
//offset : first slot’s position used to express xj

in Dj

//len: number of slots used to express xj

Select(XT [i][j],U ,Ti,j ,i,j,offset,len,d,q)
offset ← offset + len

end for
end for

end function

Selector module
• Input
Ti,j : set of ciphertexts containing the integer values K ·
log Pr[Xj = v|C = ci] for every v ∈ Dj , where i ∈ [1, t]
and j ∈ [1, d].
U , offset, len, d, q: same as in the description of Selection
module.
i: value in [1, t], j: value in [1, d].
• Output
XT [i][j]: ciphertext of K · Pr[Xj = xj |C = ci]

function Selector(XT [i][j], U , Ti,j , i, j, offset, len,
d,q)

// TM [1..len] is initialized to 0
// MaskGen returns an array of ciphertext TM []

where TM [k] = MAX
// if (offset+k)’s slot contains 1 in U , and TM [k] = 0

otherwise.
MaskGen(TM [],U ,offset,len,q)
for k ← 1 to len do

TM [k] ← TM [k] · Ti,j [k] � Ti,j [k] =
K · log Pr[Xj = vj,k|C = ci]

end for
XT [i][j] ← TM [1] ⊕ TM [2] ⊕ · · · ⊕ TM [k]

end function
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MaskGen module
• Input
offset: start position of the slots used to represent xj in Dj

len: |Dj |
• Output
TM [1..len]: array of ciphertext TM [], where TM [k] = MAX
if (offset + k)’s slot contains 1 in U , and TM [k] = 0 other-
wise

function MaskGen(TM [], U , offset, len, q)
for l ← offset + 1 to offset + len do

Assign(TM [i − offset],U ,l)
TM [i − offset] ← TM [i − offset] <<S (i − 1)
//SlotCopy spreads the bit in the lowest slot in

TM [i − offset] into all of the other slots
SlotCopy(TM [i − offset],q)

end for
end function

Assign module
• Input
Y : ciphertext that contains the bit value to be copied to X
in the y-th slot
y: position of the slot that contains the bit value to be copied
in Y
• Output
X: ciphertext whose y-th slot bit-value is updated to Y ’s
bit-value in the same slot

function Assign(X, Y , y)
// Assuming ptxt is set to zero in all slots
// Setting y-th bit-value of ptxt to 1
ptxt[y] ← 1
// Performing nullified-encryption with ptxt, assuming

that a suitable pk is provided to Encrypt
mask ← Encrypt(ptxt)
X ← X ⊕ (mask · Y )

end function

SlotCopy module
• Input
X: ciphertext that contains either 0 or 1 in the lowest slot
• Output
X: updated ciphertext, where all of the next q − 1 slots’ bit
values from the lowest slot become the same as the lowest
slot’s bit value

function SlotCopy(X, q)
for i ← 1 to q − 1 do

// Y [1..q − 1] is an array of ciphertexts
Y [i] ← X >>R i

end for
X ← X ⊕ Y [1] ⊕ · · · ⊕ Y [q − 1]

end function
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ppendix B. Classifier circuit and its subroutines 

The section describes the Classifier circuit and its subroutines Fig.
.21 . 
Fig. B.21. Illustration

104 
ppendix C. Privacy proof of the proposed protocol 

As mentioned in Section 4 , the proposed protocol must satisfy the
rivacy-preserving requirement. We provide a formal proof in this sec-
ion. We can informally list the privacy requirements of the proposed
rotocol as follows: 

• The server is able to access the model information ( = w ) and can-
not derive the user ’s (i.e. client ’s) input ( = ⃗𝑥 ) while performing the
protocol. 

