
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2023.23.5.322 ISSN(Online) 2233-4866

Manuscript received Jun. 27, 2023; reviewed Aug. 22, 2023;

accepted Sep. 10, 2023

Research Center for Electrical and Information Technology,

Department of Electrical and Information Engineering, Seoul National

University of Science and Technology, Seoul 01811, Korea

E-mail : hyunkim@seoultech.ac.kr (Corresponding author: Hyun Kim)

Ji-Hoon Jang and Jin Shin contributed equally to this work.

In-depth Survey of Processing-in-memory Architectures
for Deep Neural Networks

Ji-Hoon Jang*, Jin Shin*, Jun-Tae Park, In-Seong Hwang, and Hyun Kim

Abstract—Processing-in-Memory (PIM) is an

emerging computing architecture that has gained

significant attention in recent times. It aims to

maximize data movement efficiency by moving away

from the traditional von Neumann architecture. PIM

is particularly well-suited for handling deep neural

networks (DNNs) that require significant data

movement between the processing unit and the

memory device. As a result, there has been substantial

research in this area. To optimally handle DNNs with

diverse structures and inductive biases, such as

convolutional neural networks, graph convolutional

networks, recurrent neural networks, and

transformers, within a PIM architecture, careful

consideration should be given to how data mapping

and data flow are processed in PIM. This paper aims

to provide insight into these aspects by analyzing the

characteristics of various DNNs and providing

detailed explanations of how they have been

implemented with PIM architectures using

commercially available memory technologies like

DRAM and next-generation memory technologies like

ReRAM.

Index Terms—Processing-in-memory, deep learning,

next-generation memory, near-memory computing,

deep neural network

I. INTRODUCTION

With the emergence of the backpropagation algorithm

[8] and multilayer perceptron [3], deep neural networks

(DNNs) have demonstrated outstanding performance in

various fields [1, 2, 110]. However, they face the

challenge of exponentially increasing computational load

as the number of learnable parameters grows. This poses

a significant obstacle to the practical implementation of

DNN models in terms of processing speed and power

consumption [113]. To tackle these issues, parallel

processing devices such as graphics processing units

(GPUs) and neural processing units (NPUs) [4] are being

utilized, and researchers are actively exploring optimized

acceleration algorithms for each device [5]. However,

modern computer architectures based on the von

Neumann architecture still have limitations regarding

DNN processing. Specifically, a substantial portion of

the power consumption, up to 75%, is attributed to

loading parameters for DNN operations (e.g., feature

maps and weights) from external memory, such as

dynamic random-access memory (DRAM), to the

processor, or storing them back to memory [9, 10, 115].

To address this issue, processor-in-memory (PIM)

architecture has emerged as a promising technology [6].

By integrating computing and memory units at the

processing element (PE) level, PIM significantly reduces

latency associated with data transmission and enhances

data processing efficiency [112]. This integrated

architecture has the potential to significantly reduce

energy consumption during memory access, thereby

enhancing the efficiency of applications that require

high-performance computing [7].

This survey explores diverse PIM architectures and

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 323

methodologies for enhancing PIM performance in

different memory types. It analyzes the characteristics of

various DNN models, including convolutional neural

networks (CNNs), graph neural networks (GNNs),

recurrent neural networks (RNNs), and transformer

models. The focus is on optimizing data mapping and

dataflows within the context of PIM, providing valuable

insights into efficient handling of DNNs. This

comprehensive study aims to deepen researchers'

understanding of the connection between DNNs and PIM,

opening up new avenues for future AI research and

advancements.

Section II shows the background of this work. Section

III presents the PIM architectures for DNNs, and Section

IV concludes this paper.

II. BACKGROUND

1. Processing in Memory (PIM)

In this section, we categorize PIM into two main

types: processing-near-memory (PnM) and processing-

using-memory (PuM), based on where the data

processing takes place, as classified in [116]. We then

provide an overview of the characteristics associated

with each category. Section III highlights representative

studies that fall within these respective categories,

offering valuable insights into the field.

1) Processing-using-Memory (PuM)

PuM refers to a technology that performs data

operation processing within the memory itself. Previous

research on in-memory computing architectures [81-99]

has paved the way for PuM, which leverages memory

cell structures or modifies the minimum unit memory

structures to carry out computational functions directly in

the memory. This approach helps alleviate the bottleneck

between the processor and memory, resulting in minimal

overhead and without requiring additional space.

However, due to the need for compatibility with existing

memory structures, PuM has limitations in terms of the

range of operations it can support. Typically, PuM

implementations focus on bitwise operations like AND,

OR, XOR, and NOR [81, 82, 84, 85]. Implementing PuM

technology is a notable challenge, particularly with

DRAM, as it is already highly advanced and optimized

for its read/write operations. DRAM-based PuM designs

typically incorporate simple logic after sense-amplifier

(SA) to perform small-scale operations [81, 82, 84, 85].

On the other hand, static random-access memory

(SRAM)-based studies have explored analog operator

units, taking advantage of relatively fewer spatial

constraints, which enable support for more complex

operations [86-89]. Another promising candidate for

PuM is resistive random-access memory (ReRAM), a

next-generation memory that efficiently carries out

multiple-accumulate (MAC) operations by leveraging the

crossbar structure [84, 90-94, 100].

2) Processing-near-Memory (PnM)

PnM is a technology that performs data operation

processing using dedicated operation logic located close

to the memory. Research is being conducted to apply

PnM to various memory types [48-80, 118, 119]. The

goal of PnM is to enhance system performance by

minimizing data movement between the processor and

memory for computation or by optimizing the data frame

structure. Unlike PuM, PnM allows for the

implementation of more complex operations, resulting in

a wider range of methods. However, it should be noted

that the improvement in memory bottleneck is not as

significant as with PuM, as it still involves more data

movement between the processors and memory.

Additionally, PnM has the drawback of requiring a

higher area overhead. Many studies focusing on SRAM-

based PnM have explored implementing multiple

operators in parallel near an SRAM cell array to enable

parallel operation [48, 49, 89]. On the other hand,

DRAM-based studies have primarily focused on

achieving parallel operations by efficiently utilizing bank

parallelism [50-59].

