
The Journal of Systems and Software 151 (2019) 8–19

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Real-time control architecture based on Xenomai using ROS packages

for a service robot

Raimarius Delgado

a , Bum-Jae You

b , Byoung Wook Choi a , ∗

a Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811,

South Korea
b Center of Human-centered Interaction for Coexistence, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, South Korea

a r t i c l e i n f o

Article history:

Received 9 May 2018

Revised 22 January 2019

Accepted 23 January 2019

Available online 24 January 2019

Keywords:

Real-time control architecture

Robot operating system

Xenomai

Cross-domain datagram protocol

Service mobile robots

a b s t r a c t

This paper proposes a real-time (RT) control architecture based on Xenomai, an RT embedded Linux, to

control a service robot along with non-real-time (NRT) robot operating system (ROS) packages. Most soft-

ware, including device drivers and ROS, are developed to operate under the standard Linux kernel that

does not provide RT guarantees. Standard Linux system calls in an RT context stimulates mode switch-

ing, resulting in non-deterministic responses and stability problems such as priority inversion and kernel

panic. This paper overcomes such issues through a communication interface between RT and NRT tasks,

termed cross-domain datagram protocol. The proposed architecture supports priority-based scheduling of

multiple tasks while exposing an interface compatible with the original ROS packages. Moreover, it en-

ables standard device driver operation inside RT tasks without developing RT device drivers that requires

significant amount of development time. Feasibility is proven by implementation on a Raspberry Pi 3,

a low-cost open embedded hardware platform, and conducted various experiments to analyze its per-

formance and applied it to a service robot using ROS navigation packages. The results indicate that the

proposed architecture can effectively provide an RT environment without stability issues when utilizing

ROS packages and standard device drivers.

© 2019 Published by Elsevier Inc.

m

s

s

a

M

d

a

T

e

p

s

p

w

t

w

r
1. Introduction

The great demand for high-performance robots from the com-

munity results in a steady growth of complex hardware, software,

and control architecture such that robots can efficiently interact

with the environment. This includes the integration of numerous

devices including sensors and actuators which require processing

and acquisition of a significant amount of data to properly per-

form specific tasks. It is generally known that software complex-

ity primarily depends on the hardware connected within a system

(Vogel-Heuser et al., 2015).

Currently, software development methods are often based on

custom software that are built from scratch or expensive propri-

etary architectures that are distributed in a black box, which hin-

ders the integration to a more complex software (Omidvar et al.,

2017; Paschali et al., 2017). Open-source projects overcome these

problems by enabling developers to freely add and modify the

source code, meaning better quality and lesser prone to bugs as
∗ Corresponding author.

E-mail addresses: raim223@seoultech.ac.kr (R. Delgado), ybj@chic.re.kr

(B.-J. You), bwchoi@seoultech.ac.kr (B.W. Choi).

c

d

l

i

t

https://doi.org/10.1016/j.jss.2019.01.052

0164-1212/© 2019 Published by Elsevier Inc.
ore users can simultaneously contribute to the evolution of the

ystem and debug any problems.

Further, open-source projects are developed to operate in many

ystems and should abstract the hardware and basic software to

void the dependence on a particular vendor (Kilamo et al., 2012).

any studies are ongoing on a new methodology to enhance the

esign of robot control systems with the aim of an easier, faster,

nd more reliable development based on open-source software.

his includes component-based frameworks such as the robot op-

rating system (ROS) project (Zucker et al., 2015), yet another robot

latform (YARP) (Cardellino et al., 2018), and open robot control

oftware (OROCOS) (Ahmad and Babar, 2016).

Another crucial requirement to consider in designing robot ap-

lications is the precise control period (Li et al., 2016). In a system

ith complex software and various devices such as a robot con-

rol, the typical super loop concept (Fischmeister and Lam, 2010),

here each function is executed in a fixed order and uses inter-

upt service routines (ISRs) for time-critical programs, is not appli-

able especially in a configuration where each component requires

ifferent cycle times. As the ISR becomes more difficult, it requires

onger response times that block the completion of other functions

nside the loop. Therefore, controlling the robot with strict real-

ime (RT) constraints is impossible.

https://doi.org/10.1016/j.jss.2019.01.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.01.052&domain=pdf
mailto:raim223@seoultech.ac.kr
mailto:ybj@chic.re.kr
mailto:bwchoi@seoultech.ac.kr
https://doi.org/10.1016/j.jss.2019.01.052

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 9

w

s

o

R

i

o

h

i

g

V

m

w

i

r

u

e

m

s

f

s

c

R

t

i

i

c

r

a

s

(

a

a

a

v

a

s

r

c

e

o

t

e

o

s

R

e

t

p

n

r

D

v

f

t

(

r

k

C

s

M

i

p

t

o

m

b

t

X

r

i

W

n

f

v

2

d

w

s

s

v

s

M

p

e

w

r

w

d

p

a

a

v

n

s

i

c

h

o

o

T

s

m

t

a

t

t

c

t

p

g

t

t

d

t

t

w

t

r

m

o

t

d

o
Consequently, it is highly likely for a mobile robot to collide

ith an obstacle because it must receive data from all the attached

ensors first before it can perform an avoidance scheme. Real-time

perating systems (RTOSes) are required to deal with this issue. An

TOS separates functions into self-contained tasks in a multitask-

ng environment and implements the execution scheduling based

n priorities, meaning lower priority tasks can be pre-empted by

igher priority tasks. This ensures a deterministic behavior because

nterrupts from the hardware components and events from the al-

orithms are handled within a predefined time.

Model-based approaches including Matlab, Simulink, and Lab-

iew offers real-time toolboxes and modules for rapid develop-

ent of real-time applications. Matlab emulates an RTOS for soft-

are simulations (Grepl, 2011) but is not viable in practical scenar-

os involving various digital devices. Simulink and LabView provide

eal-time modules with devices drivers for hardware-based sim-

lation that requires a dedicated real-time computer (Henriksson

t al., 2002; MathWorks 2019; Beck et al., 2006). All the software

entioned above are distributed commercially and are very expen-

ive. A low-cost method which implements an open-source RTOS

or hardware-in-the-loop simulations in power systems are pre-

ented in (Lu et al., 2007). Instead of using a dedicated real-time

omputer, they implemented on the same machine an open-source

TOS to handle real-time tasks in the Simulink for plant and con-

rol modeling. Their results show that the system was able to sat-

sfy soft real-time requirements. Robot control, on the other hand,

s an advanced system that includes the implementation of vast

ombinations of digital hardware and algorithms, satisfying hard

eal-time requirements.

An advanced approach involving domain specific languages

nd innovative model-driven software development of real-time

oftware architectures for robots was presented by Gobillot et al.

2018) . Their work includes a design methodology of software

rchitectures, real-time analysis considering safety of software

pplications, and a code generation toolchain ensuring that the

nalyzed software eventually executed in the robot itself. Although

ery commendable in the software perspective, in this paper, we

re focused on a real-time system based on fully open-source

oftware for easier reproduction and low-cost development.

Linux, the most popular open-source operating system, is cur-

ently considered as a soft RTOS owing to the dramatic advances in

omputing power and the continuous effort s of developers. How-

ver, as the scheduling policy utilizes fairness instead of the pri-

rity of processes, it is still not suitable for hard RT applications

hat require the system to meet strict timing constraints and pre-

mption of low priority tasks (Abbott, 2013). Several RT extensions

f Linux were introduced in the recent past that improved the re-

ponse times and priority scheduling of the Linux kernel for hard

T applications (Yang et al., 2016; Alho and Mattila, 2015; Zappulla

t al., 2017).

RT embedded Linux is classified into two major approaches:

he pre-emptible kernel and the dual-kernel approaches. In the

re-emptible kernel approach, all parts of the standard Linux ker-

el with relationship to the scheduler and timers are modified to

ender lower priority tasks pre-emptible by higher priority ones.

e Oliveira and De Oliveira (2016) evaluated its performance. Con-

ersely, the dual-kernel approach employs a real-time kernel to

unction alongside the standard Linux through a virtual layer called

he adaptive domain environment for operating systems (ADEOS)

 Dantam et al., 2015). Ceria et al. presented a comparison of the

eal-time performance between the RT_PREEMPT (pre-emptible

ernel) and RTAI (dual-kernel) as the main controller of an Ether-

AT network (Cereia et al., 2011). As the RTAI project becoming

tagnant and its limited support of CPU architectures, Brown and

artin (2018) provide an evaluation of Xenomai and its compar-

son to the pre-emptible kernel. Both studies concluded that the
re-emptible kernel approach of RT_PREEMPT is significantly bet-

er in terms of limiting the maximum scheduling jitter. On the

ther hand, the dual-kernel approach showed better accuracy in

eeting the hard RT deadlines with lower standard deviations.

As we aim to develop a rigorous control architecture with the

est hard RT performance as possible, the focus of this paper is

o develop an environment based on the dual-kernel approach of

enomai. Another issue for the RT_PREEMPT approach is that it

equires modification of the kernel code every time the version

s upgraded to maintain RT effectiveness (Gosewehr et al., 2016).

hereas, Xenomai runs independent with the standard Linux ker-

el if there is a compatible ADEOS patch. Xenomai is a real-time

ramework that cooperates with the standard Linux kernel to pro-

ide hard real-time support for user-space RT tasks (Choi et al.,

009). In an RT task, any system call from the standard Linux

omain introduces an event, called mode switching. This occurs

hen the execution of the RT task unexpectedly switches to the

tandard Linux execution mode handled by the standard Linux

cheduler. The most common reason for mode switching is in-

oking a system call during the access to non-real-time (NRT) re-

ources such as standard Linux libraries and device driver routines.

ode switching causes priority inversion that allows NRT tasks to

re-empt higher priority RT tasks and unstable behavior in the

ntire system that leads to missed critical temporal deadlines, or

orse, a system freeze.

