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a b s t r a c t

A 10-bit 30-MS/s successive approximation register analog-to-digital converter (ADC), which is suitable

for low-power sub-sampling applications, is presented. Bootstrapped switches are used to enhance the

sampling linearity at the high input frequency. The proposed ADC adopts a binary-weighted split-

capacitor array with the energy efficient switching procedure and includes an asynchronous clock

scheme to yield more power and speed-efficiency. The ADC is fabricated in a 65 nm complementary

metal-oxide-semiconductor technology and occupies an active area of 0.07 mm2. The differential and

integral nonlinearities of the ADC are less than 0.82 and 1.13 LSB, respectively. The ADC shows a signal-

to-noise-distortion ratio of 56.60 dB, a spurious free dynamic range of 73.35 dB, and an effective

number of bits (ENOB) of 9.11-bits with a 2.5-MHz sinusoidal input at 30-MS/s. It exhibits higher than

8.86 ENOB for input frequencies up to 78-MHz. The ADC consumes 0.85 mW at a 1.1 V supply and

achieves a figure-of-merit of 51 fJ/conversion-step.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Analog-to-digital converters (ADCs) used for sub-sampling appli-
cations such as the digital video broadcasting over terrestrial and
handheld systems have become popular because they not only
perform analog-to-digital conversion but also reduce the number of
down-conversion stages in the receiver signal chain [1–6]. Such sub-
sampling ADCs, which can translate the input bandwidth to an
intermediate or baseband frequency, operate at several tens of MS/s
with a high effective resolution bandwidth (ERBW) typically between
30 and 70-MHz and have a 10-bit resolution. Thus, the input sampling
network should be carefully designed to adopt in these ADCs.

Recently, successive approximation register (SAR) ADCs have
proven to be very efficient for meeting the above requirements of
conversion rate and resolution with low-power consumption and
small area [7–12]. Meanwhile, the input capacitances in SAR ADCs
based on a capacitive digital-to-analog converter (DAC) [8,11]
increase exponentially with the number of bits. To drive such
large capacitance load, the proceeding stages, such as variable
gain amplifiers or filters, need to provide high driving capability.
Furthermore, large capacitances consume excessive area and
more power with longer settling times. Therefore, considerable
efforts have to take place in reducing the complexity and the area
of the DAC without sacrificing robustness.
ll rights reserved.

: þ82 42 860 6732.
In this paper, we present a low-power and small-area 10-bit
30-MS/s SAR ADC with wide input frequency range in a 65 nm
CMOS. The ADC adopts a bootstrapped n-type metal-oxide-
semiconductor (nMOS) switch to enhance the sampling linearity.
In order to reduce the input capacitance of the DAC, binary-
weighted split-capacitor arrays (BSA) with a merged-capacitor
switching (MCS) technique is used. The ADC also includes an
asynchronous clock scheme for a suitable conversion rate. This
paper is organized as follows. Section 2 introduces the proposed
ADC architecture, Section 3 describes the circuit implementation,
Section 4 shows measurement results, and Section 5 includes the
conclusion.
2. Architecture of the proposed SAR ADC

The block diagram of the proposed SAR ADC operating at a
1.1 V supply is described in Fig. 1. The main blocks of the SAR ADC
comprise of a DAC with bootstrapped switches, a regenerative
comparator, an asynchronous clock, an SAR logic, two thermo-
meter decoders, an error correction logic (ECL), and a bias circuit.
Bootstrapped nMOS switches are located in front of the DAC and
directly connected to the input signal. The control signal of the
switches is boosted to achieve a constant on-resistance at a 1.1 V
supply voltage and minimizes the signal distortion. The split-
capacitor array with the MCS technique is used to sample the
input signal and serves as a DAC for creating and subtracting
reference voltages. The DAC includes switch drivers, which
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Fig. 1. Block diagram of the proposed SAR ADC.

VDD

GND

GND

Q1B

Q1

Q1B

Q1B

Q1B

Q1B Q1B

IN

DP1

MN1

MP1

MN2

DN1

DN2

DP2

DP3

Q1B

Q1

Cb

nMOS switch

T4T1

T2

T3

Y.-K. Cho et al. / Microelectronics Journal 42 (2011) 1335–13421336
control the DAC operation by performing the unary-scaled feed-
back during the successive approximation. In addition, the ther-
mometer decoders are incorporated in the ADC, which translate
the binary output of the SAR logic to thermometer codes and
address the local decoders inside the DAC. This block can decrease
the power consumption and the switching noise of the DAC
because fewer capacitors are needed to be charged depending
on the value of the input sample. The comparator is composed of
a preamplifier and a regenerative latch. To improve the operation
speed of the proposed converter, the asynchronous clock scheme
is employed. The SAR logic consists of a shift register and a set of
switch drive registers [13]. The error correction technique is
adopted to prevent the effects of dynamic noise sources such as
reference or signal glitches and supply variation [9]. The entire
conversion is divided into three parts. The first phase is for input
sampling assigned to 25% of the whole period. Data conversion is
then performed during the next phase, and error correction
follows as the last phase.
GND
OUT