2. Various Deep Neural Networks

Various types of DNNs have been proposed based on

diverse inductive biases (e.g., locality, sequentiality,

arbitrariness) [6]. The computational process of DNNs

can be broadly classified into two categories: linear

operations (i.e., operations such as matrix-vector

multiplication (VMM) and matrix-matrix multiplication

(MatMul) that utilize MAC as the fundamental unit of

operation) and non-linear operations (i.e., ReLU [11],

324 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

tanh [12], and sigmoid [13]). Linear operations are used

to calculate the weights of the input features and hidden

layers for feature extraction. Generally, strategies to

enhance the performance of DNNs involve stacking

deeper layers [14, 15] or widening a layer [16]. Owing to

these strategies, MAC operations constitute the largest

share of all operations in DNNs, leading to potential

issues. 1) Its computationally intensive nature can lead to

high latency, necessitating high parallelism. 2) Frequent

memory access and data movement for the weights and

input data can result in substantial power consumption,

creating bottlenecks. 3) Substantial hardware design

costs can occur in an effort to mitigate these issues. In

this subsection, DNNs are classified based on their

network structure and inductive bias.

1) Convolutional Neural Network (CNN)

A CNN is a type of DNN specialized for processing

two-dimensional (2D) image data. It typically consists of

convolution (CONV) layers, normalization layers,

pooling layers, and activation functions. CNN is capable

of extracting and learning features from the input that are

then used to perform specific tasks. In particular, within

the CONV layer, a multichannel kernel extracts local

features from an image by sliding across the input at a

certain stride interval [17]. The CONV operation

constitutes a significant part of the CNN model and

requires a high external memory bandwidth owing to the

need to load multichannel intermediary features and a

large number of weights [18, 19, 111]. Traditionally,

CNNs have been used as the backbone for vision tasks.

Recently, they have been used as embedding layers for

token extraction in transformer-based networks [20].

2) Graph Neural Network (GNN)

A GNN is a general framework for operating on

complex structures represented by graphs, consisting of

nodes (vertices) and the edges connecting them. Unlike

fixed formats such as 2D or 3-dimensional (3D) data, it

mainly deals with the more abstract relationships used in

workloads, such as social networks or media influence.

Traditional algorithms that use graph data (e.g., search

[21], shortest path finding [22], spanning tree [23], and

clustering [24]) cannot inherently evolve into research on

the graph structure itself because they require prior

knowledge of the input graph. However, GNN applies

artificial neural networks directly to the graph data,

enabling predictions at the node, link, and graph levels.

Through iterative parameter updates, learnable

parameters are trained to better represent the

relationships between adjacent nodes within a graph [25].

Additionally, a GNN is capable of mimicking most deep

learning models (e.g., CNN, RNN, and self-attention

mechanisms) by applying the relationships between

nodes. In particular, the graph convolutional network

(GCN), a prominent network derived from the GNN,

focuses on aggregating information from neighboring

nodes, similar to how a 2D CNN learns the locality

between pixels, as shown in Fig. 1, which can reduce the

computational complexity of GNNs with little

performance degradation as they do not include

unnecessary node connections [26, 27].

3) Recurrent Neural Network (RNN)

An RNN is designed for tasks that involve learning

patterns in sequential data or understanding contextual

information in sentences. They are designed to retain

previous information and incorporate new information,

thereby effectively learning the patterns or dependencies

in sequential data. RNN architecture employs recurrent

neurons that sequentially process each element of the

data sequence. The result of the operation in the previous

hidden state is used as an input for the calculations in the

current hidden state. This allows for the simultaneous

processing of the output of the previous hidden state and

the current input data, enabling the network to

understand the interrelationships and dependencies

within the data.

Long short-term memory (LSTM) [101] and gated

recurrent unit (GRU) [102] are variants of RNNs

designed to learn long-term dependencies in data. Fig. 2

shows the structures of the RNN and LSTM. LSTM has a

more complex structure than an RNN and includes three

gates: forget, input, and output. The LSTM

computational process involves numerous MAC

operations and uses various parameters. Because the

output of one cell is used as the input for the next cell,

significant data movement is required. In summary, the

operations within an RNN are performed sequentially,

making the overall workflow challenging to parallelize.

Furthermore, given various weight parameters, the value

of one cell block is reused and its operation is repeated,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 325

leading to constant data movement. To improve this

situation, it is necessary to carefully consider the

mapping of the data required for computation and

manage the data flow effectively.

4) Transformer

Transformer [105] is a model that significantly

outperforms the performance of RNNs in terms of

processing sequence data. It consists of an encoder-

decoder structure that incorporates a self-attention

mechanism. The model is capable of training on

sequence data more comprehensively and learning long-

term dependencies effectively owing to its ability to

process all elements in parallel. The more these encoder-

decoder layers are stacked, the better the model

understands the complex patterns and interrelationships

among the embeddings. Because of these characteristics,

transformers outperform RNNs, particularly in the field

of natural language processing (NLP) [109]. Furthermore,

owing to their scalability and flexibility, variants without

decoders, such as the vision transformer (ViT) [108],

have been introduced into the field of computer vision

[114], where they demonstrate excellent performance.

Fig. 3 shows the structure of the transformer. The

transformer consists of three main components: an

embedding layer, a multihead self-attention (MHA), and

a feed-forward network (FFN). The embedding layer

converts each sequence element into a continuous high-

dimensional vector, thereby allowing the model to

consistently extract complex information from each

element and facilitate deeper learning. Transformer

operations are primarily concentrated in MHA and FFN.

MHA maintains interdependencies by training different

feature maps from multiple attention heads and

combining them into the output. Each attention head

obtains a query (Q), key (K), and value (V) through

matrix multiplication of weights. This process, which

involves the parallel operation of different weights,

requires high memory bandwidth and frequent data

transfers. Self-attention is then applied through Q, K, and

V, and the attentional head is updated. The FFN serves to

mix the attention from the heads obtained through the

MHA, preventing bias towards any single attention value.