Because of this constraint, it is impossible to achieve hard

eal-time performance, even with Xenomai, while using any soft-

are designed for the standard Linux kernel. These include device

rivers and ROS for example. ROS is the most dominant robotic

latform for easier integration of various control algorithms avail-

ble as easily redistributable packages. However, it does not oper-

te in real-time. Developing an RT ROS is an open problem with

ery few available solutions. The most common approach is run-

ing ROS on a host system and perform real-time control in a

eparate guest controller. Bouchier (2013) suggested implement-

ng an RTOS on the guest hardware to execute RT tasks that are

onnected to a host system operating on the standard Linux to

andle NRT ROS tasks. This is remarkably similar to the solution

f Hasegawa et al. (2016) for the collaboration of robot technol-

gy middleware and TOPPERS embedded component system (RTM-

ECS). These approaches cause a performance issues on the guest

ystem, where the real-time tasks are bottlenecked by the com-

unication protocol. Manufacturing cost is also an issue because

hese solutions require more than a single hardware platform.

Chitta et al. developed ros_control (Chitta et al., 2017), a robot-

gnostic framework addressing the real-time issues of ROS con-

rol applications. Although it can support diverse types of robots

hrough its hardware abstraction layer, multitasking is a con-

ern because it uses the standard ROS communication between

asks that does not support real-time. Wei et al. (2016) pro-

osed a method that explores the multicore architecture on a sin-

le hardware. Being dependent on Intel-based microprocessors for

heir inter-core communication mechanism, the flexibility and ex-

endibility of this approach is questionable because many embed-

ed platforms being used currently are based on the ARM architec-

ure. Although this is an innovative way to solve the RT problem,

he development of RT device drivers, is required to access hard-

are resources in the RT context.

Xenomai provides an application programming interface called

he RT driver model, or RTDM (Kiszka, 2005). However, this

equires a long development time that could require days or

onths depending on the characteristics and required features

f the devices that will be used in an RT context. With the aim

o design RT applications for robot control that does not require

evelopment of RT device drivers and possesses the advantages

f Xenomai such as multitasking, priority-based scheduling, and

10 R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19

t

R

t

t

c

t

E

t

d

a

n

t

d

t

2

c

v

i

t

p

a

a

2

m

i

t

n

t

R

i

h

b

P

p

e

k

i

X

c

a

t

m

(

p

b

t

t

a

a

o

f

m

t

L

i

m

L
deterministic response, as well as the rapid development tools

offered by ROS packages, we propose an RT control architecture by

adapting a communication mechanism between RT and NRT tasks

called cross-domain datagram protocol (XDDP).

The XDDP is an inter-process communication (IPC) mechanism

based on the RTDM and RT tasks can communicate with NRT

tasks without experiencing the stability issues prompted by mode

switching. Anistratov et al. (2015) implemented the mechanism to

execute NRT program codes and libraries within RT tasks for the

digital control of a pulse power supply system for the Tokamak T-

15. The application of XDDP for robot applications is presented by

Muratore et al. (2017) , where they developed XBotCore, a software

platform for EtherCAT-based robot platforms. In comparison to our

approach, XBotCore is a homogenous architecture where there is

no direct communication between RT and NRT tasks, which could

cause data transmission. In such, schedulability of the RT tasks

is also questionable because the performance highly depends on

the component called the Plugin Handler. It is also specifically de-

signed to control EtherCAT-based robots, whereas our architecture

is a general solution integrable to a wide range of real-time sys-

tems. Moreover, performance evaluation of the mechanism in RT

applications when using NRT libraries is also not provided.

We herein comprehensively describe the XDDP and developed

user-friendly APIs that emulate Xenomai native functions for the

creation, evaluation, and configuration of RT tasks to easily per-

form communication with NRT tasks. Using these functions, RT

tasks can exchange data with NRT tasks that perform functions al-

lowable only in the standard Linux domain instead of directly ac-

cessing any resources from the standard Linux kernel, thus avoid-

ing a mode switch. Hence, standard Linux device drivers can be

used in the RT context without exerting additional effort to de-

velop their RT counterparts. Similarly, ROS packages can also be

used in RT tasks that ensure priority-based scheduling and hard

RT support. The proposed architecture guarantees stability and the

deterministic response of RT tasks while implementing ROS pack-

ages and standard Linux device drivers using the existing open-

source technologies that allow the reuse and easy integration to

more complicated RT applications.

In order to demonstrate the validity of the proposed RT con-

trol architecture, we have implemented it on an open hardware

platform, i.e., Raspberry Pi 3 (RPi3). As the control architecture is

based on easily accessible open source software and mechanisms,

implementation on non-embedded systems or high-end comput-

ers are also viable. However, in practice, main controllers of the

robot are often based on embedded hardware because of its porta-

bility, low power requirements, and relatively inexpensive costs in

comparison to high-end computers while remaining competitive in

terms of performance. Open embedded hardware is gaining popu-

larity as the primary controllers in robot control application such

as sensor networks (Ferdoush and Li, 2014; Chianese et al., 2015),

image processing (Honegger et al., 2013), and navigation (Kali ́nski

and Mazur, 2016; Zhang et al., 2012). However, developing an RT

environment for embedded platforms is more difficult owing to

the limited availability of systematic documentations and techni-

cal support. Although manufacturers provide Linux kernel sources,

compatibility with other software and patches is an open problem

(Li et al., 2010).

With the aim to serve as a helpful guideline for software de-

velopers, especially those with limited practical experience, this

paper, for the first time, provides detailed instructions on devel-

oping an RT environment for the RPi3 based on Xenomai, from

the compatible versions of toolchains and standard Linux kernel,

to the necessary patches required for successfully operating Xeno-

mai. For the easier extendibility of devices without hardcoding any

changes on the device tree of the Linux kernel, we have imple-

mented the latest stable version of ROS in Raspbian, a file sys-
em distribution of RPi3, with a small tradeoff—manually building

OS sources instead of directly installing from the Ubuntu reposi-

ory, which slightly increases development time. The RPi3 serves as

he primary controller for the mobile base of a telepresence robot

alled the M4K (Lee et al., 2016).

We have developed standard Linux device drivers that can in-

eract with the attached sensors and actuators of the mobile robot.

xperiments and performance evaluation were conducted to prove

he feasibility of the proposed architecture. Standard Linux device

rivers were controlled inside RT tasks and navigation of M4K in

n environment with static obstacles was performed using ROS

avigation packages. The results show that the proposed architec-

ure can efficiently provide RT support for standard Linux device

rivers and ROS packages without experiencing stability issues due

o mode switching.

. Real-time control architecture based on Xenomai

In this section, we discuss the composition of the proposed RT

ontrol architecture using the RT extension of Xenomai. We pro-

ide a detailed explanation of the overall structure of the system

ncluding the motivation and the current problems in the state-of-

he-art. Furthermore, the components that were used to build the

roposed architecture, such as the Xenomai POSIX skin and XDDP,

re described in detail. The improvements for an easier integration

nd reuse are also highlighted in the following subsections.

.1. System structure

The advances in hardware computing power and the dra-

atic improvement in the standard Linux kernel has gathered

nterests for them to be considered in different robotic applica-

ions. However, owing to the scheduler policy of utilizing fair-

ess rather than priority (Grepl, 2011), the RT performance of

he standard Linux kernel is still not sufficient in handling hard

T tasks such as feedback control, which is commonly applied

n trajectory tracking and the safe control of end effectors with

igh velocity and force. This requirement is satisfied by RT em-

edded Linux approaches: pre-emptible-kernel approach of RT-

reempt (De Oliveira and De Oliveira, 2016) or the dual-kernel ap-

roach either by RTAI (Erwinski et al., 2013) or Xenomai (Gosewehr

t al., 2016; Choi et al., 2009). We herein focus more on the dual-

ernel approach because of its superior performance as reported

n Cereia et al. (2011) and Brown and Martin (2018) . We preferred

enomai over RTAI because of its wide range of supported CPU ar-

hitectures and its active community. RTAI supports only PowerPC

nd Intel CPUs and has not been updated since 2012.

Xenomai runs alongside the standard Linux kernel through

he ADEOS, a nanokernel hardware abstraction layer that enables

ultiple entities called domains to exist in the same hardware

 Dantam et al., 2015). In this configuration, Xenomai has the higher

riority and is handled first, causing the standard Linux kernel to

e configured with the lowest priority. Thus, any standard Linux

ask will execute, if and only if, there are no pending Xenomai

asks. One characteristic of Xenomai is that it can access resources

nd switch between the two kernels at any time.

