
Received October 2, 2020, accepted October 6, 2020, date of publication October 9, 2020, date of current version October 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029858

New Insights Into the Real-Time Performance
of a Multicore Processor
RAIMARIUS DELGADO , (Member, IEEE),
AND BYOUNG WOOK CHOI , (Member, IEEE)
Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea

Corresponding author: Byoung Wook Choi (bwchoi@seoultech.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT)
of the Korean Government under Grant 2019R1F1A1063547.

ABSTRACT Multicore processors are gaining popularity in various domains because of their potential for
maximizing system throughput of average-case tasks. In real-time systems, where processes and tasks are
governed by stringent temporal constraints, the worst-case timings should be considered, and migration
to multicore processors leads to additional difficulties. Resource sharing between the cores introduces
timing overheads, which affect the worst-case timings and schedulability of the entire system. In this
article, we provide new insights into the performance of the real-time extensions of Linux, namely,
Xenomai and RT-Preempt, for a homogeneousmulticore processor. First, complete details on leveraging both
real-time extensions are presented. We identify various multicore deployments and discuss their trade-offs,
as established through the experimental evaluation of the scheduling latency. Then, we propose a statistical
method based on a variation of chi-square test to determine the best multicore deployment. The unexpected
effects of interfering loads, such as CPU, memory, and network operations, on the real-time performance,
are considered. Feasibility of the best multicore deployment is verified through the analysis of its periodicity
and deterministic response times in a pre-emptive multitasking environment. This research is the first of its
kind and will serve as a useful guideline for developing real-time applications on multicore processors.

INDEX TERMS Multicore architecture, Xenomai, RT-preempt, real-time, statistical selection.

I. INTRODUCTION
Integration of multicore processors has become common
in general computing and in various embedded applica-
tions, which includes robotics, control systems, and automo-
tive [1]–[3]. Deployment of processes over multiple cores
has demonstrated advantages in accelerating task execution,
system scalability, and low-power consumption. These ben-
efits are possible if the operating software leverages various
techniques of parallel processing [4].

Parallel processing in multicore processors is designed
to satisfy average-case requirements, which are usually not
time-sensitive. In real-time systems, however, tasks and pro-
cesses are governed by stringent temporal constraints. Migra-
tion to multicore processors introduces additional difficul-
ties. Resource sharing and load balancing induces timing
overheads that affect the worst-case execution times. This
unpredictable behaviormay result in violation of the temporal
constraints leading to more aggravated problems, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Laxmisha Rai .

severe program errors, system failures, and safety-critical
issues [5]–[7]. We note that formulation of a real-time
scheduling algorithm is not the focus of this article. But
instead, interested readers may refer to [8]–[10] for examples
of real-time scheduling on multicore processors.

Commercial real-time operating systems (RTOSs), such as
VxWorks [11], Neutrino [12], and Nucleus [13], offer real-
time scheduling solutions on multicore processors. However,
these RTOSs are usually distributed in a black box, which
hinders integration to more complex software. Expensive
licensing and royalty costs are also serious issues, espe-
cially for research and academic institutions. Open-source
software overcome these problems. Linux, the most popular
open-source operating system, enables developers to freely
access and modify the kernel source code in accordance
with their application requirements. It has a regularly active
ecosystem, which can greatly contribute to code evaluation
and problem debugging.

The real-time capabilities of Linux have greatly enhanced
owing to the continuous efforts of the community. Starting
from version 4.x and above, it is included with a low-latency

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 186199

https://orcid.org/0000-0002-6759-4240
https://orcid.org/0000-0002-2404-7415
https://orcid.org/0000-0003-1494-1138


R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

pre-emptible kernel configuration, which enables user-space
tasks to satisfy soft real-time requirements. In other words,
tasks are expected to meet their respective temporal deadlines
most of the time. This trend led to the integration of Linux
on a variety of soft real-time projects, for example, mul-
timedia streaming [14], image processing [15], and virtual
reality [16].

Conversely, applications that would result in tragic events
when a temporal deadline is missed should meet hard
real-time requirements. Hard real-time in Linux is achieved
by revising the kernel and is divided into two major cat-
egories: The dual-kernel and the fully pre-emptible kernel
approaches.

The dual-kernel approach adapts a co-kernel architecture,
where a real-time kernel runs alongside the standard Linux
through the ADEOS [17] hardware abstraction layer. In this
configuration, the real-time kernel holds the highest priority;
meaning that standard Linux tasks are allowed to run only
if there is no real-time waiting for execution. Open source
projects such as Xenomai [18] and RTAI [19], are some of
the popular examples of the dual-kernel approach.

On the contrary, RT-Preempt [20] reworks the internals
of the Linux kernel. In particular, elements involving the
timers, schedulers, and locking-mechanisms are enhanced to
reduce latencies and convert Linux into a fully pre-emptible
kernel [21]. One of the attractive features of RT-Preempt
in contrast to the dual-kernel approach is better integration
with Linux-based libraries, which makes application devel-
opment easier and flexible [22]. As a trade-off, its real-time
performance is inferior according to the experimental studies
reported in [23]–[25].

Currently, neither of the real-time extensions administers
real-time scheduling on multicore processors. This problem
encourages many researchers to modify the Linux scheduler,
while maintaining a desirable real-time performance. Several
scheduler tools have been proposed in literature. Among
them, the concept of integrating plugin-based schedulers has
been widely adopted [26]–[28]. Particularly, LITMUSRT [26]
is a kernel patch which provides a testbed to implement and
evaluate real-time scheduling algorithms. Similarly, loadable
kernel modules such as RESECH [27] and ExSched [28]
eliminate the need of modifying the kernel code, while offer-
ing a similar environment with LITMUSRT. These projects
have allowed observing the performance of various real-time
multicore scheduling algorithms in Linux; however, their
high runtime overheads result to unpredictable behavior
which render them unfit for practical real-time applica-
tions [21], [29].

Another popular approach is to replace the standard
Linux scheduler with earliest-deadline first (EDF) [30], [31].
Though this method reduces runtime overheads, sharing
resources between tasks on multicore processors introduces
blocking delays and priority inversion. To overcome such lim-
itation, Han et al. [30] proposed a blocking-aware partitioned
scheme which incorporates several resource-guided mapping
heuristics. Because dynamic deadlines on the EDF scheduler

constitute task priorities, Lelli et al. [31] has adopted dead-
line inheritance. These approaches enable EDF scheduling of
real-time tasks on multicore processors; however, practical
real-time applications, which usually handle I/O bound tasks
and interrupt handlers, require constant and deterministic
response times. In the case of EDF, dynamic priorities of the
scheduled tasks often results to variable response times [32].