MN3

Fig. 2. Schematic of the bootstrapped switch.
3. ADC circuit implementation

3.1. Bootstrapped switch

To reduce the distortion of a single switch by keeping the
gate–source voltage nearly constant, gate bootstrapped switches
are used as the input sampling switches. The performance of the
ADC at a relatively high frequency input signal is largely depen-
dent on these switches. Fig. 2 shows the schematic of the switches
with their associated circuits. A single capacitor Cb is used to
bootstrap the sampling clock signal. The switch circuits should be
designed such that the gate oxide is not subject to voltages
exceeding the supply voltage difference. This requires protection
circuits by including additional transistors [14]. Instead of
employing protection circuits, we simply use I/O transistors
denoted as DN1, DN2, DP1, DP2, and DP3, which are exposed to
the high potential from the charge pump.

The bootstrapped switch circuit is operated as follows. Initially
the clock signal (Q1) is low, then transistors MN1 and MP1 will be
turned off. Transistor MN2 will be turned on and the bottom plate
of Cb (node T1) will be at GND. At the same time, DN1 will be turned
on making the gate of DP1 (node T3) low. This connects node T2 to
VDD. As a result of this operation, the capacitor Cb will be charged to
VDD-GND. The gate of the nMOS switch MN3 (node T4) is at GND
because DN2 is switched on. When Q1 becomes high, then DP2 will
be switched on making DP1 to act as an MOS diode. DP3 will be
switched on and the voltage at node T4 becomes high. The input
signal is now applied at node T1 and the stored voltage on the
capacitor Cb will increase furthermore the node voltage T2 and via
DP3 node voltage T4.

As a result, the switching voltage of MN3 is added to the input
signal level and with the full voltage on Cb a low impedance of the
switch is obtained. This then keeps the gate-to-source voltage of
MN3 constant with varying input signal, ensuring that the boot-
strapped switch’s on-resistance is virtually constant. Under the
high frequency input condition, the nonlinear distortion of the
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switch on-resistance is prominently decreased, and the dynamic
performance of high frequency is improved, resulting in the sub-
sampling design.

3.2. Switched-capacitor DAC with an energy efficient switching

The DAC using the BSA with a MCS (BSA-MCS) technique is
shown in Fig. 3. The BSA-MCS technique merges two unit
capacitors into one both in the MSB and LSB sides, and the
number of unit capacitors required in proposed split-capacitor
arrays is reduced by about 95% compared to that in [8]. The split-
capacitor array consists of 32 unit capacitors and a coupling
capacitor (Cc), which reduces the required number of unit
capacitors. The top plates of the capacitor arrays are connected
to the comparator inputs and the bottom plates are switched
between two reference voltages. The function of the DAC employ-
ing the BSA-MCS is identical to that of the previous one [9]. The
only difference is that the input common mode voltage (CM) is
not needed in the proposed DAC, equivalent to when two
different references are applied to two unit capacitors. Instead
of implementing CM, the capacitor bottom plate charge sharing
technique is implemented through nMOS switches [10]. Connect-
ing the bottom plates of the two differential capacitor arrays to
each other, the bottom plate voltage of the capacitor arrays
becomes averaging and realizes CM. The switch drivers, which
control the DAC operation, are addressed by two 5-bit thermo-
meter decoders. Each unit capacitance (C1n,p�C32n,p) is 63 fF, the
coupling capacitance is 47 fF, and the total sampling capacitance
of the DAC is 1 pF. Post-layout simulation with parasitic extrac-
tion was performed to compensate the gain error of the coupling
capacitor. The external voltage sources of 0.85 V and 0.35 V are
used as the positive and negative reference voltages for the ADC,
respectively.

The detailed operations of the DAC are carried out as follows.
Although capacitor arrays in the DAC are differentially operated,
the switching operation of the DAC is described for the positive
capacitor array for simplicity. At a sampling phase, the input
voltage (IN) is sampled only on the MSB side to maintain the
sampling value. The LSB side is grounded through nMOS switches.
After the sampling phase, the bottom plate of all capacitors is
switched to the negative reference voltage (REFN). Next, 8-capa-
citors of the MSB side are switched to the positive reference
voltage (REFP) and the comparator performs the first comparison.
If IN is higher than 1/2VREF, the MSB code D9 is decided to 1.
VREF is the difference of REFP and REFN. Otherwise, D9 is decided
to 0 and the MSB code triggers the SAR logic to control reference
switching of the DAC by the binary search algorithm [13,15].
LSB: 16 capacitors
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Fig. 3. Proposed 10-bit DAC using the binary-weighted split-cap
Then, 4-capacitors are switched to REFN and the comparator does
the comparison again. The ADC repeats this sequence until the
LSB is decided.