However, hard RT operation is only possible when all the tasks

re scheduled by the Xenomai scheduler. Meaning, RT tasks should

nly use native Xenomai services and RTDM device drivers. The

ollowing sections use the terms “primary mode” and “secondary

ode”. Both terms are specific to Xenomai and are defined as

he following: If a Xenomai real-time task is running without any

inux system calls or APIs within the code, it is said to be running

n “primary” mode. Linux systems calls within Xenomai tasks cause

igration of the task from the Xenomai scheduler to the standard

inux scheduler, thus making it run in “secondary” mode and lose

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 11

Fig. 1. Real-time control architecture based on Xenomai.

h

m

h

o

R

d

c

n

t

q

m

p

t

o

s

a

t

c

X

p

t

a

s

d

r

a

f

i

t

s

o

d

X

p

s

w

o

i

t

a

c

w

L

t

s

A

d

o

w

2

m

A

P

f

m

n

o

o

d

2

p

i

a

t

L

I

l

e

s

a

f

b

fi

p

c

e

d

w

t

v

i

t

t

L

T

I

p

t
ard real-time capabilities. Any switch from primary to secondary

ode is called “mode switching”.

In a mode switch, RT tasks are vulnerable to priority inversion:

igher priority tasks being interrupted or pre-empted by lower pri-

rity ones. This is a chaotic scenario which must be avoided in

T scheduling that can cause the entire system to become non-

eterministic. In the worst case, a “system freeze” or a kernel panic

an occur, especially when using standard Linux device drivers.

As most software including device drivers and ROS are origi-

ally designed for the standard Linux, a communication interface

o successfully pass data which can avoid mode switching is re-

uired. Shared memory and message passing are the two types of

ethods to satisfy this requirement. In shared memory, a task can

ublish data in a piece of memory and the readers can decipher

he data within that region. Concurrency issues can cause data loss

wing to the lack of synchronization between the parallel tasks. RT

ynchronization mechanisms, such as a semaphore, are required to

void this anomaly. However, it is not allowed for RT and NRT tasks

o use the same mechanism.

In our proposed architecture, we utilized a pipe mechanism

alled the XDDP as the medium between RT and NRT tasks. The

DDP is available in the POSIX skin of Xenomai, which will be ex-

lained in the next subsection. In comparison to shared memory,

he XDDP is a message-passing mechanism based on the RTDM

nd can solve the issues regarding data concurrency and mode

witching. This solution is essential because software is typically

eveloped only for the standard Linux such as device drivers and

obot frameworks like ROS.

Instead of directly accessing standard Linux resources, RT tasks

re connected to NRT tasks that perform the required functions

rom either the device driver or ROS. The proposed architecture

s an intuitive approach to integrate ROS packages inside RT tasks

hat can ensure priority-based scheduling and the deterministic re-

ponse of the system. Further, the development of RT drivers based

n the RTDM is also eliminated, thus saving significant amount of

evelopment cost and time.

The proposed real-time control architecture is shown in Fig. 1 .

enomai is implemented alongside the standard Linux kernel that

ossesses device drivers and the ROS master core. Xenomai is as-

igned the highest priority by the ADEOS; thus, it receives hard-

are interrupts without being delayed. In contrast, NRT tasks can

nly execute after Xenomai tasks are finished. When the RT task

s composed only of Xenomai APIs or is connected to the NRT task

hrough the XDDP, it can consistently execute in the primary mode

nd guarantees hard RT operation. However, mode switching oc-

urs when an RT task enters the secondary mode (dotted line),

hich is not recommendable, by directly accessing the standard

inux resources in this case, ROS core, and device drivers.

As mentioned in the previous section, XDDP was implemented

o avoid any case of mode switching when using standard Linux

ystem calls inside RT tasks by the researchers in (Kiszka, 2005;
nistratov et al., 2015). However, the architecture of these studies

id not offer the detailed instructions and performance evaluation

f the mechanism in RT applications, which is addressed in this

ork.

.2. Xenomai POSIX skin

Xenomai provides various user space libraries to emulate com-

on RTOS APIs such as VxWorks and PSOS. It also offers its own

PI called the native skin. However, the XDDP is included in the

OSIX skin that uses standard POSIX APIs, wrapped with Xenomai

unctions, inside RT tasks.

As it is not common to use POSIX functions to develop Xeno-

ai applications, we have created simple APIs that emulate the

ative skin for better task and timer management. Further, instead

f using the POSIX timer that uses signals or system calls, we have

pted to use the high-resolution timer approach that uses a file

escriptor through timerfd (Chianese et al., 2015).

• pt_create_task_rt () creates and starts an RT task with the de-

sired priority, stack size, period, and task name. This function

encapsulates the functions related to the thread and attribute

handlers pthread_t and pthread_attr , and the thread creation

function pthread_create (). This function is equivalent to the na-

tive skin function, rt_task_spawn ().
• pt_task_wait_period () wait for the next periodic release point

using a file descriptor or timerfd . In the native skin, this func-

tion is known as rt_task_wait_period ().
• pt_timer_read () returns the current system time expressed in

nanoseconds. This function uses clock_gettime () to measure the

current time using the timespec structure. This function con-

verts time stamp counters to nanoseconds. rt_timer_read () is

the equivalent function in the Xenomai native skin.

.3. Integration of cross-domain datagram protocol

Cross-domain datagram protocol or XDDP is a type of RT inter-

rocess communication (RTIPC) mechanism offered by Xenomai. It

s a message-passing interface based on the RTDM that exports

 socket interface and allows a two-way channel communication

o exchange datagrams between Xenomai RT tasks and standard

inux threads/processes using regular file operations for simplicity.

t connects a socket to a pseudo device file in the standard Linux

ocated in the root filesystem device (/dev) directory.

The XDDP can be operated in one of two modes: message ori-

nted and byte streaming. In the message-oriented mode, a mes-

age buffer is pre-allocated to preserve a specific message bound-

ry during a transaction. The message buffer should be filled be-

ore sending to the XDDP socket. This behavior can introduce

locking and huge delays in the execution of the RT task. This con-

guration is usually used when correctness of the data is more im-

ortant than the speed of execution. The byte-streaming mode is a

ontinuous stream that can yield the optimal output. As we aim to

stablish a continuous stream of asynchronous data from ROS and

evice drivers and improve reactiveness of RT tasks, all operations

ere conducted using the byte-streaming mode.

The XDDP structure is shown in Fig. 2 . In this figure, the func-

ions required to transfer data from RT tasks to NRT tasks and

ice-versa are shown by the lines with an arrow head accord-

ng to the corresponding direction. In the Xenomai side, an RT

ask should be bound to a socket through the function bind (). As

his function is associated with the network interface of standard

inux, this should be called before the task enters the infinite loop.

o bind a socket to an XDDP port, the parameters AF_RTIPC and

PCPROT_XDDP should be passed as arguments for the domain and

rotocol to be used, respectively. The socket acts as a communica-

ion proxy to send and receive data from the pseudo device in the

12 R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19

Fig. 2. Structure of cross-domain datagram protocol.

m

L

3

t

e

i

s

a

p

i

i

t

r

e

t

e

t

w

p

3

X

f

R

t

i

u

p

a

i

s

3

s

t

R

K

M

f

i

t
standard Linux domain. Meanwhile, an NRT task requires a stan-

dard character device file found in /dev/rtpX (X stands for the mi-

nor number) to be opened. As this is an ordinary device file, the

function open () is used to create an XDDP instance in the NRT task.

XDDP ports are identified by the minor numbers of the de-

vice file, meaning that port 0 in the RT task is in connec-

tion with the device file /dev/rtp0. The number of useable

XDDP ports depends on the kernel configuration namely, CON-

FIG_XENO_OPT_PIPE_NRDEV, which is 32 by default. From the

Xenomai domain, data are sent to the XDDP port using sendto ()

for the NRT task to receive from the device file using read (). Con-

versely, data from the NRT task is sent write () and received by the

RT task using the recvfrom () system call.

In summary, any task (ROS nodes or device driver handler) run-

ning in the NRT domain can access the XDDP ports using file de-

scriptor operations. Conversely, in the RT domain, XDDP ports are

accessed similar to typical socket operations. The data transfer op-

erations using write ()/ read () or sendto ()/ recvfrom () involves a void

buffer. Although there is no special data conversion required, users

should be wary that the data type inserted on the buffer should

be maintained for a seamless transfer of data between the RT and

NRT domain.

For an easier implementation, we have also created an API that

creates the descriptors for both RT and NRT tasks.

• XENO_XDDP is the structure that describes the XDDP port inside

the RT task. This includes the XDDP port number to be used,

send and receive buffers, and mode of operation.
• LINUX_XDDP is the structure that describes the XDDP imple-

mentation to be called in the NRT task. Within the structure,

the minor number of the XDDP port, write and read buffers,

and mode of operation.
• rt_xddp_init () is the function used to initialize an RT XDDP

socket to the device file after initialization.
• nrt_xddp_init () is a similar function with the rt_xddp_init () but

is initialized in the NRT domain.
• rt_xddp_bind () is the function used to bind an XDDP socket to

the device file after initialization.
• nrt_xddp_open () is the function used to open a device file after

initialization and is connected to an XDDP port.
• rt_xddp_send / recv () is the function that sends/receives data

from the XDDP port, respectively.
• nrt_xddp_write / read () is the function that read/write to the de-

vice file connected to an XDDP port, respectively.

The sequence of major operations when implementing XDDP

for the communication between an RT and an NRT task is as fol-

lows:
• An RT task is created using pt_create_task_rt () defining the de-

sired priority, stack size, and deadline. A simple POSIX thread is

created using pthread_t () that serves as the NRT task.
• Initialize XDDP structures for both the RT and NRT task us-

ing XENO_XDDP and LINUX_XDDP , respectively. Initialization can

be performed either inside the respective task or as global re-

sources.
• Inside the RT task, an XDDP socket is initialized for using the

rt_xddp_init () function with the XENO_XDDP structure as an ar-

gument. On the other hand, the file descriptor in the Linux side

is initiated using nrt_xddp_init () in the NRT task.
• The XDDP is bound to a socket using rt_xddp_bind (). This func-

tion, altogether with rt_xddp_init () should be performed before

the real-time task loop. In the NRT task, the file descriptor is

opened using nrt_xddp_open ().
• rt_xddp_send / recv () is used inside the RT task to transfer and

receive data from the XDDP socket while nrt_xddp_write / read ()

are used in the NRT task.