Due to the absence of a practical real-time scheduler that
considers task migration on multicore processors, several
studies have suggested to either isolate a specific core and
associate real-time task onto the isolated core; or emulate
a uniprocessor system by disabling all physical and logical
cores. In particular, Cereia et al. [25] and Betz et al. [33]
investigated the performance of RT-Preempt and RTAI under
several types of simulated loads. They found out that dis-
abling the multicore features results to better periodicity of
a single real-time control task. On the other hand, only logi-
cal cores affect the real-time performance of Xenomai [34].
Considering that most of embedded platforms in the market
nowadays are based on multicore processors, disabling mul-
ticore features is a huge waste of resources. Thus, there is a
current demand for a general rule to determine the best multi-
core deployment, which exhibits feasible real-time behavior
and deterministic response times, depending on the real-time
extension of Linux.

With this motivation, the goal of this article, therefore,
is to present new insights into the real-time performance of
two real-time Linux extensions, Xenomai and RT-Preempt,
on a homogeneous Intel multicore system. First, the details
in configuring the Linux kernel to successfully leverage both
real-time extensions are provided. Herein, we enumerate the
critical kernel options to avoid unwanted timing overheads
that may affect the real-time performance. Then, we identify
a set of multicore deployments contingent on several pro-
cessor features: C-State [35], hyperthreading (logical cores),
multicore (physical cores), and CPU isolation. The real-time
performance of each multicore deployment is evaluated in
terms of the scheduling latency, which yields valuable percep-
tion on the schedulability and worst-case timings of real-time
tasks [36]. Also, calibration methods of timers are also pre-
sented to ensure that all measurements are close to the ideal
time.

Comparison of the averages and extreme values may not
yield meaningful results because of the slight differences
between those of the multicore deployments. This article
also proposes a statistical method based on a variation of
chi-square (χ2) test to analyze the distributions of scheduling
latencies for each multicore deployment and to determine the
best multicore deployment among them.

After the best multicore deployment has been identified
for each real-time extension, the real-time performance under
the effects of interfering loads and its feasibility in a mul-
titasking environment are analyzed to build confidence on
the suitability of multicore processors for practical real-time
applications. In this regard, the main contributions of this
work are to:

186200 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

1) Provide the complete details on leveraging Xenomai
and RT-Preempt on a homogeneous multicore proces-
sor.

2) Identify various multicore deployments and evaluate
their trade-offs, in terms of the scheduling latency.

3) Propose a variation ofχ2 test to determine the best mul-
ticore deployment for the real-time Linux extensions.

4) Investigate the unexpected effects of interfering loads,
such as CPU, memory, and network operations, on the
performance of the best multicore deployment, then
verify its feasibility through rate-monotonic analysis in
a pre-emptive multitasking environment

To the best of our knowledge, this study is the first of
its kind and will serve as a useful guideline for developing
real-time applications on multicore processors.

II. REAL-TIME MODEL AND PERFORMANCE METRIC
In order to guarantee the timeliness and deterministic
responses of the real-time system, it is necessary to perform
schedulability analysis to determinewhether a set of real-time
tasks will complete its execution according to the specified
temporal deadline. Both real-time Linux extensions are based
on fixed priority scheduling; thus, we evaluate task response
times using rate-monotonic analysis (RMA) [37].

Although RMA is only feasible for uniprocessor schedul-
ing, the choice to use this method is made for trend analysis
purposes. It is also worth to note that our focus is to evaluate
the effects of multicore deployments on the real-time perfor-
mance of the system, and not to formulate a novel multicore
scheduling algorithm.

In this article, we concentrate on a real-time system that
supports periodic tasks, whose execution is triggered after a
defined fixed time-interval. A real-time task, τi, is defined
as a tuple, τi =< Pi, Di, Ci, pri >, where Pi represents
the period, Di denotes the deadline, Ci stands for the worst-
case execution time, and pri represents the priority. These task
parameters are essential in scheduling. For instance, schedul-
ing based on priority guarantees that the highest priority
task would always execute and should not be interfered by
lower-priority tasks.

In conformity with RMA, a set of n number of tasks with
harmonic periods, τ = {τ1, τ2,. . . , τn} is schedulable only if
the worst-case response time (WCRT), Ri, for every task, τi,
is less than or equal to its respective deadline,Di. The WCRT
of a real-time task is calculated by [37]:

Rx+1i = Ci + Bi + Ji +
∑
j∈hp(i)

⌈
Rxi + Jj
Pj

⌉
· Cj︸ ︷︷ ︸

Ii

,

i = 1, 2, . . . , n (1)

Herein, Bi represents the blocking time—when a low prior-
ity task forcefully owns resources required by higher priority
tasks. This occurs when the scheduler does not properly
exhibit pre-emptive behavior, or if a low-priority task has not
released certain shared locking mechanisms. Ii denotes the

interference, which is the sum of all execution times of the
tasks within hp(i) that pre-empts task i, where hp(i) is the
set of tasks with higher priorities than τi. Calculation for the
WCRT requires iteration of (1) untilRx+1i = Rxi orR

x+1
i ≥ Di

is satisfied. Take note that for the first iteration, the response
time is equal to the execution time, or R0i = Ci.
The jitter Ji is the random deviation from the expected

period, or the difference between two iterations (x) of the
periodic task:

J xi = Px+1i − Pxi (2)

The presence of the jitter is inevitable as a result of the
stochastic behavior of RTOS schedulers and its effect on
the periodicity and WCRT of real-time tasks is apparent.
The jitter is also known as the variance of the scheduling
latency [36], which is the interval between the expected
release point and the instant when the task actually starts exe-
cuting. The scheduling latency has numerous sources (e.g.,
memory paging, interrupt latency, caching) and searching for
the exact one is extremely difficult. Nonetheless, the schedul-
ing latency should remain low to ensure that the real-time
tasks are schedulable and exhibit deterministic behavior.

In this regard, we will evaluate the real-time performance
of two real-time Linux extensions by measuring the schedul-
ing latencies of each system considering various multicore
deployments and determine the best one among them.

III. EXPERIMENTAL SETTINGS AND MULTICORE
DEPLOYMENT
In this section, the experimental environment based on two
real-time Linux extensions, Xenomai and RT-Preempt, for
a homogeneous Intel multicore embedded system (MES)
is described in detail. Various multicore deployments are
enumerated with discussion of each of their features and
effects on the entire system. The experimental tests are carried
out to evaluate the scheduling latencies for the multicore
deployment on both Xenomai and RT-Preempt in an idle
environment.

A. EXPERIMENTAL REAL-TIME ENVIRONMENT
As the Linux kernel is originally developed for Intel-
based processors, the experimental real-time environment is
built around an Advantech MIO-5272 MES. The system is
equipped with an Intel i7-6600 quad-core processor consist-
ing of two physical cores and two logical cores running at
3.4 GHz and with 16 GB of DDR3L RAM. In order to mini-
mize the effects of integrated graphics controllers, theMES is
installed with the minimal Linux distribution, Lubuntu 18.04.
We have chosen the most stable version, which is Linux
4.14.134, for both Xenomai and RT-Preempt. Although both
approaches support later versions of the kernel, most of them
are still in the experimental stage.