In summary, the transformer processes the inputs based

on various weights and continually reuses the outputs as

inputs for subsequent operations. Therefore, to optimize

the operational process of the transformer, data mapping

must be carefully considered so that the input/output

values and weights can be effectively reused.

III. PIM FOR DEEP NEURAL NETWORKS

1. Technologies and Representative Architectures

Needed for PIM

PIM fundamentally offers high throughput because it

minimizes data transfer with the host processor by

integrating data processing logic directly into memory,

thus resolving the associated bottleneck [28, 29]. In the

Fig. 1. 2D (two-dimensional) convolutional neural networks
and graph convolution networks.

Fig. 2. RNN and LSTM architectures.

Fig. 3. Transformer architecture.

326 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

DNN inference process, the most frequently performed

MAC operations are executed in the PIM core to achieve

high energy efficiency. In addition, during the DNN

training process, PIM can reduce both processing time

and power consumption by performing the computations

necessary for weight updates directly within the memory

[88, 94]. However, not all functions benefit from the

application of PIM. For instance, it can be burdensome to

process functions with high computational complexity

and memory reusability using in-memory logic.

Therefore, to determine where a specific function should

be computed, it is necessary to establish appropriate

metrics and analyze them using a benchmark simulator.

DAMOV [30] is a memory simulator comprising a

frequently used ramulator [31] and a zsim CPU simulator

[32]. It extracts memory traces for each workload [117]

using an Intel VTune profiler [33]. The extracted traces

calculate the temporal/spatial locality and divide the

causes of memory bottlenecks into six classes using three

indicators: the last-to-first miss-ratio (LFMR), last-level-

cache misses per kilo-instruction (LLC MPKI), and

arithmetic intensity. Moreover, by conducting an

experimental analysis with 77 K functions, we

demonstrated its reliability and applicability across

various research areas.

Current PIM research is largely categorized into

commercially accessible DRAM-based PIM research

[52-59, 81-85] and research utilizing next-generation

memory [90-99], both of which are presented in a

competitive manner. Unlike academic research, mass-

producible PIM products fundamentally utilize bank-

level parallelism of DRAM for computation processing.

In addition, they also consider maximizing compatibility

with existing mass-produced products and prioritizing

cost aspects, such as minimizing the area occupied by

logic operations and addressing heat-dissipation issues.

The HBM-PIM [58] is an addition of PIM functionality

to the HBM architecture, designed to increase memory

bandwidth and energy efficiency by performing

computational processing within the memory. It proposes

not only a hardware architecture but also a software stack.

The software stack supports FP16 operations, MAC,

general matrix-matrix product (GEMM), and activation

functions, along with the operation logic loaded onto the

HBM by applying the LUT. In addition, it allows

programmers to write PIM microkernels using PIM

commands to maximize performance. The hardware

architecture was implemented based on 20 nm DRAM

technology and integrated with an unmodified

commercial processor to prove its practicality and

effectiveness at the system level. Furthermore, it is

designed to be replaceable because it is compatible with

existing HBM. By implementing the proposed PIM

architecture, there was a significant improvement in the

performance of memory-bound neural network kernels

and applications. Specifically, the performance of neural

network kernels increased by 11.2×, while applications

showed a 3.5× improvement. Additionally, the energy

consumption per bit transfer was reduced by 3.5×,

resulting in an overall enhancement of the system's

energy efficiency by 3.2× when running applications.

Newton’s architecture [59] was designed as an

accelerator in memory (AiM) for DNNs. In this design, a

minimum number of computing units were placed in the

DRAM to satisfy the area constraints, which can be a

problem in the hardware design for PIM. The computing

units included MAC operations and buffers. It also uses

an interface similar to that of DRAM so that the host can

issue commands for PIM computing. The PIM matches

the internal DRAM bandwidth and speed, captures input

reuse, and uses a global input vector buffer to divide the

buffer area costs across all channels. The three

optimization techniques proposed by Newton helped the

PIM-host interface overcome bottlenecks: 1) Grouping

multiple computational tasks in the in-bank and bank

groups. 2) Support complex, multistep computing

commands to process multiple stages of operations

simultaneously. 3) The strength of the internal low-

dropout (LDO) regulator and DC-DC pump driver should

be increased to allow for higher current and faster

voltage recovery. As a result, Newton applied to HBM2E

achieves an average speed improvement of 10× over a

system assumed to ideally use the external DRAM

bandwidth without applying PIM and 54× over a GPU.

The UPMEM PIM architecture [52] was the first

commercialized PIM architecture that combined

traditional DRAM memory arrays and a common

instruction sequence core: the DRAM processing unit

(DPU). DPUs are a concept proposed for UPMEM and

are used to perform operations within memory chips. The

DPU has exclusive access to a 64MB DRAM bank,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 327

known as the main random-access memory (MRAM), 24

KB of command memory, and 64 KB of scratchpad

memory, called the working random access memory

(WRAM). This allows programmers to write code to be

executed on the DPU and process the data within the

memory. This implies that the data transfer between the

host processor and DPU can be controlled, allowing for

the selection of parallel and sequential processing.

On the other hand, the most commonly used next-

generation memory in PIM architecture is ReRAM [36,

39, 91, 95, 100, 103, 107]. The ReRAM crossbar array

consists of cells arranged in rows and columns. This

array can be used for memory purposes and can

efficiently perform computations such as the general

matrix-vector product (GEMV), composed of MAC

operations. In addition, the use of a crossbar array can

significantly reduce the overhead and energy related to

memory movement. In particular, as a pioneering study

on ReRAM-based PIM, PRIME [91] distinguished the

internal array space of a bank as memory a subarray

(MemS), full function subarray (FFS), and buffer

subarray. MemS is a circuit that stores only data. FFS

allows the crossbar to be used for both memory and

operation logic, achieving minimum area overhead. To

enable this, multiple voltage sources are added to provide

an accurate input voltage. The column multiplexer

provides an analog subtraction unit and a nonlinear

threshold value unit, and the SA is modified to achieve

high precision.