A simple example for the implementation of the XDDP com-

unication is provided at https://github.com/SeoulTechEmbedded

ab/xddp .

. Implementation of control architecture and device drivers

In order to demonstrate the validity of the proposed RT con-

rol architecture, we perform a navigation scheme for a telepres-

nce robot called M4K. The robot is originally designed with an

nteractive 3D beam projector and cameras in addition to the ba-

ic telepresence robot to facilitate extensive human communication

cross distances (Lee et al., 2016). We have selected an embedded

latform, RPi3, to show that the architecture is operational even

n an embedded environment to reduce manufacturing costs and

ncrease portability of the system.

Further, we conducted experiments to verify the feasibility of

he proposed architecture to control the M4K using ROS packages

unning under RT tasks with priorities. The primary focus of the

xperiments is to prove the viability of the proposed architec-

ure without mode switching and kernel panic while meeting the

xpected deadline. The performance measurements were concen-

rated only on the periodicity of RT tasks during data exchange

ith NRT task when using standard Linux device drivers and ROS

ackages to control M4K.

.1. Real-time environment for Raspberry Pi 3 using ROS and

enomai

Because the proposed architecture relies on the RT features of-

ered by Xenomai, the development of an RT environment for the

Pi3 is needed. Unlike Intel-processor-based desktop computers,

he development of an RT environment for an embedded platform

s more difficult owing to the limited availability of systematic doc-

mentations and technical support. This paper, for the first time,

rovides detailed instructions on the implementation of Xenomai

nd ROS on the RPi3. The RT computing environment that we have

mplemented on an RPi3, considering the compatibility of each

oftware is shown in Fig. 3 .

The latest available Xenomai version for RPi3 is the Xenomai

.0.2 based on Linux kernel 4.1.21. To support both kernels in the

ame machine, the ipipe-core-4.1.18-arm-4 of ADEOS is ported on

op of the Broadcom bootloader. Although the latest version of the

OS is available, we have selected the stable version of the ROS

inetic Kame (Open Source Robotics Foundation, 2018). Ubuntu-

ATE 16.04 is the recommended distribution and root filesystem

or the ROS Kinetic. However, owing to the limitation in the mod-

fication of the device tree binary (DTB) to extend the SPI bus in-

erface (motor and encoder support), disabling Bluetooth for full

https://www.github.com/SeoulTechEmbeddedLab/xddp

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 13

Fig. 3. Real-time environment of a Raspberry Pi 3.

R

h

s

A

t

a

a

r

r

l

fi

a

m

s

e

a

s

a

m

r

t

A

a

t

A

a

d

d

X

d

f

t

c

b

D

p

t

3

o

t

a

e

a

a

m

P

n

c

d

d

g

c

a

a

i

i

t

a

c

X

h

D

X

N

t

t

b

L

i

e

p

t

a

d

a

e

a

t

s

o

I

t

t

m

fi

o

f

m

w

a

u

t

q

a

R

e

t

b

a

L

c

i

n

t

S232 support, and disabling the sound card (PWM for LED), we

ave selected the Raspbian Jessie (Debian 8) Linux distribution.

Xenomai is realized by sharing hardware resources with the

tandard Linux kernel through a hardware abstraction layer called

DEOS. CPU frequency scaling, programmable interrupt controllers,

imer frequency, etc., are disabled during kernel configuration to

void unwanted switching to the Linux domain.

Because the bootloader of the Raspberry Pi boards is not avail-

ble as an open source, we decided to build the working envi-

onment based on a complete image available from the Raspberry

epository (Raspberry Foundation, 2018). This includes the boot-

oader, a standard Linux kernel, and Raspbian Jessie as the root

le system. Although Raspbian Jessie is available in both desktop

nd minimal versions, we have chosen the latter because the for-

er uses GUI libraries that introduces high jitters during context

witching. These were found during a stress test performed for an

ntire day; the results are not within the scope of this paper and

re thus omitted.

To satisfy software dependencies and eliminate problems

uch as unusable binaries, missing libraries, and build errors,

 suitable toolchain was used that supports the RPi3 environ-

ent. We used a toolchain called gcc-linaro-arm-linux-gnueabihf-

aspbian-4.8.3, which is also available in (Raspberry Founda-

ion, 2018). The ipipe-core-4.1.18-arm-4 is the suitable version of

DEOS for both kernels available with the Xenomai 3.0.2 pack-

ge (Xenomai Project, 2018). This patch does not originally con-

ain the information for BCM2710, which is the SoC used by RPi3.

n additional patch is required to add the necessary contents that

re available in (Blaess, 2018). Aside from the features that were

isabled as mentioned above, RTIPC drivers that are located un-

er the Xenomai kernel configuration were enabled such that the

DDP can be used. In comparison to the ROS installation un-

er UbuntuMATE 16.04 that directly fetches compiled packages

rom the Ubuntu repository, the Raspbian implementation requires

he sources to be downloaded directly from the ROS repository,

alled the build farm (ROS Build Farm, 2018), and requires them to

e compiled separately, slightly increasing the development time.

uring installation, a lack of swap memory would lead to a kernel

anic, thus extending the swap space from the default 100 MB to

he recommended 2 GB.

.2. Interfacing M4K mobile robot to ROS and Xenomai

The experiments are focused on the control of the mobile base

f M4K that requires handling of different sensors such as an ul-

rasonic distance sensor (sonar), LED strip, laser range finder (LRF),

nd inertial measurement unit (IMU). These sensors are used to

nable the M4K to navigate freely within an environment and

void collisions with obstacles. The actuators of the mobile robot

re also connected directly to the RPi3, which consist of two DC

otors equipped with absolute encoders. As RPi3 only has one
WM port (used in LED), DAC modules were used and are con-

ected to the SPI interface to control the motors. GPIO pins are

onfigured and extended to act as SPI chip selections to accommo-

ate the absolute encoders.

To maximize the performance of RPi3 while building a map

uring navigation (Aagela et al., 2017), the ROS package for navi-

ation called move_base is deployed in a desktop (denoted as PC)

omputer while the RT tasks to handle the sensors and actuators

re deployed locally in the RPi3, as shown in the deployment di-

gram in Fig. 4 . In this configuration, the local planner deployed

n the PC sends velocity commands every 50 ms to the RPi3 us-

ng the standard ROS communication protocol based on TCP/IP. In

he RPi3, two NRT ROS nodes (blue boxes) are deployed running

longside Xenomai RT tasks (gray boxes).

The M4K node is the interface that is exposed to the ROS

ore enabling the usage of original ROS functions, connected using

DDP, in an RT task with a control period of 10 ms. The RT task

andles the control algorithm that converts velocity commands to

AC and sends the generated values to the M4K through another

DDP port, connected to the device driver. Another node (URG

ode) that produces global and local maps is connected directly

o the navigation stack to generate the global and local maps. RT

asks that handle the sensors are connected to NRT tasks (white

oxes), which execute the functions of the corresponding standard

inux device driver (green boxes). The actual navigation of M4K us-

ng the standard Linux device drivers is realized in a multitasking

nvironment with priority-based scheduling provided by the pro-

osed architecture.

The purpose of this experiment is to show the feasibility of

he proposed architecture; thus, the performance measurements

re acquired in a minimal configuration by operating each device

river independently. To validate the feasibility of the suggested

rchitecture, we have developed standard Linux device drivers for

ach sensor and actuators.

Two GPIO pins were used for the ultrasonic sensor that serves

s the trigger and the echo, with their respective ISR. According

o the datasheet of the sensor that we used, US-100, the trigger

hould remain for a minimum of 10 μs in a high signal to initiate

ne cycle of reading. This requirement was realized in the trigger

SR using a call to udelay (). An echo pin was configured to cap-

ure both the rising and falling edges to calculate the total receive

ime of the pulse. In developing this device driver, we have imple-

ented the sysfs structure (Negus, 2015) to easily generate device

les for a limitless number of devices, depending on the number

f available GPIO pins.

We used an LED strip (model NS-LED-02) from a local manu-

acturer. The LED is controlled through a sequence of 24-bit com-

and comprising the RGB and brightness values using the hard-

are PWM of RPi3. As the PWM port of the RPi3 is used by the

udio driver in default settings, we have blacklisted the ALSA mod-

le before the implementation of the device driver. We designed

he driver with a clock generator to match the required timing se-

uence for each color value of the LED pixel.

The I2C interface was utilized to acquire data from myAHRS + ,

n IMU manufactured by WithRobot (myAHRS + – WITH-

OBOT 2018). Because I2C is a platform device driver automatically

nabled by the Linux kernel, we developed an application interface

o enable the communication between the IMU and the primary

oard, check the current state of operation, calibrate the sensor,

nd interpret the data (raw, Euler, and Quaternion) from the IMU.

Hokuyo URG-04LX-UG01 is an immensely popular model of an

RF, which is used by many researchers. It is equipped with a mi-

rocontroller to implement an abstract control model. Thus, an ex-

sting Linux driver termed cdc_acm is already available and does

ot require any alteration. Further, we used the available API from

he Hokuyo repository to interpret the data from the LRF.