1) Xenomai
To implement a dual-kernel environment with Xenomai,
the hardware abstraction layer called ADEOS [17] is required

VOLUME 8, 2020 186201



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

to concurrently leverage both Xenomai and Linux kernels.
It is necessary for the ADEOS patch to be compatible with
both kernels for a successful implementation. For this spe-
cific version, the appropriate ADEOS is ipipe-core-4.14.
134-x86-8.We have selected the latest version, v3.1, of Xeno-
mai that can be downloaded either from the Xenomai GIT
repository or as a tarball from their download page. To ensure
that the latest fixes and updates are included in the implemen-
tation, it is preferred to clone the source code from the GIT
repository.

After the Linux kernel is patched with ADEOS, several
kernel options should be enabled/disabled to guarantee that
the system will not experience any unwanted latencies. It is
worth to note that some of these configurations may vary
depending on the architecture of MES. In the case of the
Intel-based MIO-5272, processor dependent kernel options
and memory page migration are as follows:

• Enable HIGH_RES_TIMERS
• Enable MCORE2
• Disable CONFIG_SCHED_MC
• Disable CONFIG_TRANSPARENT_HUGEPAGE
• Disable CONFIG_COMPACTION
• Disable CONFIG_MIGRATION

Power management is a vital source of latencies in a
real-time system and should be deactivated. The following
kernel options should be disabled in the following order:

• CONFIG_CPU_FREQ
• CONFIG_ACPI_PROCESSOR
• CONFIG_INTEL_IDLE
• CONFIG_CPU_IDLE

Debugging features of the kernel are also another source
of unwanted latencies. In particular, KGDB uses a source
level debugger that breaks into the kernel to inspect vari-
ables, call stack information, and memory usage. To prevent
latencies, which are due to this feature, the kernel option
CONFIG_KGDB should be disabled.

For this particular version, we have encountered a con-
flict between the Microsoft Hyper-V guest device driver and
CPU Idle features that causes errors during kernel compila-
tion. As the former is not necessary in a real-time system,
the device driver, CONFIG_HYPERV, should be disabled.
In our case, successful compilation and installation of the
full kernel was completed after 56 minutes. For easier devel-
opment of user space real-time tasks, Xenomai user space
libraries and tools should be built after installation of the
patched kernel.

2) RT-PREEMPT
RT-Preempt patches the kernel to support hard real-time
tasks and fully pre-emptible scheduling in Linux, without the
need of a co-kernel. One of its attractive features is better
integration with Linux-based libraries such as ROS and IgH
EtherCAT [38], [39]. However, in comparison with its dual-
kernel contemporaries, many studies reported that its real-
time performance is still inferior [23]–[25].

The RT-Preempt patches are available in the Linux kernel
repository, and the compatible version for our selected kernel
is 4.14.134-rt63. The CONFIG_PREEMPT_RT should be
enabled to configure the kernel with RT-Preempt. The same
processor, memory paging, and power management kernel
options should also be enabled/disabled as discussed in the
previous section, aside from the Microsoft Hyper-V device
driver, which did not impose any conflicts when compiling
the RT-Preempt patched Linux kernel.

B. MULTICORE DEPLOYMENT
Several studies have reported the effects of various multi-
core configurations on the real-time performance of real-time
Linux extensions. Betz et al. [33] stated that using multicore
worsens the periodicity of real-time tasks in RT-Preempt.
To deal with this issue, they permanently disabled multicore
features of a dual-core processor. Alternatively, the results
of Garre et al. [34] has shown that hyperthreading affects
the real-time performance of Xenomai. To this end, a gen-
eral rule to determine the best multicore deployment that
exhibits feasible real-time performance and deterministic
response times for the real-time extensions of Linux is in
demand.

This article, for the first time, details the possible impacts
of six multicore deployments on the real-time performance
of Xenomai and RT-Preempt. Each deployment is contingent
on the following processor features and kernel parameters: C-
State, hyperthreading, multicore, and CPU isolation. C-State
refers to the powermanagement feature of Intel CPU features,
where the processor enters several states when idle [35].
As mentioned in the previous sections, any features regarding
power management should be disabled in a real-time system
to avoid unwanted latencies. To disable C-State, the ker-
nel should be instructed that the processor must not leave
the operating state, with ‘‘intel_idle.max_cstate=0’’ as a
boot parameter. However, we have observed that the kernel
bypasses this parameter, and continuously booting with the
C-State still activated. Hence, it is preferable to disable C-
State in the BIOS permanently.

Hyperthreading refers to the utilization of logical cores
available within the system. Although the physical core only
has a single set of execution instructions, it powers the logical
cores and delegates the tasks to improve context switching.
In the case of MIO-5272, each physical core has its own
logical cores totaling to four available cores. The multicore
option, on the other hand, refers to the physical cores. When
disabled, the system emulates a uniprocessor system.

Isolated CPU refers to the isolation of CPU cores from
the standard Linux scheduler and associating real-time tasks
to the isolated CPUs. We isolated all CPU cores aside from
core 0, where all the interrupts and non-real-time processes
are migrated onto. The boot parameter, isolcpus, is supplied
with the cores to be isolated. For example, ‘‘isolcpus=1,2,3’’
refers to isolating cores 1-3 when multicore and hyperthread-
ing are both enabled. Xenomai should be instructed with the
masked value of the CPU cores that it could utilize. In the

186202 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

TABLE 1. List of multicore deployments.

case above, the boot parameter is ‘‘xenomai.supported_cpus
= 0× 7’’.

To clearly distinguish the multicore deployments,
we employ a naming convention, where each of them is
labeled with the first letter of the enabled features and
parameters in the order shown in Table 1. For example,
deployment CHM refers to C-State (C), Hyperthreading (H),
andMulticore (M) options being enabled, while Isolated CPU
(I) is disabled. We refer to Single as the deployment, where
all the options mentioned above are disabled, emulating a
uniprocessor system.

C. PERFORMANCE EVALUATION IN IDLE ENVIRONMENT
In this article, we evaluate the real-time performance of the
multicore deployments in terms of the scheduling latency.
We have utilized the cyclictest benchmarking tool which
measures the scheduling latency using standard POSIX pro-
gramming interface as shown in Algorithm 1.

Algorithm 1 Scheduling Latency Measurement
1: clock_gettime((&now));
2: next = now + expected_period;
3: while (1)
4: {
5: clock_nanosleep((&next));
6: clock_gettime((&now));
7: sched_lat = calc_diff(now, next);
8:
9: update_statistics_buffer(sched_lat);
10: next + = interval;
11: }

This program creates standard configured POSIX threads
and promotes them to real-time tasks by assigning necessary
task parameters, including priority, scheduling policy, and the
CPU affinity. In the measurement cycle, the task starts with
a call to clock_nanosleep(), which waits for the next release
point (period). After the task resumes, the scheduling latency
is measured as the difference between the actual and the
calculated release times. The next release point is calculated
starting a new iteration.