2. PIM for CNN

Numerous PIM studies primarily support the MAC

operation required by CNN [46, 47, 52-59]. However,

this study focuses on PIM research that employs data

mapping methods and dataflow necessary for CNN

operations. Efficient data handling in the CNN inference

process is crucial, with particular emphasis on

maximizing the reuse of weights as well as the input and

output feature maps used between layers.

1) Inference Phase

Peng et al. [45] proposed an ReRAM-based PIM

accelerator that adapted the data-mapping technique

proposed by Fey et al. [44] for the CONV layer. This

reduces the use of interconnects and buffers by reusing

the input data and weights. As shown in Fig. 4(a), a 3D

kernel of size K×K×D is arranged in vertical columns,

and the input feature map (IFM) is arranged in a similar

manner in K×K submatrices within 1×1×D kernels. As

shown in Fig. 4(b), computation of the subarrays

proceeds as a single PE within the ReRAM subarray.

This method is designed to maximize the reuse of IFMs

and weights as the kernel (i.e., weights) slides over them

during computation. Consequently, this study achieved a

2.1× increase in speed and 17% improvement in energy

efficiency (measured in TOPS/W) during the inference

phase with the VGG-16 model compared with [92].

(a)

(b)

Fig. 4. Processing-in-Memory for CNN proposed in [45]: (a) A
basic mapping method of input and weight data, with kernel
moving in multiple cycles; (b) An example of IFMs transferred
among PEs and how the kernel slides over the input.

328 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

2) End-to-End Training Phase

Backpropagation in CNNs requires a significant

amount of computation because it involves computing

the gradients for each layer and updating the weights to

train the model. It is considered memory-bound because

it includes storing and tracking the intermediate features

and gradients of all the layers, which is more intensive

than inferring the CONV layer. Therefore, higher

efficiency can be expected by optimizing the training

process in the PIM.

T-PIM [88] is a DRAM-based PIM study considering

the end-to-end training of CNN models. Fig. 5 represents

the data mapping of T-PIM that reduces the overhead

caused by data rearrangement in DRAM and optimizes

the data access to weights. Fig. 5(a) and (b) show the

data mapping methods during the forward pass (FWP)

and backward pass (BWP) within the MLP layer,

respectively. To maximize the utilization of DRAM's cell

array without rearranging data, the size of the tile is set to

t tM N´ and each weight is mapped to DRAM's column

addresses. During the FWP process, the input vector is

flattened to size tM (InputL ())tM and multiplied

with the weights arranged in DRAM. Each column is

then accumulated into an output buffer of size tN

(OutputL ()tN). For the BWP process, to use the

weights aligned in the FWP process without additional

rearrangement, the loss (ErrorL (tN)) is flattened into

tN elements and performs vector operations with the

weights. Each row is then accumulated into an output

buffer of size tM (OutputL ())tM . Fig. 5(c) and (d)

represent the data mapping methods used during the

FWP and BWP in the CONV layer, respectively. Similar

to the MLP layer, weights (WeightL) are arranged to

column addresses by kernel size (k HkW= ´), so the

weights can be reused without the need for data

rearrangement. T-PIM shows high efficiency of 0.84-

7.59 TOPS/W for 8-bit input data and 0.25-2.21

TOPS/W for 16-bit input data in VGG16 model training,

using the non-zero computing, powering off computing

method.

3. PIM for GCN

The processing steps of a GCN (e.g., aggregation,

combination, embedding, message passing, and readout)

are mostly low in operational complexity, data-dependent,

and performed repetitively. Among these, aggregation

must process large amounts of data to combine the

information of each node with that of its neighboring

nodes. Moreover, these operations have the characteristic

that they must be performed as different operation

combinations depending on the relationship between

each node and its neighbors. These characteristics require

a large amount of computation and high memory

bandwidth. Therefore, these drawbacks can be

effectively mitigated using PIM. The PIM for GCN has

also been approached by actively utilizing an ReRAM

crossbar to perform operation processing as an analog

computing method [36].

Two representative techniques are the MAC crossbar

and content addressable memory (CAM) crossbar [37].

Among these two, the CAM crossbar performs content-

based searches. This allows a parallel associative search

by broadcasting the search key across multiple rows.

Fig. 5. Data mapping of T-PIM: (a) FWP layer; (b) BWP layer; (c) FWP, CONV layer; (d) BWP, CONV layer (Reprinted from [88]
with permission).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 329

This enabled the storage of more data on a chip in the

same area. It was shown in TCAM [38] that 2-transistor-

2-resistor ReRAM can achieve 3× higher density than

the existing 8-transistor SRAM. The MAC crossbar can

effectively perform the VMM with low energy

consumption through bit-line current accumulation. This

process can be described in three steps. 1) The elements

of the matrix were converted to voltage and assigned to

the crossbar, and the resistor of the cell was precisely

adjusted to correspond to the elements. 2) The vector is

converted to a voltage, which is accumulated on the word

line. 3) The current of the bit line was measured, and the

sum of the currents of all cells connected to the bit line

was obtained as the product of the column and vector.

Fig. 6 shows the overall architecture of PIM-GCN [39],

which consists of a central controller, a search engine,

and two computing engines. Each of these comprises a

CAM crossbar and a MAC crossbar, and the two

computing engines operate in a typical ping-pong

architecture, alternately performing aggregation and

combination. The central controller initially loaded the

graph data and finally exported the GCN results back to

the external DRAM. It also generates the necessary

control logic for the CAM crossbar, the MAC crossbar,

and the special function unit (SFU). The SFU, composed

of a shift-and-add (S&A) unit and scalar arithmetic and

logic (sALU) units, processes the partial results derived

from the MAC crossbar. PIM-GCN introduces not only a

hardware architecture that can maximize inter-vertex

parallelism, but also a technique for optimizing node

grouping without violating independence, providing

scheduling for these groups to operate independently at

each layer. It also proposes a timing strategy to reduce

idle time owing to differences in read/write latency.