• The user is unable to extract model information from the information
he/she can obtain while running the protocol. 
 of Max circuit. 
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Classifier module
• Input
XT [][]: t × d array whose element XT [i][j] has Ti,j(xj)=K ·
Pr[Xj = xj |C = ci]. Refer to the Selection module.
S: array of ciphertexts for storing the integer value of K ·
log Pr[C = ci] for all i ∈ [1, t]
q: maximum bit length of values being processed
• Output
R1: resulting ciphertext for storing the classification result
(refer to R1 in 6)

function Classifier(R1, S, XT , q)
//For multi-threading, t-threads start instead of for i
for i ← 1 to t do

for j ← 1 to d do
//IN [1..d + 1] is an array of ciphertexts
IN [j] ← XT [i][j]

end for
IN [d + 1] ← S[i]
//Adding up all elements in IN and assigning the

result to R[i]
MultipleAdder(R[i],IN ,d + 1)

end for
//Finding the maximum element in R[]
Argmax(R1, R[i], t)

end function

ArgMax module
• Input
IN : array of ciphertexts that contain q-bit integers
n: size of IN , MAX : ciphertext representing 2q − 1, by as-
signing 1 to the 1st, (u + 1)-th, · · · , ((q − 1)u + 1)-th slots
LSB :ciphertext in which the first slot is set to 1 and the oth-
ers are set to 0
q: maximum bit length of values being processed
• Output
argmax: ciphertext in which the (u ∗ (k − 1) + 1)-th slot is
set to 1 and the other is set to 0, where IN [k] contains the
maximum integer among all the integers in IN

function ArgMax(argmax,IN ,n,MAX,LSB,q)
// M [1..n][1..n]: 2D array of ciphertexts
// M [i][j] stores the result for comparison between
// IN [i] and IN [j]
//For multi-threading, t(t − 1)/2-threads
//start instead of for i, j
for i ← 1 to n do

for j ← i + 1 to n do
// Comparator sets M [i][j] as 1 in the 1st slot
// if IN [i] > IN [j]
Comparator(M [i][j],IN [i],IN [j],MAX,LSB,q)
M [j][i] ← LSB ⊕M [i][j]

end for
end for
//Max let argmax have the index of the largest value
//in IN .
Max(argmax,M ,n)

end function

To describe the above requirements formally, we build up definitions
f the privacy requirements. We employ the simulator in our definitions
f privacy. The simulator is a hypothetical object for the simulation of
articipants in a protocol [60] . In a security proof, the simulator sim-
lates a designated participant in a two-party protocol. The simulator
u  
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uns a two-party protocol with the other participant. As a result of the
xecution of the protocol, the simulator should provide a valid-looking
utput to the other participant using only the public information. If this
s possible, then we can prove that the other participant cannot derive
ny private information from the party that is simulated by the simula-
or. 

We provide a formal definition of privacy for the proposed protocol
s follows: 

efinition 1 (User Input Privacy) . If the server cannot distinguish with
on-negligible probability [60] whether it is interacting with a user
r with a simulator running a two-party protocol using only the pub-
ic information available when executing the protocol, we can say that
he protocol supports the privacy of the user input. The term ‘distin-
uish ’ refers to computational indistinguishability [60] . The probability
s drawn over the choice of both the user and the server in the protocol.

efinition 2 (Server Model Privacy) . If the user cannot distinguish with
on-negligible probability [60] whether he/she is interacting with a
erver or a simulator running a protocol using only public information
vailable when executing the protocol, we can say that the protocol
upports the privacy of the model. The term ‘distinguish ’ again refers to
omputational indistinguishability [60] . The probability is drawn over
he choice of both the user and the server in the protocol. 

We prove that the proposed protocol ensures the privacy of the user
nput and the model based on the above definitions. We use the code-
ased security proof technique [61] . 

heorem 1. If the proposed server-centric protocol uses a CPA-secure FHE

cheme and the server and user ’s computational powers are at most the same

s a conventional CPA adversary [62] , then the user input privacy and server

odel privacy requirements defined in Definitions 1 and 2 , respectively, are

atisfied. 

roof. proof of Theorem] 1 We prove the theorem by constructing sim-
lators to show that the proposed protocol satisfies Definitions 1 and
 . 

We first explain the real execution environment shown as World AA
n Fig. C.22 . In the server-centric protocol, the server has the model w
nd the user has the input ⃗𝑥 , and the public key of the user pk u is shared
etween them. The private key of the user sk u is only given to the user.
n this setting, the user sends �⃗� encrypted by his/her public key to the
erver. The server computes the encrypted 𝐶 𝑤 ( ⃗𝑥 ) and sends the result
o the user. Finally, the user decrypts the result with his/her private key
o obtain 𝐶 𝑤 ( ⃗𝑥 ) . In this scenario, the server can access the ciphertexts
ncrypted by pk u and the model w . 