During the experiment, the system being tested is kept
isolated to avoid unwanted interrupts in an idle environment
and all data analyses are conducted offline.

TABLE 2. Scheduling latencies of Xenomai tasks in various multicore
deployments (in microseconds).

1) Xenomai
Because of the dual-kernel architecture of Xenomai, calibra-
tion of the timers is required to ensure that the measurements
are close to the ideal time. The shortest time (gravity) possible
for the MES to deliver an interrupt to the Xenomai interrupt
handler, kernel task, or user space task is calculated. The
gravity is a static value used for adjusting Xenomai timers
depending on the context that the timers are activated which,
in our case, is the user space.

In Xenomai 3.1, the gravity is calculated with autotune,
the calibration tool in the Xenomai testing suite. Note that
calibration should be performed every time the system starts.
In our case, we acquired an average scheduling latency
of 4.01 µs when the system is not calibrated, 6.03 µs when
the gravity is set to 0, and 2.56 µs after running autotune.
Fig. 1 shows the histograms of the measured schedul-

ing latencies for each multicore deployment on Xenomai.
We have utilized a Xenomai-ported cyclictest, which is also
included in the Xenomai testing suite. The tool was executed
with -m, which enables memory page locking withmlockall()
to prevent page faults. To ensure that clock_nanosleep() is
used in the measurement, we also enabled the -n flag. A real-
time task is configured with the period,P = 100µs. Note that
the deadline,D, is equal to the period. To ensure that blocking
does not occur, the task is configured with the highest priority
of pr = 99.

Additionally, the real-time task does not execute other
calculations aside from those mentioned in Algorithm to
guarantee that the worst-case execution time (WCRT) is kept
minimal. The measurements are conducted for 10 minutes,
resulting to a reasonable sampling count of 6,000,000. Each
measurement results in a histogram of actual scheduling
latencies, as shown in Fig. 1. The numerical results of the
scheduling latencies are tabulated in Table 2 : average (Ave.),
maximum (Max.), minimum (Min.) and the standard devia-
tion (µ).

We have observed multiple cases of overruns, where the
task was not able to meet the specified deadlines on the
deployment CHM. We have assessed that the contributing
factor for this counterintuitive behavior is the C-State. Thus,
we have omitted the results for CHM and focused on the
remaining multicore deployments.

Each of the experiments resulted in similar average values,
with HM having the worst maximum and standard devia-
tion of 72.824 µs and 0.229 µs, respectively. HM and HMI
exhibit similar trends with a small difference in µs. Looking

VOLUME 8, 2020 186203



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

FIGURE 1. Histograms from the observed scheduling latencies on Xenomai in an idle environment. (a) HM. (b) HMI. (c) M. (d) MI. (e) Single.

at the shapes of the histograms and the numerical analysis,
we conclude that hyperthreading affects the performance of
Xenomai as stated in [27]. Although the task is executed in
the physical core, sharing resources with the logical cores
contribute to unpredictable delays, causing the performance
decay.

When the hyperthreading feature is disabled as in the M
and MI deployments, the scheduling latency has distinctly
improved across all analytics. The results are also remarkably
similar with that of the Single deployment, which should have
displayed the best results in accordance with [21], [26]. As a
result of the small difference between M and MI, further sta-
tistical analysis is necessary to determine the best multicore
deployment in Xenomai.

2) RT-PREEMPT
In the case of RT-Preempt, no specific calibration is required
owing to the implementation of standard POSIX libraries.
The experiments were conducted with the same real-time
parameters and experimental conditions as in Xenomai. The
resulting histograms are shown in Fig. 2 and the numerical
analyses are shown in Table 3.

Looking at both the visual and numerical results, it is quite
fascinating that RT-Preempt appears not to be significantly
affected by the various multicore deployment. Contradicting
the results of Xenomai, only a slight improvement occurred
when hyperthreading is disabled as shown by the results of
HM and M.

Rather, Isolated CPU has shown to have improved the
scheduling latencies for both deployments with compelling
standard deviations of HMI and MI. In this context, the best

TABLE 3. Scheduling latencies of RT-Preempt in various multicore
deployments (in microseconds).

multicore deployment for RT-Preempt is, conspicuously,
the deployment MI. In terms of the scheduling latency, these
results contradict the studies in [25], [33], which have stated
that the best deployment for a multicore processor is the
uniprocessor emulation.

From the experiment results for both real-time extensions,
we conclude that the best multicore deployment is MI, where
the multicore feature is enabled, and real-time tasks are exe-
cuted on an isolated core. RT-Preempt shows that it has a
better scheduling latency with an average of 2.040 µs, which
is approximately 0.5 µs faster than that of Xenomai. In this
instance, Xenomai shows superior results in terms of the
maximum and standard deviation. Note that this difference
is small, and the performance should be tested under the
influence of interfering load to guarantee that the real-time
system is applicable to practical applications.

As this study is the first of its kind, the results are espe-
cially important for selecting between the two real-time Linux
extensions. However, our goal is not only to compare their
performance but also to present a guideline for develop-
ers aiming to integrate real-time applications with multicore
processors.

186204 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

FIGURE 2. Histograms from the observed scheduling latencies on RT-Preempt in an idle environment. (a) HM. (b) HMI. (c) M. (d) MI. (e) Single.

IV. STATISTICAL SELECTION METHOD
Due to the stochastic behavior of the real-time scheduler,
comparison of the averages and extreme values of the
scheduling latencies may not yield meaningful results to
determine the best multicore deployment, as evident from the
results of Xenomai in the previous section.

Herein, we define the best multicore deployment as the
distribution that has the lowest statistical error and ‘‘fits’’
the performance of a uniprocessor system. The proposed
statistical analysis focuses on the comparison of the acquired
scheduling latencies from the previous section. To the best
of our knowledge, this study is the first to highlight the
effects of multicore deployments on the real-time perfor-
mance of the system and to select the best multicore
deployment.

In contrast to the results of [25], [33] for RT-Preempt, it is
numerically and visually easy to determine that MI is the best
multicore deployment in terms of the scheduling latency. For
Xenomai, worst results were acquired from the deployments
HM and HMI; however, the results from deployments M and
MI produced similar extreme values and standard deviations,
which require further statistical analysis to determine the best
multicore deployment. In this context, we are more focused
on finding the best multicore deployment for Xenomai.

Fig. 3 illustrates the quantile-to-quantile (Q-Q) plot of
the various multicore deployments against the uniproces-
sor (Single) deployment. Herein, we could clearly see that
deployments HM, HMI, and M do not belong on the same
distribution with Single. Each of their distributions did not
produce a straight line coincident with the calculated linear
regression. Conversely, MI and Single came from the same

distribution as evident in Fig. 3(d). Thus, we could assume
that MI is the best multicore deployment for Xenomai.