GCIM [40] is an accelerator research that presents a

software-hardware co-design approach, becoming the

first to enable efficient data processing of GCNs in 3D

stack memory. From a hardware design perspective, the

GCIM proposes a logic-in-memory (LIM) die that

integrates light computing units near the DRAM bank,

fully utilizing the bandwidth and parallelism at the bank

level. The GCIM offloads memory-bound aggregation

operations onto the LIM die. Each LIM bank group is

equipped with an LLU consisting of a MAC array, vertex

feature buffer (VFB), look-ahead FIFO, CAM, and a

controller to accelerate the aggregation phase. A MAC

array was used to execute the aggregation operations.

VFB is used to buffer the output features during the

aggregation phase. Look-ahead FIFO is a special edge

buffer implemented as a scratch-pad memory that

processes the frontmost edge upon receiving a signal

from the controller. The CAM provides key-value

storage that records the ID of nonlocal vertices and the

local addresses where their replicas are buffered. The

controller is a data-based control unit that processes the

aggregation operations of local vertices. On the software

side, GCIM proposes a data-mapping algorithm that

considers locality. It balances the workload by splitting

the input graph into subgraphs considering the

connection strength of the nodes. Here, if the weight

between two vertices is large or if multiple paths exist,

the strength is determined to be strong. The divided

subgraphs are assigned to the vault and mapped to the

LIM bank group. This was optimized to utilize a high

bandwidth and reduce unnecessary data movement. This

significantly improves the computational efficiency

while preventing redundant calculations. In addition, the

GCIM adopts a sequential mapping strategy to maximize

data locality and minimize the processing delay of the

aggregation. This optimization technique uses dynamic

programming [41], a mechanism that saves the optimal

solution of a subproblem and reuses it to determine the

optimal solution of the entire problem. Based on

experimental results, GCIM demonstrated a remarkable

improvement in inference speed compared to other

models. Specifically, it achieved a speed enhancement of

Fig. 6. PIMGCN architecture overview (Reprinted from [39]
with permission).

330 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

580.02× compared to HyGCN [42], 275.37× compared

to CIM-HyGCN, and 272.01× compared to PyG-CPU

[43]. These results highlight the significant performance

boost offered by GCIM in terms of inference speed.

Although the two studies mentioned earlier were based

on different memory-based PIM hardware architectures,

they both proposed algorithms for grouping and mapping

graph data nodes in a memory-friendly manner, and

effectively handled GCN aggregation and combination

operations.

4. PIM for RNN

RNN and LSTM structures can be effectively applied

with PIM owing to their similarity to CONV layers and

their ability to reuse feature maps and weights. ERA-

LSTM [103] is a PuM architecture that uses ReRAM

crossbars. It optimized the RNN's weight precision and

digital-to-analog converter (DAC) in Long et al. [100]

PIM architecture and applied systolic dataflow to

improve computing efficiency and performance. Fig. 7(a)

shows the overall structure of ERA-LSTM. The VMM

unit in Fig. 7(b) stores the weights of the four LSTM

gates and uses a digital-to-analog converter to deliver the

input data and hidden states from the I/O buffer to the

analog ReRAM crossbar. The computational results of

the VMM unit are transmitted to an element-wise (EW)

unit. The EW unit enables EW operation of the LSTM

cell in the three feedforward layers. In addition, the

VMM and EW units efficiently handle each of the four

gate weights (. ., , , ,)f i g oe g W W W W by splitting each

weight into four weights 00 11(. .,)e g W W- and tiling

each weight into a tile for computation. In addition, the

NN operation used an approximator to minimize the

overhead caused by analog-to-digital converters,

achieving a 6.1× operational efficiency compared with

Long et al. [100].

PSB-RNN [104] is another PuM architecture that uses

a ReRAM crossbar. PSB-RNN transforms the MAC

operation required for the RNN model into a single

weights matrix using Fast Fourier Transform (FFT). The

real (Re) and imaginary (Im) components of the

resulting matrix are mapped onto the ReRAM crossbar,

thereby enabling the retrieval of complex number

operation results from each PE result. This method

yielded a computational efficiency that was 17× higher

than that of Long et al. [100] for the LSTM model.

Although this study requires additional operations and

tasks beyond data mapping for the traditional LSTM

model, it proposes an effective method for ReRAM

crossbar PIM by mapping data for a complex number of

operations necessary for MAC and utilizing the data flow.

5. PIM for Transformer

TransPIM [106] is an HBM-based PnM designed for

efficient transformer utilization. An arithmetic control

unit (ACU) was allocated to each bank for computation,

and a token-based data shading scheme was proposed to

allow parallel processing by dividing and assigning the

data required for the calculation to the HBM's bank stack.

The study also optimizes data using a token-based

transformer operat ion method, which enables

independent operations between tokens, in contrast to the

existing layer-operated transformer structure. Fig. 8(a)

illustrates the encoder process of TransPIM. The input

token size is L×D, where L signifies the number of

tokens and D indicates the size of the embedding vector's

dimension. Input tokens 1 2,I I and 3 I are allocated to

each bank using a technique that distributes each input

token to N banks. Based on this, the embedding values

, ,i i iQ K V corresponding to each input token are

calculated and assigned to the same bank, followed by a

(a)

(b)

Fig. 7. ERA-LSTM: (a) architecture overview; (b) Mapping a
LSTM cell to multiple tiles.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 331

self-attention operation. For the MHA, iK and iV are

sequentially transferred to bank i +1 and sent to another

bank for calculation using the ring-broadcast technique,

thus enabling computation with minimal data

transmission between banks. Fig. 8(b) shows a decoder

block, where K and V are received from the encoder

vector for reuse, and only the last bank obtains new Q, K,

and V vectors for the fully connected layer computation.

The new newQ is broadcast to all other banks to

calculate the attention score, and newK and newV are

concatenated with the previous iK and iV of the last

bank. Each bank stores the weights for Q, K, and V

during this time, and the ring broadcast technique is

employed to reuse the stored weights and Q, K, and V

values in the other banks, facilitating the efficient

processing of repeated NN operations. To this end, this

study incorporates the ACU onto the banks of HBM

memory and adds a ring broadcast unit between the

banks. This allows for a reduction of more than 30.8% in

the data movement overhead on average compared with

the existing transformer, with only 4% additional area

overhead relative to the original DRAM. This study

ensured that the PIM power remained below the DRAM

power budget of 60 W.