The binary search algorithm of the conventional DAC is efficient
when all the output settings are correct, as in the ‘‘up’’ transition.
However, the switching method wastes considerable energy when
the output settings are incorrect, as in the ‘‘down’’ transition. In
other words, the sequences that 8-capacitors are reconnected to
REFN, and then other 4-capacitors are set to REFP when D9 is 0 are
not energy efficient because unnecessary capacitor switching is
performed. To reduce the switching energy in the down transition,
the half capacitors only have to be reconnected to REFN. Then, the
gratuitous switching of the capacitor array can be eliminated. The
switching sequence of the proposed capacitor array is compared
with the conventional one in Fig. 4.

These switching procedures are easily implemented by the
thermometer decoders. Although the thermometer decoders
increases the complexity of the digital circuit design and propa-
gation delay of the ADC, the proposed conversion scheme with
the BSA-MCS technique is more energy efficient than that of
previous one [16,17]. In addition, the thermometer decoders can
decrease switching noise of the DAC because fewer capacitors are
needed to be charged depending on the value of the input sample.

For a 10-bit case, the behavioral simulation results of average
switching energy for different schemes are shown in Fig. 5. The
conventional switching procedure consumes 1365:3CV2

REF, the
split-capacitor scheme [16] consumes 852:3CV2

REF, the set-and-
down scheme [7] consumes 255:5CV2

REF, while the proposed
switching procedure consumes only 26:6CV2

REF. Because the
number of the unit capacitors in the capacitor array using the
BSA-MCS technique is only 1/32 of that of the split-capacitor
scheme, the proposed switching sequence requires 95% less
switching energy than that of the split-capacitor scheme. Thus
the proposed DAC using BSA-MCS technique has the advantage of
power consumption and the relaxation of matching requirement
for the capacitor array.

3.3. Asynchronous clock

An asynchronous clock, which is implemented to avoid the
need for the high-speed clock, supplies clock signals to the SAR
logic and the comparator. Fig. 6(a) shows the block and timing
diagram of the proposed asynchronous clock, which consists of a
NOR gate, 2-bit variable delay, and latch clock (LEN) generator.
Due to the variable delay cell, which optimizes the pre-amplifying
time, this clock scheme improves the power and speed-efficiency
compared to that of the asynchronous design [13].
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Initially, the preamplifier resets at the falling edge of an initial
clock (INI), which is the start of the SAR operation (OPR). During
the bit cycling, the clock period is divided into three phase for the
settling of the DAC (PRS), i.e., reset of the preamplifier, pre-
amplifying of the DAC output, and regeneration of the latch.
Using the reset phase prior to the pre-amplification, the com-
parator, does not amplify the crossed input signal from the DAC,
which helps in reducing the comparator recovery time.

In Fig. 6(c), the details of the proposed asynchronous clock
operation are described. With the falling clock edge of DO, LEN is
set to high, which triggers the latch and has the effect that one of
the output signals CO or COB changes to high, depending on the
input voltages of Vn and Vp. When the high signal is detected by
the NOR gate, LEN is reset to low, the bits for the DAC are set and a
new successive approximation is started. After the settling of the
DAC, PRS is set to low, which triggers the preamplifier. The variable
delay cell controls the duration of the pre-amplification. The next
falling clock edge of DO begins this procedure anew. Finally, the
SAR operation is terminated with the last falling edge of CLK.

The dynamic comparator is used that is composed of a
preamplifier [13], a regenerative latch [18], and dynamic gate bias
circuit as shown in Fig. 7. The resolution of the comparator is
limited by the combination of the input offset and the AC noise. To
enhance the signal-to-noise ratio of the comparator, the input
transistor of the preamplifier is designed with a large size to lower
the thermal noise at all frequencies and the flicker noise at low
frequencies. The width and length of the input transistors M1 and
M2 in Fig. 7 are 60 mm and 0.5 mm, respectively. In this condition,
the preamplifier circuit has a gain of 13.8 dB and a –3 dB
bandwidth of 350-MHz. The input signal of the comparator can
be amplified to about 80% of the settling value. To reduce power
consumption of the preamplifier during the idle time, a dynamic
gate bias circuit is adopted for controlling the bias current on the
preamplifier. The proposed scheme improves the dynamic power
consumption of the ADC by 6% at a nominal operating condition.
4. Experimental results and discussion

The proposed ADC is implemented in a 65 nm 1P6M CMOS
process with metal-oxide–metal capacitors. Fig. 8 shows the die
photograph of the chip. The active area of the ADC occupies
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0.07 mm2 (0.54 mm�0.13 mm). The DAC block with the thermo-
meter decoder occupies 70% of the total area, and the boot-
strapped switch and the digital logics occupy 10% and 8%,
respectively. The remaining 12% is for the comparator, asynchro-
nous clock, and bias.