To prove this assumption, we conducted statistical analysis
on the distributions from all multicore deployments. We start
by stating the null hypothesis, which implies that the mea-
sured scheduling latencies of a multicore deployment are
from the same distribution with the results from the Single
deployment. The alternate hypothesis is that they are not from
the same distribution.

Hence, we define the results from the Single deployment
as the expected values, with the scheduling latencies from the
other deployments as the observed values.

The cyclictest produced a histogram with the distribution
of the measured scheduling latencies. The bins were divided
into an equal width of 1µs (refer to Fig. 1) to contain themea-
sured scheduling latencies. As we are dealing with multiple
histograms with different extreme values, we considered the
maximum andminimum bin ranges equal to that of the Single
histogram for all analyses.

To avoid zero-value frequencies, histograms from the mul-
ticore deployment were reshaped. Contents of bins that are
greater than that of the maximum are transferred to the maxi-
mum bin, whereas all samples that are located on those lesser
than the minimum, are placed on the minimum bin. Then,
we performed χ2 goodness of fit test:

χ2
T =

n∑
j=1

(Oj − Ej)2

Ej
(3)

where O, the observed values, represents the respective mul-
ticore deployment, n is the total number of samples and

VOLUME 8, 2020 186205



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

FIGURE 3. Quantile-to-quantile (Q-Q) plot of multicore deployments versus the Single deployment of Xenomai. (a) HM. (b) HMI. (c) M. (d) MI. (e) Single.

E denotes the expected value, which are the results from
the Single deployment. It is clear from this equation that a
smaller χ2

T means that the difference between the expected
and observed values are smaller, signifying that both came
from the same distribution.

We may choose a significance level, α, to calculate the
critical valueχ2

α . The null hypothesis is rejected when the
calculated test statistic is greater than the critical value, or it
is accepted otherwise. In the selection method, we deter-
mine the best multicore deployment to be the distribution
which does not reject the null hypothesis and with the least
χ2
T . As it is crucial that the scheduling latency remains low

in a real-time system, we consider a one sided lower-tail
χ2 test with a significance level of α = 0.05, setting a
threshold of 95% accuracy of the results. This ensures that
the results are not determined by randomness. As we are
directly comparing the histograms of the results, the critical
value is calculated with the degrees of freedom (DOF) equal
to the number of bins of the histogram from the Single
deployment.

Note that the statistical analysis is conducted offline using
Matlab to avoid any unwanted effects during measurement of
the scheduling latencies. The steps in conducting the χ2 test
and selection method are summarized below.
• Configure the maximum and minimum bin ranges as
equal to values from the Single histogram;

• If needed, recreate the histograms from the various mul-
ticore deployments. Contents of bins that are greater
than that of the maximum are transferred to the maxi-
mum bin. Whereas all samples that are located on those
lesser than theminimum are placed on theminimum bin;

TABLE 4. Results of the χ2 tests with 95% level of significance For The
Various Multicore Deployments of Xenomai.

• Obtain the test statistic (ρ value) with (3) and check
whether it exceeds χ2

T , based on α;
• Determine the multicore deployments that do not reject
the null hypothesis and select the one with the least test
statistic.

Following these steps, we analyze the scheduling latencies
from the multicore deployments of Xenomai and the results
are shown in Table 4.

In Fig. 1, the Single deployment distribution produced a
histogram with a total number of 22 bins (n = 22), which
results to a critical value of χ2

T = 33.924.
In the table, the calculated ρ value for the deployments

HM, HMI, and M is greater than that of the critical limit.
Thus, these deployments reject the null hypothesis which
meaning that they did not come from the same distribution
as the Single distribution. As for M and MI, although there
were trivial differences measured between the extreme values
and standard deviation, we can see in these results that only
MI satisfies the null hypothesis when compared with Single.
Thus, we have statistically proven the Q-Q plot in Fig. 3 and

186206 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

TABLE 5. Scheduling latency of The selected Multicore deployments for
each RT linux extension under interfering best-effort load (in
microseconds).

determined that the best multicore deployment for Xenomai
is indeed the MI multicore deployment.

V. EFFECTS OF INTERFERING LOAD AND FEASIBILITY
ANALYSIS
To build confidence that both real-time extensions of Linux
on a multicore processor are suitable for practical real-time
applications, we have measured the scheduling latencies of
each extension under the effects of interfering loads. In this
instance, we consider three best-effort loads: CPU, memory,
and network operations.

The experiments were conducted on the best multicore
deployment determined in the previous section (MI for both
Xenomai and RT-Preempt), following the same procedures in
Section III. The real-time task has a period of 100 µs, acquir-
ing a total number of 6,000,000 samples for a runtime time
of 10 minutes. The three interfering loads being considered
correspond to the following: CPU and memory load utilizing
stress-ng tool [40], and network stress with iperf [41].
The stress-ngwas configured to runmultiple floating-point

arithmetic operations in a very tight infinite loop to simulate
loads fully utilizing the CPU. We have selected to sequen-
tially exercise all methods available within the stress-ng tool.
Virtual memory stress test is also performed with 5 virtual
memory stressors. Due to thememory requirement for storing
observed values, the memory stress can only occupy 70% of
the system memory during the experiment.

In order to simulate network operations, we implemented
a multi-node environment emulating a practical scenario,
where a server should attend to asynchronous data requests
from multiple clients. In this instance, the real-time sys-
tem serves as the server connected a remote-load generator
(another PC). In the load generator, we simulated 100 clients
with each requesting 64 KB of data, resulting in a throughput
of 1 Mbps/client. The histogram of the scheduling latencies
under interfering loads for both Xenomai and RT-Preempt are
illustrated in Fig. 4.

Table 5 lists the corresponding summary statistics. From
these data, we can interpret that RT-Preempt, with lower
average, extreme values, and standard deviation, should show
better deterministic timings in comparison to Xenomai. How-
ever, these results only correspond to the scheduling latencies
of a single real-time task. To furtherly explore on the feasibil-
ity of the best multicore deployments in both real-time Linux
extensions, evaluation of the periodicity and deterministic
response times of the system in a multitasking environment is
required. To analyze the timeliness and responsiveness with

FIGURE 4. Histograms of the observed scheduling latencies in the
presence of CPU, memory, and network bound best-effort workload.
(a) Xenomai. (b) RT-Preempt.

TABLE 6. Task parameters for the feasibility analysis (in milliseconds).

RMA, we consider a harmonic taskset, where each of the
period (P) is an integral multiple (or sub-multiple) of all
other periods within the taskset. The deadline (D) of each
task is equal to its respective period and the worst-execution
time (C) is the maximum computation time. Also, the priori-
ties (pr) are assigned so that the task with the shortest period
has the highest priority (rate-monotonic). In particular, τ1 has
the shortest period of 10 ms and the highest period of 99
(specified as the maximum priority for both Xenomai and RT-
Preempt). On the other hand, τ3 which has the longest cycle
of 40 ms, is assigned the lowest priority of 50. The taskset,
together with the task parameters are specified in Table 6.