ReTransformer [107] proposed and applied

optimization techniques to effectively accelerate GEMV

operations within the transformer inference process, and

softmax is suitable for low-power implementation in

ReRAM-based PIM. This study has a similar direction to

the existing ReRAM-based transformer-based workload

target PIM study implementing MatMul operations

inside ReRAM and applying optimization techniques.

Thus, the latency of the operational process can be

reduced. Specifically, this paper proposes a method of

decomposing the operation into two consecutive

multiplication steps to solve the compute-write-compute

dependency that occurs when implementing the MatMul

operation between Q and TK during the transformer

inference process using ReRAM. Consequently, the

latency recorded in the crossbar of the ReRAM can be

eliminated. In addition, a modified hybrid softmax

formula that can maximize the crossbar arrangement of

the ReRAM was proposed and applied to the softmax

operation; as a result, only 0.691 mW was consumed and

implemented, unlike 1.023 mW for the existing softmax

(a)

(b)

Fig. 8. Token-based data sharding scheme and the dataflow of
Transformer: (a) encoder; (b) decoder in TransPIM (Reprinted
from [106] with permission).

332 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

operation. Finally, this study achieved a 23.21×

computational efficiency improvement and a 1,086×

power consumption reduction compared to NVIDIA

TITAN RTX GPUs.

6. Discussions

The PIM is a new architecture that integrates

processing and memory units into the PE, thereby

enabling efficient data processing. However, owing to

the integration of computational functions into memory

cells, PIM may be limited in handling complex

operations, and can cause performance degradation when

computationally intensive operations are required.

Moreover, PIM's complex control structure and limited

memory capacity pose limit the full and effective

handling of increasingly large AI workloads. For PIM

cores to be effectively applied to AI workloads, clear

criteria are required to determine whether operands

should be computed in the host processor or the PIM

core. These criteria are typically derived by statistically

analyzing the results measured at the functional level

using benchmark simulators [34, 35]. In addition, in the

PIM design process, the mapping of processes and

parameters, as well as the data flow considering complex

operations, must be carefully incorporated. In previous

PIM studies, these considerations were designed

heuristically. However, with increasingly diverse PIM

architectures and algorithms, there is an urgent need for

research on compilers that can automatically optimize

workload functions, data mapping, and data flow.

IV. CONCLUSIONS

In this paper, we present industrial products and

analyze previous studies on PIM architectures for DNNs.

We provide detailed explanations of the characteristics of

representative DNNs and the overall structure of PIM.

Specifically, we delve into how processing techniques,

data mapping, and data flow are handled in PIM from a

DNN perspective, drawing insights from representative

studies. Additionally, we highlight the challenges that

need to be addressed for PIM to replace the traditional

von Neumann architecture. We emphasize the

importance of conducting research on a universal

software stack and compiler to effectively implement

existing studies. We anticipate that this study will offer

valuable insights to researchers exploring PIM

technology.

ACKNOWLEDGMENTS

This study was supported by the Research Program

funded by the SeoulTech (Seoul National University of

Science and Technology).

REFERENCES

[1] D. Kreuzberger, N. Kühl, and S. Hirschl,

“Machine learning operations (mlops): Overview,

definition, and architecture,” IEEE Access, vol. 11,

pp. 31866-31879, 2023.

[2] W. Liu et al., “A survey of deep neural network

architectures and their applications,”

Neurocomputing, vol. 234, pp. 11-26, 2017.

[3] J. A. Suykens and J. Vandewalle, “Training

multilayer perceptron classifiers based on a

modified support vector method,” IEEE

Transactions on Neural Networks, vol. 10, no. 4,

pp. 907-911, 1999.

[4] J. -W. Jang et al., “Sparsity-aware and re-

configurable NPU architecture for Samsung

flagship mobile SoC,” in Proc. 2021 ACM/IEEE

48th Annual International Symposium on

Computer Architecture (ISCA), 2021, pp. 15-28.

[5] A. Reuther et al., “AI accelerator survey and

trends,” in Proc. 2021 IEEE High Performance

Extreme Computing Conference (HPEC), 2021, pp.

1-9.

[6] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh,

and E. Eleftheriou, “Memory devices and

applications for in-memory computing,” Nature

nanotechnology, vol. 15, no. 7, pp. 529-544, 2020.

[7] M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient

processing in-memory for data intensive

applications,” in Proc. 54th Annual Design

Automation Conference 2017, 2017, pp. 1-6.

[8] R. Hecht-Nielsen, “Theory of the backpropagation

neural network,” Neural networks for perception,

Elsevier, 1992, pp. 65-93.

[9] A. Ganguly, R. Muralidhar, and V. Singh,

“Towards Energy Efficient non-von Neumann

Architectures for Deep Learning,” in2Proc. 20th

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 333

International Symposium on Quality Electronic

Design (ISQED), 2019, pp. 335-342.

[10] J. Li et al., “SmartShuttle: Optimizing off-chip

memory accesses for deep learning accelerators,”

in Proc. 2018 Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2018,

pp. 343-348.

[11] I. Daubechies, R. DeVore, S. Foucart, B. Hanin,

and G. Petrova, “Nonlinear approximation and

(deep) ReLU networks,” Constructive

Approximation, vol. 55, no. 1, pp. 127-172, 2022.

[12] T. Liu, T. Qiu, and S. Luan, “Hyperbolic-tangent-

function-based cyclic correlation: Definition and

theory,” Signal Processing, vol. 164, pp. 206-216,

2019.

[13] J. Han and C. Moraga, “The influence of the

sigmoid function parameters on the speed of

backpropagation learning,” in From Natural to

Artificial Neural Computation: International

Workshop on Artificial Neural Networks Malaga-

Torremolinos, 1995, pp. 195-201.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional

neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84-90, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep

residual learning for image recognition,” in Proc.