14 R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19

Fig. 4. Deployment diagram of the real-time control architecture to control M4K using ROS packages.

Fig. 5. Detection of mode switching for the “LED Control” RT task.

m

L

t

L

b

i

r

s

d

t

p

r

t

p

a

s

t

t
Finally, the drivers for the actuators are implemented using the

SPI interface and APIs available in the standard Linux kernel. A 10-

bit DAC is connected to each of the motors to emulate a PWM

pulse using SPI write messages. Data from the 12-bit absolute en-

coders were read from the SPI datagrams and were converted into

the local position of the M4K, on which the control algorithm to

drive the robot is implemented.

We tested the developed device drivers in the standard Linux

domain first, before applying them to Xenomai RT tasks to debug

any problems that may occur that could affect the experimental re-

sults. Using the standard Linux drivers inside an RT task introduces

mode switching. An RT task should always avoid any mode switch,

especially inside the task loop. Mode switching is partly realized

by a gatekeeper process that is operating in the standard Linux

domain with a response time of approximately 50 ms per mode

switch. During a mode switch, Xenomai suspends the RT task op-

erating in the Xenomai scheduler and sends a virtual interrupt to

the standard Linux through the ADEOS. The Xenomai operates in

an idle mode, which awakens the standard Linux scheduler. When

the standard Linux kernel receives the virtual interrupt and inter-

rupt request handler calls, the RT task is queued into the standard

Linux schedule, causing the RT task to lose its real-time capabili-

ties.

The detection of unwanted mode switches is realized in various

methods (Detection of Mode Switching – Xenomai, 2018). Xeno-

mai was designed to excite the signal SIGXCPU in an event of

a mode switch; thus, catching this signal by registering a signal

hook inside a user program and by supplying a signal handler that

can display the back trace of the stack can detect the source of a

mode switch. Another method is to use the Xenomai utility called

slackspot .

This indicates the code locations that cause transition to the

secondary mode by parsing the virtual file output to display the

program backtrace with no external log file involved. The easiest

method to detect any mode switch is by displaying the Xenomai

process statistics file located at /proc/xenomai/sched/stat. This is

the procedure that we have applied to detect the occurrence of
ode switches. Fig. 5 shows the statistics of the Xenomai RT task,

ED_Control, highlighted by the red box. The task is created with

he highest priority with a period of 20 ms. In this example, a

inux device driver function that sends color commands to an LED

ar using PWM was directly called inside the task loop. As shown

n the figure, 311 instances of mode switching occurred in 5 s of

untime.

This is indicated under the column labeled as MSW, which

tands for mode switching. No conspicuous effects were visible

uring the mode switch in this scenario because only a lone RT

ask is running. In a multitasking case, the pre-emption of a high

riority RT task by a lower priority task will result in data concur-

ency problems, which is chaotic in RT applications.

For example, in mobile robot control, a single data loss can lead

o devastating accidents such as collisions with obstacles. Another

roblem that we have encountered owing to mode switching is

 “system freeze” that occurs when directly accessing the sonar

ensor device driver from an RT task, as shown in Fig. 6 (a). In

his figure, the device driver functions to trigger and receive dis-

ance information are called directly inside the loop of the RT task

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 15

Fig. 6. Implementation of sonar device driver inside Xenomai RT tasks using (a)

direct access, and (b) XDDP.

t

f

r

a

p

i

w

s

T

b

t

f

1

o

i

e

(

a

c

t

d

f

C

m

d

w

s

p

d

Fig. 7. Timing diagram of the real-time task accessing device drivers through XDDP.

d

w

c

X

c

c

r

c

fl

s

i

T

i

t

o

s

c

t

a

c

f

d

t

t

a

a

u

t

a

t

r

t

p

w

X

e

e

f

w

a

r

t

t

t

i

r

t

s

a

ermed “RT Sonar”. After starting the process, the system abruptly

reezes when the RT task accesses the device driver and did not

espond to any CPU signals that we have assigned such as SIGKILL

nd SIGTERM using keyboard shortcuts.

Eliminating mode switching by the implementation of the pro-

osed approach using XDDP solved this problem. This is illustrated

n the proper operation of the sensor in Fig. 6 (b). RT and NRT tasks

ere created to acquire data from the sonar sensor. The RT task

ends a character to an NRT task that initiates the sensor trigger.

he distance measurement is received by the NRT task and is sent

ack to the RT task using the XDDP port. In the figure, the RT

ask termed “RT XDDP Sonar”, receives the distance information

rom the NRT task termed “NRT XDDP Sonar” at a cyclic period of

20 ms and displays the feedback to the terminal every one sec-

nd.

Four instances of mode switching occurred due to XDDP socket

nitialization and binding, which are executed before the RT task

nters the infinite loop. The increased amount of context switches

CSW), which is 66 and 82, respectively for the RT and NRT tasks is

 proof that a system freeze does not occur. From this example, we

onclude that using the proposed real-time architecture can solve

he system freeze that occurs when using standard Linux device

rivers inside Xenomai tasks.

Performance of various RT mechanisms offered by Xenomai

or synchronization of multiple RT tasks is reported in (Shin and

hoi, 2017). The same method is performed analyzing the perfor-

ance of XDDP in terms of the periodicity of the RT tasks during

ata exchange with NRT tasks. For each device driver, the RT tasks

ere assigned the highest priority level of 99 in accordance to the

pecifications of the Xenomai POSIX skin. Using the functions ex-

lained in Section 2 , we created RT and NRT tasks for each device

river, represented by the green boxes in Fig. 4 .
NRT tasks execute the functions that were written in the stan-

ard Linux device drivers (e.g., send color to LED through PWM)

hile RT tasks generate the data required to be written (e.g., color

ommands). The RT and NRT tasks were connected through an

DDP port, where each sensor uses their own XDDP for data ex-

hange. The RT tasks are configured to execute periodically in a

ycle time of 30, 200, 20 ms for the sonar sensor, LRF, and LED,

espectively. The actuator and IMU tasks were both set to a cy-

le time of 10 ms. The results were gathered and processed of-

ine to calculate the statistical average, maximum, minimum, and

tandard deviation (St.D) values of each timing metric. Two prob-

ng points are configured for the timing analysis of the RT tasks.

he first one is located at the start of the cyclic task. The second

s placed at the end of the last executed command which is sub-

racted from the first probe to measure the overall time duration

f executing all the commands; thus, it is called the response time.

Before the end of the cyclic task, the value of the first probe is

tored into a different variable, which is subtracted in the next cy-

le to calculate the periodicity of the cyclic task. Fig. 7 shows the

iming diagram of the RT task accessing a device driver through

n XDDP port. For each cycle, the task executes a sequence of cal-

ulation, transmission of output data, and reception of input data

rom the device driver. The RT task calculates commands for the

evice driver represented by the C block. The commands are sent

o the NRT task using rt _ xddp _ send () represented by S. The NRT

ask reads the XDDP port using nrt _ xddp _ read () (r). The commands

re sent to the device driver and the corresponding feedback are

cquired (D). Finally, the acquired data are sent back to the RT task

sing nrt _ xddp _ write () represented by w. From this flow of execu-

ion, we can define the response time as the sum of C, S, r, D, R,

nd w. These refer to the calculation time, the time taken to send

he data from the RT task to NRT and vice versa, the time taken to

eceive data from the XDDP from either the RT or NRT task, and

he time taken to execute device driver functions. Using this ap-

roach, no mode switching should occur.

Table 1 shows the results of the timing analysis for each device

hen the RT tasks access the respective device drivers through the

DDP ports. From these results, we found that the periodicity of

ach task is exceptional as no response time is greater than the

xpected period. Moreover, the St.D results are exceptionally low

or all the tasks, meaning that the deadline is met most of the time

hich means that all the tasks are schedulable.

We performed the utilization bound (UB) test, which states that

 set of tasks is schedulable if all the tasks were able to meet their

espective deadlines and if the overall CPU utilization is less than

he Liu and Leyland bound (Lundberg, 2002).

Accordingly, the deadline of each task is assumed to be equal to

he expected period for each task. The tasks were scheduled with

he task having the shortest deadline obtaining the highest prior-

ty. As the actuator and IMU tasks are running with the same pe-

iod, we have configured the former to have higher priority than

he latter. Thus, the priority order is the actuator, IMU, LED, sonar

ensor, and LRF. We have considered the maximum response time

s the worst-case in these results.

16 R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19

Table 1

Timing analysis results for each device driver.

Device Range Period (ms) Response (μs)

Sonar Ave 30.0 0 0 326.469

Max 30.001 460.531

Min 29.989 289.354

St. d. 0.009 14.233

LRF Ave 20 0.0 0 0 754.528

Max 20 0.0 01 762.443

Min 199.989 689.886

St. d. 0.013 17.392

LED Ave 20.0 0 0 586.469

Max 20.003 590.521

Min 19.951 575.469

St. d. 0.047 24.358

IMU Ave 10.0 0 0 316.627

Max 10.001 432.194

Min 9.891 303.187

St. d. 0.115 16.785

Actuator Ave 10.0 0 0 21.478

Max 10.004 29.063

Min 9.993 20.677

St. d. 0.006 0.684

Table 2

Specifications of the M4K mobile robot.