With the assumption that both Xenomai and RT-Preempt
have been successfully implemented, each task should have
a blocking time of zero, as long as they do not share a
resource locking mechanism. Fig. 5 illustrates the timeline
of the expected execution of the taskset in one hyperperiod
(least common multiple of all periods).

When all of the tasks have the same activation point,
from (1), theWCRT of each task are calculated as R1 = 3ms,
R2 = 8 ms, and R3 = 29 ms, respectively for τ1, τ2, and τ3.

VOLUME 8, 2020 186207



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

FIGURE 5. Execution timeline of a multitasking environment with three
real-time tasks scheduled with pre-emption (in milliseconds): τ1, with
execution time of 3 ms and period of 10 ms, τ2 with execution time
of 5 ms and period of 20 ms, and τ3 with execution of 10 ms and period
of 40 ms.

Because the highest priority task (τ1) does not experience
any interference during its execution, the calculated response
time is equal to its execution time. τ2, on the other hand, runs
whenever τ1 completed its execution. We have observed that
the task finishes its execution without pre-emption. However,
this is not the same for τ3. As expected, the lowest priority
task is pre-empted (red dashed line) twice by τ1 and once by
τ2, resulting to the longest WCRT.

To assess the real-time performance of the best multicore
deployments of both Xenomai and RT-Preempt, we expect to
measure actual WCRT that are approximately equal to the
calculated values. In such, three periodic tasks are created
on each real-time extension with the parameters specified
in Table 6. Priorities and the periods are configured before
the tasks enter their respective infinite task loop and the tasks
are configured to run only on the first available core.

Within the task loop, each task performs measurements of
three performance metrics: actual period, jitter, and actual
response time. A busy waiting loop is realized to simulate
computational load, which burns CPU resources for 1 ms
and iterates continuously until the task has completed its
required execution time. The pseudo code for the task loop,
which is identical for the three real-time tasks is depicted in
Algorithm 2.

The experiments are conducted on each real-time Linux
extension with a considerable runtime of 10 minutes in idle
environment. Similar with the previous experiments, all the
measured values were stored in a buffer to prevent any over-
heads that can affect data integrity. Timing analysis are per-
formed offline using Matlab and the results are summarized
in Table 7.

From the experimental results, it is clearly observed that
the measured WCRT (maximum response time) for the tasks
on both Xenomai and RT-Preempt show good accordance
with the expected values.

Regarding the response times, Xenomai has shown lower
average, maximum and standard deviations; however, the dif-
ferences are less than 10 µs, which are exceedingly small
and negligible. In terms of periodicity, better results across
all tasks and metrics were observed with RT-Preempt. This
is expected considering the direct relationship of scheduling
latency with periodicity [32].

Algorithm 2 Real-time Task Loop
1: set_task_periodic(P);
2: set_task_priority(pr);
3: task_exec = C ;
4: prev_period = read_tsc(); // read timestamp counters
5: while (1)
6: {
7: wait_for_next_period();
8: runtime = 0;
9: curr_period = read_tsc();
10:
11: while (runtime < task_exec) // busy waiting loop
12: {
13: end = read_tsc() + 1000000; // 1 millisecond
14: while (read_tsc() < end)
15: __sync_syncrhonize(); // memory barrier
16:
17: runtime++;
18: }
19: response_end = read_tsc();
20:
21: period = curr_period - prev_period;
22: response = response_end - curr_period;
23: jitter = abs(P - period);
24:
25: prev_period = curr_period;
26: }

TABLE 7. Periodicity and response times of multiple tasks on the best
multicore deployment in an idle environment (in milliseconds).

To evaluate the behavior under interfering loads, the same
experiment procedures are conducted with the following
stress conditions: stress-ng utilizing 100% of the CPU and
70% of system memory [41], and iperf providing an aver-
age throughput of 1 Mbps/client for 100 simulated socket
clients [42]. Table 8 shows the results of the experiments in a
stressed environment.

Even in the presence of best-effort interfering loads,
we have observed no significant performance degradation
from the measurements. Following the same trend as in the

186208 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

TABLE 8. Periodicity and response times of multiple tasks on the best
multicore deployment in a stressed environment (in milliseconds).

idle environment, Xenomai has slightly better response times,
and RT-Preempt with finer periodicity. This behavior offers a
new perspective on the performance of real-time extensions
of Linux in contrast to the results presented in [23]–[25].

It is worth to note that the real-time performance may
vary depending on the software versions and the underlying
hardware system. This is one of the consequences of open
source-based systems. In this article, however, we are more
focused on the effects of the various multicore deployments
on the real-time performance of the system, rather than the
comparison between the real-time extensions.

Thus, in our developed system, we therefore conclude
that with the best multicore deployment, Xenomai and
RT-Preempt should be able to satisfy real-time tasks with
a minimum period of 100 µs as proven by the results of
scheduling latency experiments, even under the effects of
interfering loads. Also, real-time constraints, in terms of
periodicity and deterministic response times, are satisfied in
multitasking environment. These results would build confi-
dence that the real-time extensions of Linux, configured to
their respective best multicore deployment, are feasible in
practical real-time applications.

VI. CONCLUSION AND DISCUSSION
This paper presented new insights into real-time perfor-
mance of real-time extensions of Linux, namely Xenomai and
RT-Preempt, on a homogeneous multicore processor.

We provide the complete details on leveraging each
real-time extension on an Intel-based multicore embedded
system considering the necessary Linux kernel configuration.
We described a set of multicore deployments contingent on
several processor features such as C-State, hyperthreading,
multicore, and CPU isolation. The effects of each multicore
deployment on the real-time performance was evaluated for
each real-time Linux extension. Performance evaluation was
focused on the scheduling latency, owing to its apparent
relationship with both the periodicity andWCRT of real-time
tasks. The results of the experiment showed that disabling the
hyperthreading features (logical cores) of a multicore system
greatly improves real-time performance.

We have observed that it is relatively easy to determine
the best multicore deployment for RT-Preempt based on
the statistical summary and the visual representation of the
scheduling latencies as shown in Fig. 2 and Table 3. These
results contradict the prior studies presented in [25], [33], and
thus highlighting the importance of this study in integrating
real-time applications based on RT-Preempt on multicore
processors.

However, in Xenomai, further analysis is required to select
the best deployment because of the small difference between
scheduling latencies of the multicore deployments, especially
M andMI. Assuming that emulating a uniprocessor system is
the best possible deployment as stated in [25], [33], we have
presented a selection method based on a variation of χ2

goodness-of-fit test. The actual best multicore deployment
is determined by comparing the scheduling latencies of each
multicore deployment with that of the single core. We have
found out that the Xenomai system has also shown the best
results when the hyperthreading features is disabled, proving
the results of a prior study in [34].