IEEE conference on computer vision and pattern

recognition, 2016, pp. 770-778.

[16] S. Zagoruyko and N. Komodakis, “Wide residual

networks,” arXiv preprint arXiv:1605.07146, 2016.

[17] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A

survey of convolutional neural networks: analysis,

applications, and prospects,” IEEE Transactions

on neural networks and learning systems, vol. 33,

no. 12, pp. 6999-7019, Dec. 2022.

[18] J. Yin et al., “Highly parallel GEMV with register

blocking method on GPU architecture,” Journal of

Visual Communication and Image Representation,

vol. 25, no. 7, pp. 1566-1573, 2014.

[19] J. Cheng et al., “Cache-Major: A Hardware

Architecture and Scheduling Policy for Improving

DRAM Access Efficiency in GEMV,” in Proc.

2022 IEEE 16th International Conference on

Solid-State & Integrated Circuit Technology

(ICSICT), 2022, pp. 1-3.

[20] S. Khan et al., “Transformers in vision: A survey,”

ACM computing surveys (CSUR), vol. 54, no. 10s,

pp. 1-41, 2022.

[21] P. C. Chen and Y. K. Hwang, “SANDROS: a

dynamic graph search algorithm for motion

planning,” IEEE Transactions on Robotics and

Automation, vol. 14, no. 3, pp. 390-403, 1998.

[22] K. M. Chandy and J. Misra, “Distributed

computation on graphs: Shortest path algorithms,”

Communications of the ACM, vol. 25, no. 11, pp.

833-837, 1982.

[23] E. M. Palmer, “On the spanning tree packing

number of a graph: a survey,” Discrete

Mathematics, vol. 230, no. 1-3, pp. 13-21, 2001.

[24] C. C. Aggarwal and H. Wang, “A survey of

clustering algorithms for graph data,” Managing

and mining graph data, pp. 275-301, 2010.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S.

Y. Philip, “A comprehensive survey on graph

neural networks,” IEEE transactions on neural

networks and learning systems, vol. 32, no. 1, pp.

4-24, 2020.

[26] S. Zhang, H. Tong, J. Xu, and R. Maciejewski,

“Graph convolutional networks: a comprehensive

review,” Computational Social Networks, vol. 6,

no. 1, pp. 1-23, 2019.

[27] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li,

“Simple and deep graph convolutional networks,”

in Proc. International conference on machine

learning, 2020, pp. 1725-1735.

[28] X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han,

“Breaking the von Neumann bottleneck:

architecture-level processing-in-memory technology,”

Science China Information Sciences, vol. 64, no. 6,

p. 160404, 2021.

[29] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T.

Hoefler, “Data movement is all you need: A case

study on optimizing transformers,” in Proceedings

of Machine Learning and Systems, vol. 3, pp. 711-

732, 2021.

[30] G. F. Oliveira et al., “DAMOV: A new

methodology and benchmark suite for evaluating

data movement bottlenecks,” IEEE Access, vol. 9,

pp. 134457-134502, 2021.

[31] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A

fast and extensible DRAM simulator,” IEEE

Computer architecture letters, vol. 15, no. 1, pp.

45-49, 2015.

334 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

[32] D. Sanchez and C. Kozyrakis, “ZSim: Fast and

accurate microarchitectural simulation of

thousand-core systems,” ACM SIGARCH

Computer architecture news, vol. 41, no. 3, pp.

475-486, 2013.

[33] C.-K. Luk et al., “Pin: building customized

program analysis tools with dynamic

instrumentation,” Acm sigplan notices, vol. 40, no.

6, pp. 190-200, 2005.

[34] P. Rosenfeld, E. Cooper-Balis, and B. Jacob,

“DRAMSim2: A cycle accurate memory system

simulator,” IEEE computer architecture letters,

vol. 10, no. 1, pp. 16-19, 2011.

[35] J. D. Leidel and Y. Chen, “Hmc-sim: A simulation

framework for hybrid memory cube devices,”

Parallel Processing Letters, vol. 24, no. 4, p.

1442002, 2014.

[36] S. Mittal, “A survey of ReRAM-based

architectures for processing-in-memory and neural

networks,” Machine learning and knowledge

extraction, vol. 1, no. 1, pp. 75-114, 2018.

[37] N. Challapalle et al., “GaaS-X: Graph analytics

accelerator supporting sparse data representation

using crossbar architectures,” in Proc. 2020

ACM/IEEE Annual International Symposium on

Computer Architecture (ISCA), 2020, pp. 433-445.

[38] R. Yang et al., “Ternary content-addressable

memory with MoS2 transistors for massively

parallel data search,” Nature Electronics, vol. 2, no.

3, pp. 108-114, 2019.

[39] T. Yang et al., “PIMGCN: A ReRAM-based PIM

design for graph convolutional network

acceleration,” in Proc. 2021 58th ACM/IEEE

Design Automation Conference, 2021, pp. 583-588.

[40] J. Chen et al., “GCIM: Toward Efficient

Processing of Graph Convolutional Networks in

3D-Stacked Memory,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 41, no. 11, pp. 3579-3590, Nov. 2022.

[41] O. A. Alzubi et al., “An optimal pruning algorithm

of classifier ensembles: dynamic programming

approach,” Neural Computing and Applications,

vol. 32, pp. 16091-16107, 2020.

[42] M. Yan et al., “Hygcn: A gcn accelerator with

hybrid architecture,” in Proc. 2020 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), 2020, pp. 15-29.

[43] M. Fey and J. E. Lenssen, “Fast graph

representation learning with PyTorch Geometric,”

arXiv preprint arXiv:1903.02428, 2019.

[44] T. Gokmen, M. Onen, and W. Haensch, “Training

deep convolutional neural networks with resistive

cross-point devices,” Frontiers in neuroscience,

vol. 11, p. 538, 2017.

[45] X. Peng, R. Liu, and S. Yu, “Optimizing weight

mapping and data flow for convolutional neural

networks on RRAM based processing-in-memory

architecture,” in Proc. 2019 IEEE International

Symposium on Circuits and Systems, 2019, pp. 1-5.