Robot Part Specification Details

Body External size 45 × 28 × 20 cm

Weight 30 kg

Locomotive

Section

Movement type Differential drive

Speed 200 cm/s

Acceleration 37 cm/s 2

Gear reduction 12:1

Wheels Diameter 20.32 cm

Width 5 cm

e

l

t

o

s

m

m

t

r

s

t

v

i

u

T

b

n

T

a

m

t

t

c

e

o

s

r

r

M

l

a

t

i

t

i

b

I

v

d

b

t

i

a

e

t

o

p

t

u

t

t

j

t

w

s

c

t

t

l

m
The expected CPU utilization for a task set that includes five

RT tasks should not exceed 74.3%. If the CPU utilization is more

than this bound, the set of tasks is considered non-schedulable and

one or all the tasks can miss their respective deadlines. The results

show that the CPU utilization for each task is 1.53%, 0.38%, 2.95%,

4.32%, and 0.29%, respectively. The total CPU utilization when oper-

ating the five tasks simultaneously in a multitasking environment

is 9.47%. Thus, all the tasks executed inside the proposed RT archi-

tecture are schedulable when using standard Linux device drivers.

4. Real-time control application for navigation of M4K

Using the proposed architecture, we have implemented a navi-

gation scheme for the M4K using the ROS package, called the nav-

igation stack. The purpose of this experiment is to validate the RT

performance of the proposed architecture when using ROS pack-

ages that are integrable to more complex systems. The navigation

stack consists of a global planner and local planner to navigate

a mobile robot inside an environment. Among the path planning

and trajectory generation algorithms within the ROS, we have se-

lected the default packages: standard and base _ local _ planner for

the global and local planners, respectively. The base _ local _ planner

was tuned to accommodate the M4K using its kinematics, as

shown in Table 2 .

Although the specifications specify 2 m/s as the maximum ve-

locity of the M4K, we have performed the experiments at 0.25 m/s

to prevent any accidents that could occur because of slip. The lo-

cal planner requires the minimum velocity that could actuate the

mobile robot as a parameter. For the M4K, we have configured this

value as 0 m/s, considering that the mobile robot is actuated in a

cyclic velocity mode. The acceleration limits are configured accord-

ing to the specification. Because the M4K is a two-wheeled differ-
ntial drive mobile robot, the center velocity commands from the

ocal planner is converted to the joint space velocities considering

he gear ratio, radius of the wheels, and the length between each

f the M4K wheels. Further, the robot footprint of the M4K is con-

tructed using its external size and weight to design a virtual robot

odel that emulates the physical characteristics of the M4K imple-

ented on a monitoring program using RViz , a robot visualization

ool provided by the ROS.

The actual experiment was conducted in an environment sur-

ounded by white panel boards, as shown in Fig. 8 . On the left

ide of the figure, the M4K was settled in a starting point within

he map. The robot was given a target position from ROS to tra-

erse 3 m toward the triangular-shaped obstacle located at approx-

mately 1.5 m from the starting point. On the right side of the fig-

re, the monitoring and command tool based on RViz is shown.

he red points represent the footprint of the mobile robot, and the

lack dots represent the obstacles detected by the LRF.

From the software development diagram shown in Fig. 4 , the

avigation stack produces center velocity commands every 50 ms.

hese are received by the M4K node connected to the RT task, M4K

ctuator, through an XDDP port. This task is responsible for the

otor control algorithm that generates joint space velocities for

he M4K. Another XDDP port is configured to communicate with

he NRT task that handles the device driver in sending the cal-

ulated joint space velocities and acquiring the feedback from the

ncoders. The encoder values are calculated for the current pose

f the M4K and these values are sent back to the ROS navigation

tack through the first XDDP port. The RT actuator task is set pe-

iodically with a cycle time of 10 ms to meet the sampling time

equirement of the motor controller. The calculated position of the

4K is sent to the navigation stack every 50 ms according to the

imitations of the ROS package.

Fig. 9 shows the trajectory of the M4K using the proposed RT

rchitecture for navigation. In the figure, the M4K was commanded

o traverse a straight line 3 m forward along the x -axis while avoid-

ng collision with the obstacle. Fig. 9 (a) shows the actual trajec-

ory acquired from the encoder values of the M4K represented

n Cartesian space. The velocity commands generated by the ROS

ase _ local _ planner to exhibit such motions are shown in Fig. 9 (b).

n this figure, the black line denoted as the reference is the center

elocity generated by the ROS navigation stack every 50 ms. The

otted blue line denoted by M4K represents the calculated feed-

ack velocity from the M4K encoder. The result shows that al-

hough the M4K was able to avoid a collision with the obstacle,

t was not able to arrive exactly at the desired target position.

This is due to the different parameters of the ROS package such

s goal tolerance, simulation time, and trajectory scoring param-

ters. The improvement in the local planner is required to reach

he final goal successfully; nevertheless, this is outside the scope

f this paper. To demonstrate the improvements of the real-time

erformance using the proposed architecture, we have compared

he periodicity of the actuator task with the classical method of

sing only the ROS software running in the standard Linux kernel

o navigate the M4K.

In this condition, the motor control task and device driver func-

ions are implemented inside the M4K node that directly sends

oint-space velocity commands to the M4K. The M4K is assigned

he same commands to traverse 3 m from the starting position

hile avoiding a static obstacle. The results of the comparison are

hown in Fig. 10 . In this figure, navigation using the proposed ar-

hitecture is denoted as XDDP, while ROS represents the results of

he implementation in the standard Linux.

The measurement is focused on the actuator task which has

he highest priority. The task handles calculation of joint-space ve-

ocities from the velocity commands generated by ROS and com-

unication with the device drivers of motors and encoders. The

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 17

Fig. 8. Actual experiment environment.

Fig. 9. Trajectory of M4K using the proposed real-time control architecture in (a) the Cartesian space and (b) center velocity space.

e

w

(

b

L

w

a

t

1

S

m

s

p

h

d

8

a

j

e

t

p

u

p

s

t

p

s

t

c

m

m

t

i

p

i

i

s
xperiment is performed in normal condition without stress and

hen the system is under full stress using the tool Stress-ng

 Ubuntu, 2018). The tool is used in assigning excessive load to

oth the CPU and the memory. ROS implemented in the standard

inux has the worst performance when under stress (ROS-STRESS)

ith 362 μs, 4782.816 μs, 0.007 μs, and 4420.113 μs for the aver-

ge, maximum, minimum, and St.D, respectively. In normal condi-

ion (ROS), the results were 40.533 μs, 1814.054 μs, 0.007 μs, and

73.527 μs respectively for the average, maximum, minimum, and

t.D. The calculated jitter shows that the actuator task could not

eet the predefined deadline of 10 ms due to the lack of hard RT

upport, even in normal condition.

The performance greatly improved when running ROS in the

roposed architecture with XDDP. The results exhibit periodic be-

avior and minimal deviations from the expected cycle. When un-

er stress (XDDP-STRES), the jitter of the actuator task is 6.115 μs,

3.958 μs, 0 μs, and 5.599 μs for the average, maximum, minimum,

nd St.D, respectively. In normal condition (XDDP), the calculated

itter is 0.281 μs, 5.834 μs, 0 μs, and 0.4 μs respectively for the av-

rage, maximum, minimum, and St.D. The difference between the
wo methods is clearly shown in the distribution plot with the pro-

osed architecture showing superior performance as expected.

These results are highly comparable with the performance eval-

ation conducted for ROS2 running under RT_PREEMPT in a report

resented at ROSCON 2015 (Kay and Tsouroukdissian, 2018). Their

ystem is running with a faster cycle time of 1 ms in comparison

o the 10 ms requirement of our experimental platform. The com-

arison is focused on the jitter, because real-time does not neces-

arily mean fast or short cycle times, but rather how accurate can

he system satisfy temporal constraints. The proposed real-time ar-

hitecture has shown better performance in a stress-free environ-

ent. Lower values of the jitter were measured in all statistical

etrics. In a stressed configuration, the RT_PREEMPT implementa-

ion produced a lower average of 3.729 μs, but the maximum jitter

s 258.064 μs. The real-time performance is questionable when im-

lemented on an embedded environment. There is a huge possibil-

ty that worse results would be acquired because of the difference

n computing power.

The proposed real-time architecture has shown promising re-

ults in a simple robotic control application such as the naviga-

18 R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19

Fig. 10. Periodicity of the actuator task in various conditions during navigation.

c

t

n

s

p

h

a

w

a

w

i

d

t

M

o

m

t

A

m

P

o

G

C

g

R

A

A

A

A

B
B

C

C

C

C

C

D

D

D

E

tion of M4K. It also enhances robotic application design exploiting

the rapid-development tools of ROS and its integration to a multi-

tasking environment offered by Xenomai. This architecture can be

the backbone for more complex real-time systems including hu-

manoids (Muratore et al., 2017; Jung et al., 2018) and industrial

distributed control systems (Lu et al., 2016).

5. Conclusion and discussion

This paper proposed an RT control architecture based on Xeno-

mai to design RT robot applications using NRT ROS packages. An

ROS is the most dominant robotic platform for the rapid devel-

opment of robot applications; however, it is only designed to op-

erate under the standard Linux kernel that does not provide RT

guarantees. System calls from the standard Linux inside Xenomai

tasks cause stability problems because of mode switching. Our

proposed architecture adapts a communication interface of the

XDDP to facilitate data exchange between RT and NRT tasks to

solve this issue. Using this method, standard device drivers can be

used inside RT tasks without having to develop RT device drivers

that consumes significant amount of development time. Moreover,

the proposed approach enables designing robot applications that

withholds RTOS advantages such as multitasking, priority-based

scheduling, and predictable response with the benefits of ROS tools

and packages for rapid development.