After the best multicore deployment was determined for
both real-time extensions, we have evaluated them under
interfering loads, such as CPU, memory, and network oper-
ations. This step was performed to build confidence in the
suitability of the real-time systems on multicore processors
for practical real-time applications. Feasibility analysis on a
multitasking environment was also performed by analyzing
the periodicity and deterministic responses of three periodic
tasks that exhibits pre-emptive behavior. In contrast to prior
studies [23]–[25], our results showed that RT-Preempt has
better periodicity and scheduling latencies over Xenomai,
even in the presence of best-effort interfering loads.

This counterintuitive behavior may be attributed to several
reasons, such as the different hardware platform and software
versions. As we are more focused on the effects of multicore
deployments on the real-time performance, analysis of these
differences is beyond the scope of this article.

We concluded that the best multicore deployments of both
Xenomai and RT-Preempt should be able to satisfy real-time
tasks with a minimum period of 100 µs, even under the
effects of interfering loads. We have also proven that both
systems were able to satisfy real-time constraints in a multi-
tasking environment, in terms of periodicity and deterministic
response times. These results are particularly important since
they are the first of their kind and will serve as a guideline
for real-time developers who require integration of real-time
applications on multicore processors.

There are several directions for the future work. More
evaluation on larger platforms and other architectures will be
conducted. Based on our findings, CPU power management
schemes and hyperthreading features are the main source
of performance degradation on an Intel multicore system,
we assume that the same behavior can be expected from
other homogeneous multicore processors as well. More sig-
nificantly, we hope to evaluate the real-time performance
of a multiprocessor system on chip (MPSoC). Although we

VOLUME 8, 2020 186209



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

have conceptually reported its expected performance [42],
the real-time scheduler should be improved to consider the
heterogeneity of such system. Also, refined schedulability
analysis is required to evaluate the response times of real-time
tasks, considering resource sharing between multicores and
multiprocessors. Finally, automation of developing a real-
time working environment and evaluation of real-time Linux-
based systems are being considered.

REFERENCES
[1] A. Biondi and M. D. Natale, ‘‘Achieving predictable multicore execution

of automotive applications using the LET paradigm,’’ in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), Porto, Portugal, Apr. 2018,
pp. 240–250.

[2] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, and Z. Shao, ‘‘RT-
ROS: A real-time ROS architecture on multi-core processors,’’ Future
Gener. Comput. Syst., vol. 56, pp. 171–178, Mar. 2016.

[3] C. E. Tuncali, G. Fainekos, and Y.-H. Lee, ‘‘Automatic paralleliza-
tion of multirate block diagrams of control systems on multicore plat-
forms,’’ ACM Trans. Embedded Comput. Syst., vol. 16, no. 1, pp. 1–26,
Nov. 2016.

[4] G. Kornaros,Multi-Core Embedded Systems. Boca Raton, FL, USA: CRC
Press, 2010.

[5] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Scheduling non-preemptive tasks with
strict periods in multi-core real-time systems,’’ J. Syst. Archit., vol. 90,
pp. 72–84, Oct. 2018.

[6] H. Chniter, O. Mosbahi, M. Khalgui, M. Zhou, and Z. Li, ‘‘Improved
multi-core real-time task scheduling of reconfigurable systems with energy
constraints,’’ IEEE Access, vol. 8, pp. 95698–95713, 2020.

[7] J. Chen, C. Du, P. Han, and Y. Zhang, ‘‘Sensitivity analysis of strictly
periodic tasks in multi-core real-time systems,’’ IEEE Access, vol. 7,
pp. 135005–135022, 2019.

[8] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘HETERO-SCHED: A low-
overhead heterogeneousmulti-core scheduler for real-time periodic tasks,’’
in Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun.;
IEEE 16th Int. Conf. Smart City; IEEE 4th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Jun. 2018, pp. 659–666.

[9] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, ‘‘DP-FAIR:
A simple model for understanding optimal multiprocessor scheduling,’’ in
Proc. 22nd Euromicro Conf. Real-Time Syst., Jul. 2010, pp. 3–13.

[10] R. I. Davis and A. Burns, ‘‘A survey of hard real-time scheduling for
multiprocessor systems,’’ ACM Comput. Surv., vol. 43, no. 4, pp. 1–44,
Oct. 2011.

[11] J. Liu, X. Gao, B. Jiang, S. Yang, and Z. Zhang, ‘‘Deterministic replay for
multi-core VxWorks applications,’’ in Proc. Int. Conf. Dependable Syst.
Appl. (DSA), Oct. 2017, pp. 118–125.

[12] Nucleus RTOS, Mentor Graph., Wilsonville, OR USA, Oct. 2009.
[13] J. Wetzels and A. Abbasi, ‘‘Dissecting QNX,’’ in Proc. Blackhat Briefings,

Singapore, Mar. 2018, pp. 1–22.
[14] W.Wang, Y.Wang, J. Dai, and Z. Cao, ‘‘Dynamic soft real-time scheduling

with preemption threshold for streaming media,’’ Int. J. Digit. Multimedia
Broadcast., vol. 2019, Jan. 2019, Art. no. 5284968.

[15] H. Salman, M. N. Uddin, S. Acheampong, and H. Xu, ‘‘Design and
implementation of iot based class attendance monitoring system using
computer vision and embedded Linux platform,’’ in Proc. Workshops Int.
Conf. Adv. Inf. Netw. Appl., 2019, pp. 25–34.

[16] J. J. Roldán, E. Peña-Tapia, D. Garzón-Ramos, J. de León, M. Garzón,
J. del Cerro, and A. Barrientos, ‘‘Multi-robot systems, virtual reality and
ROS: Developing a new generation of operator interfaces,’’ in Robot
Operating System (ROS): The Complete Reference, vol. 3, A. Koubaa, ed.
Cham, Switzerland: Springer, 2019, pp. 29–64

[17] P. Gerum, ‘‘Life with adeos,’’ Xenomai, Munich, Germany,
Tech. Rep., 2005. Accessed: Aug. 23, 2020. [Online]. Available:
https://xenomai.org/documentation/xenomai-2.4/pdf/ Life-with-Adeos-
rev-B.pdf https://xenomai.org/documentation/branches/v2.3.x/pdf/
xenomai.pdf

[18] P. Gerum, ‘‘Xenomai-implementing a RTOS emulation framework on
GNU/Linux,’’ Xenomai, Munich, Germany, White Paper, 2004, pp. 1–12.
Accessed: Aug. 30, 2020. [Online]. Available: https://xenomai.org/
documentation/branches/v2.3.x/pdf/xenomai.pdf

[19] D. Beal et al., ‘‘RTAI: Real-time application interface,’’ Linux J., vol. 29,
no. 72, p. 10, 2000.