(Proof of Definition 1 ) To prove that the proposed server-centric pro-
ocol satisfies Definition 1 , we build a simulator that acts as the real user
ut that only has the public information, pk u . This is shown as World AB
n Fig. C.22 . The simulator creates a random input vector 𝑦 , encrypts
t with pk u , and sends it to the server. After the server ’s classification
omputation, the simulator receives the encrypted 𝐶 𝑤 ( ⃗𝑦 ) . We now run a
ypothetical game. As a setup, we uniformly randomly select the world
rom either World AA or World AB, and run the server-centric proto-
ol. In this case, we claim that the probability of the server determining
hich world it is working in is negligible. Our claim holds if the underly-

ng FHE scheme supports CPA security: the server cannot computation-
lly distinguish whether it receives 𝑐 �⃗� or 𝑐 𝑦 . Otherwise, the CPA-security
f the underlying FHE scheme would be broken. Additionally, what the
erver can actually do with the received ciphertext is limited to what
he CPA adversary can do with it. Therefore, our claim holds. 

(Proof of Definition 2 ) Similar to the proof of Definition 1 , we build
 simulator in World BA that interacts with the user based solely on
ublic information. We prove that the user cannot distinguish whether
e/she is running on either World AA or World BA with non-negligible
robability. The difference between World AA and World BA is that the
ser obtains 𝐶 𝑤 ( ⃗𝑟 ) in World AA, but 𝐶 

′ ( ⃗𝑟 ) in World BA, where w ′ is
𝑤 
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Fig. C.22. Simulator construction for proof of Theorem 1 . 

Fig. C.23. Simulator construction for proof of Theorem 2 . 
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o  
 randomly generated model. In this case, the user can only determine
he same as in the ideal model of the proposed protocol, as shown in
he bottom-right of Fig. C.22 . Therefore, if the user is able to extract
ny information about w in the proposed protocol, then the user can
lso extract that information on w in the ideal model. Therefore, we can
onclude that the proposed protocol meets the best level of security that
an be achieved in the setting. □
A
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heorem 2. If the proposed user-centric protocol uses a CPA-secure FHE

cheme and the server and user have computational power that is at most

he same as a conventional CPA adversary [62] , then the user input pri-

acy and server model privacy requirements defined in Definitions 1 and 2 ,
espectively, are satisfied. 

Proof of Theorem 2 . We follow the same approach as for the proof
f Theorem 1 . To prove the theorem, we build up simulators in Worlds
B and BA of Fig. C.23 , respectively. 
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Proof of Definition 1 ) If the server cannot distinguish whether it is work-
ng in World AA or World AB in Fig. C.23 , the theorem holds. For the
erver to distinguish between the two, the distribution of (( 𝐶 𝑤 ( ⃗𝑥 ) + 𝑟 )
od 𝑡 ) should be different from that of (( 𝐶 𝑤 ( ⃗𝑦 ) + 𝑟 ′′) mod 𝑡 ) , where ⃗𝑦 is
 uniformly randomly generated input vector and r and r ′′ are uniformly
andomly generated numbers in [0 , 𝑡 − 1] . As the range of the function
 w () is [0 , 𝑡 − 1] , r and r ′′ have the same distribution. Therefore, the
roposed user-centric protocol satisfies Definition 1 . 
Proof of Definition 2 ) Similar to the proof of Definition 1 , if the
ser cannot distinguish whether he/she is in World AA or World
A in Fig. C.23 with non-negligible probability, the protocol satisfies
efinition 2 . If we look carefully at Fig. C.23 , the difference between

he worlds is that the user obtains a in world AA, but a ′ in world BA.
s we can easily derive that both are drawn from [0 , 𝑡 − 1] uniformly, if

he user obeys the protocol, we can conclude that he/she cannot distin-
uish between a and a ′ with non-negligible probability. Therefore, the
heorem holds. □

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.csi.2017.12.004 
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