We have comprehensively described the XDDP and developed

simple APIs that emulate the Xenomai native functions to create RT

tasks that can help users re-use or integrate the proposed architec-

ture to more complicated systems. The feasibility of the approach

is tested by the implementation on an embedded platform, RPi3.

Experiments were conducted to measure the RT performance of

the suggested architecture in terms of the periodicity when using

standard Linux device drivers and ROS packages inside RT tasks.

Our experimental result shows that the proposed approach is

essential in designing RT control applications to control a mobile

robot, M4K, while using standard Linux device drivers and ROS

packages. We have observed that mode switching can directly af-

fect the system stability when using device drivers that can lead to

a system freeze. It is noteworthy that the using the suggested ar-

chitecture significantly improves the periodicity of the control task

that handles the M4K actuation. These results are important es-

pecially in RT applications that require simultaneous executions of

multiple tasks.

In particular, the proposed architecture is applicable to improve

homogenous systems such as XBotCore (Muratore et al., 2017)

and PODO (Jung et al., 2018), the software implemented to con-

trol WALKMAN and DRC-HUBO, respectively, in the DARPA robotic
hallenge. Instead of a single RT task governing the communica-

ion between hardware and other RT tasks, all the tasks are con-

ected with their respective device driver to ensure priority based

cheduling and deterministic response of the entire system.

Aiming for an RT control architecture using ROS packages for

rimary controllers based on low-cost embedded hardware, we

ave achieved the desired performance by deploying ROS pack-

ges that need extensive calculations in a PC. For future work,

e will advance our research by considering the performance

nd the deployment of ROS packages inside the embedded hard-

are while conserving a high RT performance. Also, ROS2 is an

nnovative project to deal with the real-time issue of its pre-

ecessor. However, there is still limited source of documenta-

ion that verifies its validity for real-time control. For example,

aruyama et al. (2016) presented a performance evaluation only

f the communication module. We will study the real-time perfor-

ance of ROS2 with actual control workload and its implementa-

ion on other distributions of RTOSes such as Xenomai.

cknowledgments

This work was supported by the Human Resources Develop-

ent of the Korea Institute of Energy Technology Evaluation and

lanning (KETEP) grant funded by the Korea government Ministry

f Trade, Industry & Energy. (no. 20174030201840) and by the

lobal Frontier R&D Program on < Human-centered Interaction for

oexistence > funded by the National Research Foundation of Korea

rant funded by the Korean Government (MSIP) (2010-0029759).

eferences

agela, H. , Al-Nesf, M. , Holmes, V. , 2017. An Asus_xtion_probased indoor MAPPING
using a Raspberry Pi with Turtlebot robot Turtlebot robot. In: 2017 23rd Int.

Conf. Autom. Comput. IEEE, pp. 1–5 .

bbott, D. , 2013. Linux for embedded and real-time applications. Newnes .
Ahmad, A. , Babar, M.A. , 2016. Software architectures for robotic systems: a system-

atic mapping study. J. Syst. Softw. 122, 16–39 .
lho, P. , Mattila, J. , 2015. Service-oriented approach to fault tolerance in CPSs. J. Syst.

Softw. 105, 1–17 .
nistratov, P. , Golobokov, Y. , Pavlov, V. , 2015. Hardware-software complex prototyp-

ing for the pulse power supply control system of Tokamak T-15. Procedia Com-

put. Sci. 546–555 .
Beck, D. , Brand, H. , Karagiannis, C. , Rauth, C. , 2006. The first approach to object

oriented programming for LabVIEW real-time targets. IEEE Trans. Nuclear Sci.
53, 930–935 .

Blaess, C., 2018. Xenomai patch for Raspberry Pi 3 . https://www.blaess.fr/christophe/
files/article- 2017- 03- 20/001- adapt- 4.1.18- patch- to- rpi- 4.1.21- kernel.patch (ac-

cessed April 10, 2018).

ouchier, P. , 2013. Embedded ROS. IEEE Robot. Autom. Mag. 20, 17–19 .
rown, J.H., Martin, B., 2018. How fast is fast enough? Choosing between Xeno-

mai and Linux for real-time applications . https://pdfs.semanticscholar.org/9eb5/
1dbe38fb23034e80b8664d8281996d2a5ef6.pdf (accessed September 17, 2018).

ardellino, A . , Ruzzenenti, A . , Natale, L. , 2018. Design and implementation of a YARP
device driver interface: the depth-sensor case. Front. Robot. AI 5, 1–6 .

ereia, M. , Bertolotti, I.C. , Scanzio, S. , 2011. Performance of a real-time EtherCAT

master under Linux. IEEE Trans. Ind. Inf. 7, 679–687 .
hianese, A. , Piccialli, F. , Riccio, G. , 2015. Designing a Smart Multisensor Framework

based on Beaglebone Black Board. In: Designing a Smart Multisensor Framework
based on Beaglebone Black Board. Springer, Berlin, Heidelberg, pp. 391–397 .

hitta, S. , Marder-Eppstein, E. , Meeussen, W. , Pradeep, V. , Tsouroukdissian, A.R. ,
Bohren, J. , Coleman, D. , Magyar, B. , Raiola, G. , Lüdtke, M. , Fernandez Perdomo, E. ,

2017. ros_control: a generic and simple control framework for ROS. J. Open

Source Softw. 1, 456 .
hoi, B.W. , Shin, D.G. , Park, J.H. , Yi, S.Y. , Gerald, S. , 2009. Real-time control architec-

ture using Xenomai for intelligent service robots in USN environments. Intell.
Serv. Robot. 2, 139–151 .

antam, N.T. , Lofaro, D.M. , Hereid, A. , Oh, P.Y. , Ames, A.D. , Stilman, M. , 2015. The
ach library: a new framework for real-time communication. IEEE Robot. Autom.

Mag. 22, 76–85 .
e Oliveira, D.B. , De Oliveira, R.S. , 2016. Timing analysis of the PREEMPT RT Linux

kernel. Softw. Pract. Exp. 46, 789–819 .

etection of Mode Switching – Xenomai, 2018 . https://xenomai.org//2014/06/
finding- spurious- relaxes/ (accessed April 10, 2018).

rwinski, K. , Paprocki, M. , Grzesiak, L.M. , Karwowski, K. , Wawrzak, A. , 2013. Ap-
plication of Ethernet Powerlink for communication in a Linux RTAI open CNC

system. IEEE Trans. Ind. Electron. 60, 628–636 .

http://dx.doi.org/10.13039/501100007053
http://dx.doi.org/10.13039/501100007053
http://dx.doi.org/10.13039/501100003725
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0006
https://www.blaess.fr/christophe/files/article-2017-03-20/001-adapt-4.1.18-patch-to-rpi-4.1.21-kernel.patch
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0008
https://pdfs.semanticscholar.org/9eb5/1dbe38fb23034e80b8664d8281996d2a5ef6.pdf
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0016
https://xenomai.org//2014/06/finding-spurious-relaxes/
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0018

R. Delgado, B.-J. You and B.W. Choi / The Journal of Systems and Software 151 (2019) 8–19 19

F

F

G

G

G

H

H

H

J

K

K

K

K

L

L

L

L

L

L

M

M

M

m

N

O

O

P

R

R
S

U

V

W

X

Y

Z

Z

Z

t

i

h

s

erdoush, S. , Li, X. , 2014. Wireless sensor network system design using raspberry Pi
and Arduino for environmental monitoring applications. Procedia Comput. Sci.

34, 103–110 .
ischmeister, S. , Lam, P. , 2010. Time-aware instrumentation of embedded software.

IEEE Trans. Ind. Inf. 6, 652–663 .
obillot, N. , Lesire, C. , Doose, D. , 2018. A design analysis methodology for compo-

nent-based real-time architectures of autonomous systmes. J. Intell. Rob. Syst .
osewehr, F. , Wermann, M. , Colombo, A.W. , 2016. From RTAI to RT-Preempt a quan-

tative approach in replacing Linux based dual kernel real-time operating sys-

tems with Linux RT-Preempt in distributed real-time networks for educational
ICT systems. In: IECON 2016 - 42nd Annu. Conf. IEEE Ind. Electron. Soc. IEEE,

pp. 6596–6601 .
repl, R. , 2011. Real-time control prototyping in MATLAB/Simulink: review of tools

for research and education in mechatronics. In: 2011 IEEE Int. Conf. Mechatron-
ics. IEEE, pp. 881–886 .

asegawa, R. , Yawata, N. , Ando, N. , Nishio, N. , Azumi, T. , 2016. RTM-TECS: collab-

oration framework for robot technology middleware and embedded compo-
nent system. In: 2016 IEEE 19th Int. Symp. Real-Time Distrib. Comput. IEEE,

pp. 212–220 .
enriksson, D. , Cervin, A. , Årzén, K.-E. , 2002. Truetime: simulation of control loops

under shared computer resources. IFAC Proc. 35, 417–422 .
onegger, D. , Meier, L. , Tanskanen, P. , Pollefeys, M. , 2013. An open source and open

hardware embedded metric optical flow CMOS camera for indoor and outdoor

applications. In: Proc. IEEE Int. Conf. Robot. Autom. IEEE, pp. 1736–1741 .
ung, T. , Lim, J. , Bae, H. , Lee, K.K. , Joe, H.-M. , Oh, J.-H. , 2018. Development of the

humanoid disaster response platform DRC-HUBO + . IEEE Trans. Robot. 34, 1–17 .
ali ́nski, K.J. , Mazur, M. , 2016. Optimal control at energy performance index of

the mobile robots following dynamically created trajectories. Mechatronics. 37,
79–88 .