[20] D. B. de Oliveira and R. S. de Oliveira, ‘‘Timing analysis of the PRE-
EMPT RT Linux Kernel,’’ Softw., Pract. Exp., vol. 46, no. 6, pp. 789–819,
Jun. 2016.

[21] F. Reghenzani, G. Massari, and W. Fornaciari, ‘‘The real-time Linux
Kernel: A survey on preempt_rt,’’ ACM Comput. Surv. (CSUR), vol. 52,
no. 1, pp. 1–36, 2019.

[22] J. Park, R. Delgado, and B. W. Choi, ‘‘Real-time characteristics of ROS
2.0 in multiagent robot systems: An empirical study,’’ IEEE Access, vol. 8,
pp. 154637–154651, 2020.

[23] J. H. Brown and B. Martin, ‘‘How fast is fast enough? Choosing between
Xenomai and Linux for real-time applications,’’ in Proc. 12th Real-Time
Linux Workshop, 2010, pp. 1–17.

[24] A. Barbalace, A. Luchetta, G. Manduchi, M. Moro, A. Soppelsa, and
C. Taliercio, ‘‘Performance comparison of VxWorks, Linux, RTAI, and
xenomai in a hard real-time application,’’ IEEE Trans. Nucl. Sci., vol. 55,
no. 1, pp. 435–439, 2008.

[25] M. Cereia, I. C. Bertolotti, and S. Scanzio, ‘‘Performance of a real-time
EtherCAT master under Linux,’’ IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 679–687, Nov. 2011.

[26] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson,
‘‘LITMUSRT: A testbed for empirically comparing real-time multiproces-
sor schedulers,’’ in Proc. 27th IEEE Int. Real-Time Syst. Symp., Dec. 2006,
pp. 111–126.

[27] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio, ‘‘ROSCH: Real-time
scheduling framework for ROS,’’ in Proc. IEEE 24th Int. Conf. Embedded
Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2018, pp. 52–58.

[28] T. Gupta, E. J. Luit, M. M. H. P. V. D. Heuvel, and Re. J. Bril, ‘‘Extend-
ing ExSched with mixed criticality support—An experience report,’’ in
Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017,
pp. 23–28.

[29] F. Cerqueira and B. Brandenburg, ‘‘A comparison of scheduling latency
in Linux, PREEMPT-RT, and LITMUS RT,’’ in Proc. 9th Annu. Workshop
Operating Syst. Platforms Embedded Real-Time Appl., 2013, pp. 19–29.

[30] J.-J. Han, S. Gong, Z. Wang, W. Cai, D. Zhu, and L. T. Yang, ‘‘Blocking-
aware partitioned real-time scheduling for uniform heterogeneous mul-
ticore platforms,’’ ACM Trans. Embedded Comput. Syst., vol. 19, no. 1,
pp. 1–25, Feb. 2020.

[31] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, ‘‘Deadline scheduling
in the Linux Kernel,’’ Softw., Pract. Exp., vol. 46, no. 6, pp. 821–839,
Jun. 2016.

[32] G. C. Buttazzo, ‘‘Rate monotonic vs. EDF: Judgment day,’’ Real-Time
Syst., vol. 29, no. 1, pp. 5–26, Jan. 2005.

[33] W. Betz, M. Cereia, and I. C. Bertolotti, ‘‘Experimental evaluation of
the Linux RT patch for real-time applications,’’ in Proc. IEEE Conf.
Emerg. Technol. Factory Autom., Palma de Mallorca, Spain, Sep. 2009,
pp. 598–601.

[34] C. Garre, ‘‘Performance comparison of real-time and general-purpose
operating systems in parallel physical simulation with high computational
cost,’’ SAE Tech. Paper 2014-01-0200, 2014.

[35] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan,
‘‘Power-management architecture of the intel microarchitecture code-
named sandy bridge,’’ IEEE Micro, vol. 32, no. 2, pp. 20–27, Mar. 2012.

[36] R. Souza, M. Freitas, M. Jimenez, J. Magalhães, A. C. Kubrusly, and
N. Rodriguez, ‘‘Real-time performance assessment using fast interrupt
request on a standard Linux Kernel,’’ Eng. Rep., vol. 2, no. 1, Jan. 2020,
Art. no. e12114.

[37] M. Joseph and P. Pandya, ‘‘Finding response times in a real-time system,’’
Comput. J., vol. 29, no. 5, pp. 390–395, May 1986.

[38] R. Delgado and B. Choi, ‘‘Network-oriented real-time embedded system
considering synchronous joint space motion for an omnidirectional mobile
robot,’’ Electronics, vol. 8, no. 3, p. 317, Mar. 2019.

[39] R. Delgado, B.-J. You, and B. W. Choi, ‘‘Real-time control architecture
based on xenomai using ROS packages for a service robot,’’ J. Syst. Softw.,
vol. 151, pp. 8–19, May 2019.

[40] C. I. J. U. H. K. U. C. G. C. S. G. King. (2017). Stress-Ng. Accessed: Aug.
23, 2020. [Online]. Available: https://kernel.ubuntu.com/~cking/stress-ng/

[41] V. J. I. F. N. Gueant. (2017). iPerf—The TCP, UDP and SCTP Net-
work Bandwidth Measurement Tool. Accessed: Aug. 23, 2020. [Online].
Available: https://iperf.fr/

[42] R. Delgado, J. Park, and B. W. Choi, ‘‘MPSoC: The low-cost approach
to real-time hardware simulations for power and energy systems,’’ IFAC-
PapersOnLine, vol. 52, no. 4, pp. 57–62, 2019.

186210 VOLUME 8, 2020



R. Delgado, B. W. Choi: New Insights Into the Real-Time Performance of a Multicore Processor

RAIMARIUS DELGADO (Member, IEEE)
received the B.S. and M.S. degrees in electri-
cal and information engineering from the Seoul
National University of Science and Technol-
ogy, Seoul, South Korea, in 2014 and 2016,
respectively, where he is currently pursuing the
Ph.D. degree under the supervision of Prof.
ByoungWook Choi. His research interests include
real-time systems, industrial control and automa-
tion, embedded systems, systems and software
architecture, and service robotics.

BYOUNG WOOK CHOI (Member, IEEE)
received the M.S. and Ph.D. degrees in electrical
engineering from the Korea Advanced Institute of
Science and Technology (KAIST), Seoul, South
Korea, in 1988 and 1992, respectively. He was
a Principal Research Engineer with LG Industrial
Systems, from 1992 to 2000, and a Professor
with Sun Moon University, from 2000 to 2005.
Hewas the CEOof EmbeddedWebCompany Ltd.,
from 2001 to 2003. He was a Senior Fellow with

Nanyang Technological University, Singapore, from 2007 to 2008. He is
currently a Professor with the Department of Electrical and Information
Engineering, Seoul National University of Science and Technology. He has
published textbooks on embedded Linux. His current research interests
include real-time systems design, embedded systems, and intelligent robot
software.

VOLUME 8, 2020 186211