The measurement setup is illustrated in Fig. 9. The chip is
packaged in a 64-pin quad flat package and mounted on a printed
circuit board. The supply voltage is provided by Agilent N6705A
DC power analyzer. Reference voltages are generated on the
board. A differential input signal is generated by Agilent
N6030A arbitrary waveform generator with 15 bit resolution.
The clock signal is provided by Agilent 81130 A pulse/pattern
generator. The digital outputs of the proposed ADC are captured
by Analog Device HSC-ADC-EVALB evaluation board and analyzed
using Matlab to extract differential nonlinearity (DNL) and inte-
gral nonlinearity (INL) of the converter.

At 30-MS/s, the ADC consumes 0.85 mW from a 1.1 V supply.
The analog blocks and the digital blocks use about 45% and 55% of
the power, respectively. The segmented area and power is
represented in Fig. 10. Fig. 11 shows the DNL and INL of the
ADC at a 10-bit accuracy. The peak DNL and INL are �0.71/
0.82 LSB and �0.92/1.13 LSB, respectively. The measured Fast
Fourier transform spectra for input frequencies of 2.5-MHz and
78-MHz at the 30-MS/s are shown in Fig. 12. At 2.5-MHz input
frequency, the spurious-free dynamic range (SFDR) is 73.35 dB,
and the signal-to-noise-distortion ratio (SNDR) is 56.60 dB. At an
input frequency of 78-MHz, the ADC achieves an SFDR and an
SNDR of 70.67/55.11 dB, and an effective number of bits (ENOB)
of 8.86-bits. The overall dynamic performance versus input
frequency at 30-MS/s is summarized in Fig. 13. It exhibits higher
than 9.02 ENOB for input frequencies up to twice the Nyquist rate
(30-MHz) and 8.86 ENOB for 78-MHz input. The dynamic perfor-
mance is not degraded as the signal frequency is increased up to
5 times the Nyquist input bandwidth.

Fig. 14 shows the measured performance versus the sampling
frequency with a 2.5-MHz sinusoidal input. When the sampling
rate was 35-MS/s the ENOB was still close to 9 bits. Further
increasing the sampling rate rapidly degraded the performance
because the conversion time was insufficient.

A well-known figure-of-merit (FOM) is used to evaluate the
overall performance of the ADC, which is given as

FOM¼
Pw

2ENOBminf2ERBW ,f sg
ð1Þ

where Pw and fs are the power consumption and sampling
frequency of the ADC, respectively. The FOM of the ADC is
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51 fJ/conversion-step at 30-MS/s. The measured performance
summary and comparison are given in Table 1.
5. Conclusion

A 10-bit 30-MS/s SAR ADC has been presented. The ADC adopts
a binary-weighted split-capacitor array with an energy efficient
switching procedure and an asynchronous clock scheme.
The proposed techniques can effectively improve speed, power
consumption, and chip area of the SAR ADC. The ADC also
includes a bootstrapped switch for sub-sampling. The prototype
ADC with 78-MHz input at 30-MS/s achieves 8.86 ENOB and SFDR
of 70.67 dB at a 1.1 V supply voltage and dissipates 0.85 mW.
Experimental results have demonstrated that the proposed ADC
circuit is suitable for low-power sub-sampling applications.
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Table 1
Performance summary and comparisons.

Parameters [3] [7] [10] [19] This work

Process (nm) 180 130 65 130 65

Resolution (bit) 10 10 9 10 10

Supply voltage (V) 1.8 1.2 1.2 1.2 1.1

Sample rate (MS/s) 30 50 100 40 30

ERBW (MHz) 70 50 50 20 78

DNL (LSB) 70.57 71.00 70.30 70.78 70.82

INL (LSB) 70.80 72.20 70.40 71.55 71.13

SFDR (dB) 65.93 67.7 65.2 57.7 73.35

SNDR (dB) 57.41 52.8 51.0 50.6 56.6

ENOB (bit) 9.24 8.48 8.17 8.4 9.11

Power (mW) 21.6 0.92 1.46 0.55 0.85

Area (mm2) 0.7 0.075 0.012 0.32 0.07

FOM (fJ/conv-step) 1187 52 39 42 51
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