ay, J., Tsouroukdissian, A.R., 2018. Real-time control in ROS and ROS 2.0 n.d . https:

//roscon.ros.org/2015/presentations/RealtimeROS2.pdf (accessed September 18,
2018).

ilamo, T. , Hammouda, I. , Mikkonen, T. , Aaltonen, T. , 2012. From proprietary to open
source - growing an open source ecosystem. J. Syst. Softw. 85, 1467–1478 .

iszka, J., 2005. The real-time driver model and first applications 7th Re-
alt. Linux Work. Lille Fr . http://xenomai.org/documentation/xenomai-2.4/pdf/

RTDM- and- Applications.pdf (accessed April 10, 2018).

ee, H. , Kim, Y.H. , Lee, K.K. , Yoon, D.K. , You, B.J. , 2016. Designing the Appearance of
A Telepresence Robot, M4K: A Case Study. Springer, Cham, pp. 33–43. (Including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) .
i, J. , Pilkington, N.T. , Xie, F. , Liu, Q. , 2010. Embedded architecture description lan-

guage. J. Syst. Softw. 83, 235–252 .
i, Z. , Deng, J. , Lu, R. , Xu, Y. , Bai, J. , Su, C.-Y. , 2016. Trajectory-tracking control of

mobile robot systems incorporating neural-dynamic optimized model predictive

approach. IEEE Trans. Syst. Man Cybern. Syst. 46, 740–749 .
u, B. , Wu, X. , Figueroa, H. , Monti, A. , 2007. A low-cost real-time hard-

ware-in-the-loop testing approach of power electronics controls. IEEE Trans. Ind.
Electron. 54, 919–931 .

u, C. , Saifullah, A. , Li, B. , Sha, M. , Gonzalez, H. , Gunatilaka, D. , Wu, C. , Nie, L. ,
Chen, Y. , 2016. Real-time wireless sensor-actuator networks for industrial cy-

ber-physical systems. Proc. IEEE 104, 1013–1024 .
undberg, L. , 2002. Utilization based schedulability bounds for age constraint pro-

cess sets in real-time systems. Real-Time Syst. 23, 273–295 .

aruyama, Y. , Kato, S. , Azumi, T. , 2016. Exploring the performance of ROS2. In: Proc.
13th Int. Conf. Embed. Softw. - EMSOFT ’16. ACM Press, New York, New York,

USA, pp. 1–10 .
athWorks, 2019. Simulink real-time . https://ww2.mathworks.cn/en/products/

simulink- real- time.html (accessed January 21, 2019).
uratore, L. , Laurenzi, A . , Hoffman, E.M. , Rocchi, A . , Caldwell, D.G. , Tsagarakis, N.G. ,

2017. XBotCore: a real-time cross-robot software platform. In: 2017 First IEEE

Int. Conf. Robot. Comput. IEEE, pp. 77–80 .
yAHRS + – WITHROBOT, 2018 . http://withrobot.com/sensor/myahrsplus/ (accessed

April 10, 2018).
egus, C., 2015. Linux Bible. John Wiley & Sons. doi: 10.1002/978111920953 .

midvar, M.N. , Yang, M. , Mei, Y. , Li, X. , Yao, X. , 2017. DG2: a faster and more ac-
curate differential grouping for large-scale black-box optimization. IEEE Trans.

Evol. Comput. 21 1–1 .

pen Source Robotics Foundation, 2018. ROS Kinetic Kame (n.d.) . http://wiki.ros.org/
kinetic (accessed September 18, 2018).

aschali, M.-E. , Ampatzoglou, A. , Bibi, S. , Chatzigeorgiou, A. , Stamelos, I. , 2017.
Reusability of open source software across domains: a case study. J. Syst. Softw.

134, 211–227 .
aspberry Foundation, 2018 Raspberry pi . https://github.com/raspberrypi/ (accessed
April 10, 2018).

OS Build Farm, 2018 . http://build.ros.org/ (accessed April 17, 2018).
hin, U.C. , Choi, B.W. , 2017. Performance evaluation of real-time mechanisms on

open embedded hardware platforms. J. Inst. Control. Rob. Syst. 23, 60–66 .
buntu, K., 2018 Stress-ng . http://kernel.ubuntu.com/ ∼cking/stress-ng/ (accessed

September 18, 2018).
ogel-Heuser, B. , Fay, A. , Schaefer, I. , Tichy, M. , 2015. Evolution of software in au-

tomated production systems: challenges and research directions. J. Syst. Softw.

110, 54–84 .
ei, H. , Shao, Z.Z. , Huang, Z. , Chen, R. , Guan, Y. , Tan, J. , Shao, Z.Z. , 2016. RT-ROS: a

real-time ROS architecture on multi-core processors. Futur. Gener. Comput. Syst.
56, 171–178 .

enomai Project, 2018 Xenomai Repository . https://xenomai.org/downloads/
xenomai/stable/ (accessed September 17, 2018).

ang, G.J. , Delgado, R. , Choi, B.W. , 2016. A practical joint-space trajectory generation

method based on convolution in real-time control. Int. J. Adv. Robot. Syst. 13 .
appulla, R. , Virgili-Llop, J. , Zagaris, C. , Park, H. , Romano, M. , 2017. Dynamic air-bear-

ing hardware-in-the-loop testbed to experimentally evaluate autonomous
spacecraft proximity maneuvers. J. Spacecr. Rockets 54, 825–839 .

hang, L. , Slaets, P. , Bruyninckx, H. , 2012. An open embedded hardware and soft-
ware architecture applied to industrial robot control. In: 2012 IEEE Int. Conf.

Mechatronics Autom. ICMA 2012. IEEE, pp. 1822–1828 .

ucker, M. , Joo, S. , Grey, M.X. , Rasmussen, C. , Huang, E. , Stilman, M. , Bobick, A. , 2015.
A general-purpose system for teleoperation of the DRC-HUBO humanoid robot.

J. Fields Rob. 32, 336–351 .

Raimarius Delgado was born in Makati, Philippines in

1990. He received the B.S. and M.S. degrees in Electrical
and Information Engineering from Seoul National Univer-

sity of Science and Technology, Seoul, Korea, in 2014 and
2016, respectively. He is currently working toward the

Ph.D. degree at the same university under the supervision
of Prof. Byoung Wook Choi. His research interests include

real-time systems, industrial control and automation, and
service robotics. He is a student member of IEEE.

Bum-Jae You received the B.S. degree in control and in-

strumentation engineering from Seoul National Univer-
sity, Seoul, South Korea, in 1985, and the M.S. and Ph.D.

degrees in electrical and electronic engineering from
the Korea Advanced Institute of Science and Technology,

Seoul, South Korea, in 1987 and 1991, respectively. From

1991 to 1994, he was with Turbo-Tek Co., Ltd., South
Korea, as the Head of the Robotics Division, and then

he joined the Korea Institute of Science and Technology
(KIST), Seoul, South Korea, in 1994. From 2004 to 2011,

he was the Director of the Center for Cognitive Robotics
Research. He is currently a principal research scientist in

the center for intelligent robotics, KIST and the director of

he Center of Human-Centered Interaction for Coexistence from 2010. His research
nterests include human-centered interaction, vision-based robotics, network-based

umanoid robots, and embedded system applications.

Byoung Wook Choi received the M.S. and Ph.D. degrees

in Electrical Engineering from Korea Advanced Institute
of Science and Technology (KAIST), Seoul, Korea in 1988

and 1992, respectively. He is currently a professor in the
Department of Electrical and Information Engineering at

Seoul National University of Science and Technology. Pre-

viously, he was a principal research engineer in LG from
1992-20 0 0 and a professor in Sun Moon University from

20 0 0-20 05. He was the CEO of Embedded Web Co., Ltd.
from 20 01-20 03. Also, he was a Senior Fellow in Nanyang

Technological University, Singapore from 20 07-20 08. Prof.
Choi has published textbooks on Embedded Linux. His

current research interests include real-time systems de-

ign, embedded systems, and intelligent robot software.

http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0028
https://roscon.ros.org/2015/presentations/RealtimeROS2.pdf
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0030
http://xenomai.org/documentation/xenomai-2.4/pdf/RTDM-and-Applications.pdf
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0038
https://ww2.mathworks.cn/en/products/simulink-real-time.html
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0040
http://withrobot.com/sensor/myahrsplus/
https://doi.org/10.1002/978111920953
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0042
http://wiki.ros.org/kinetic
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0045
https://github.com/raspberrypi/
http://build.ros.org/
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0047
http://kernel.ubuntu.com/~cking/stress-ng/
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0050
https://xenomai.org/downloads/xenomai/stable/
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30016-0/sbref0055

	Real-time control architecture based on Xenomai using ROS packages for a service robot
	1 Introduction
	2 Real-time control architecture based on Xenomai
	2.1 System structure
	2.2 Xenomai POSIX skin
	2.3 Integration of cross-domain datagram protocol

	3 Implementation of control architecture and device drivers
	3.1 Real-time environment for Raspberry Pi 3 using ROS and Xenomai
	3.2 Interfacing M4K mobile robot to ROS and Xenomai

	4 Real-time control application for navigation of M4K
	5 Conclusion and discussion
	Acknowledgments
	References