[46] A. Roohi, S. Angizi, D. Fan, and R. F. DeMara,

“Processing-in-memory acceleration of

convolutional neural networks for energy-

effciency, and power-intermittency resilience,” in

Proc. 20th International Symposium on Quality

Electronic Design (ISQED), 2019, pp. 8-13.

[47] Y. Wang, W. Chen, J. Yang, and T. Li, “Towards

memory-efficient allocation of CNNs on

processing-in-memory architecture,” IEEE

Transactions on Parallel and Distributed Systems,

vol. 29, no. 6, pp. 1428-1441, 2018.

[48] H. Dbouk, S. K. Gonugondla, C. Sakr, and N. R.

Shanbhag, “A 0.44-μJ/dec, 39.9-μs/dec, recurrent

attention in-memory processor for keyword

spotting,” IEEE Journal of Solid-State Circuits,

vol. 56, no. 7, pp. 2234-2244, 2020.

[49] A. K. Ramanathan et al., “Look-up table based

energy efficient processing in cache support for

neural network acceleration,” in Proc. 2020 53rd

Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2020, pp. 88-101.

[50] M. He et al., “Newton: A DRAM-maker’s

accelerator-in-memory (AiM) architecture for

machine learning,” in Proc. 2020 53rd Annual

IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2020, pp. 372-385.

[51] M. Zhou, W. Xu, J. Kang, and T. Rosing,

“TransPIM: A Memory-based Acceleration via

Software-Hardware Co-Design for Transformer,”

in Proc. 2022 IEEE International Symposium on

High-Performance Computer Architecture

(HPCA), 2022, pp. 1071-1085.

[52] J. Gómez-Luna et al., “Benchmarking memory-

centric computing systems: Analysis of real

processing-in-memory hardware,” in Proc. 2021

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 335

12th International Green and Sustainable

Computing Conference (IGSC), 2021, pp. 1-7.

[53] F. Devaux, “The true processing in memory

accelerator,” in Proc. 2019 IEEE Hot Chips 31

Symposium (HCS), 2019, pp. 1-24.

[54] H. Shin et al. “McDRAM: Low latency and

energy-efficient matrix computations in DRAM,”

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 37, no. 11,

pp. 2613-2622, 2018.

[55] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo,

“McDRAM v2: In-dynamic random access

memory systolic array accelerator to address the

large model problem in deep neural networks on

the edge,” IEEE Access, vol. 8, pp. 135223-

135243, 2020.

[56] Y. C. Kwon et al., “25.4 A 20nm 6GB Function-

In-Memory DRAM, Based on HBM2 with a

1.2TFLOPS Programmable Computing Unit Using

Bank-Level Parallelism, for Machine Learning

Applications,” in Proc. 2021 IEEE International

Solid-State Circuits Conference, Feb. 2021, pp.

350-352.

[57] S. Lee et al., “Hardware architecture and software

stack for PIM based on commercial DRAM

technology: Industrial product,” in Proc. 2021

ACM/IEEE 48th Annual International Symposium

on Computer Architecture (ISCA), 2021, pp. 43-56.

[58] J. H. Kim et al., “Aquabolt-XL: Samsung HBM2-

PIM with in-memory processing for ML

accelerators and beyond,” in Proc. 2021 IEEE Hot

Chips 33 Symposium (HCS), 2021, pp. 1-26.

[59] D. Kwon et al., “A 1ynm 1.25 V 8Gb 16Gb/s/Pin

GDDR6-Based Accelerator-in-Memory Supporting

1TFLOPS MAC Operation and Various Activation

Functions for Deep Learning Application,” IEEE

Journal of Solid-State Circuits, vol. 58, no. 1, pp.

291-302, 2022.

[60] A. Boroumand et al., “LazyPIM: Efficient support

for cache coherence in processing-in-memory

architectures,” arXiv preprint arXiv:1706.03162,

2017.

[61] M. Gao, J. Pu, X. Yang, M. Horowitz, and C.

Kozyrakis, “Tetris: Scalable and efficient neural

network acceleration with 3d memory,” in Proc.

22nd International Conference on Architectural

Support for Programming Languages and

Operating Systems, 2017, pp. 751-764.

[62] M. P. Drumond Lages De Oliveira et al., “The

Mondrian data engine,” in Proc. 44th International

Symposium on Computer Architecture, 2017.

[63] G. Dai et al., “Graphh: A processing-in-memory

architecture for large-scale graph processing,”

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 38, no. 4, pp.

640-653, 2018.

[64] M. Zhang et al., “GraphP: Reducing

communication for PIM-based graph processing

with efficient data partition,” in Proc. 2018 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), 2018, pp. 544-

557.

[65] Y. Huang et al., “A heterogeneous PIM hardware-

software co-design for energy-efficient graph

processing,” in Proc. 2020 IEEE International

Parallel and Distributed Processing Symposium

(IPDPS), 2020, pp. 684-695.

[66] Y. Zhuo et al., “Graphq: Scalable pim-based graph

processing,” in Proc. 52nd Annual IEEE/ACM

International Symposium on Microarchitecture,

2019, pp. 712-725.

[67] J. Gómez-Luria et al., “Machine Learning Training

on a Real Processing-in-Memory System,” in Proc.

2022 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI), 2022, pp. 292-295.

[68] C. Giannoula, I. Fernandez, J. Gómez-Luna, N.

Koziris, G. Goumas, and O. Mutlu, “Towards

efficient sparse matrix vector multiplication on

real processing-in-memory systems,” arXiv

preprint arXiv:2204.00900, 2022.

[69] I. Fernandez et al., “Exploiting near-data

processing to accelerate time series analysis,” in

Proc. 2022 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2022, pp. 279-282.

[70] G. F. Oliveira, A. Boroumand, S. Ghose, J.

Gómez-Luna, and O. Mutlu, “Heterogeneous

Data-Centric Architectures for Modern Data-

Intensive Applications: Case Studies in Machine

Learning and Databases,” in Proc. 2022 IEEE

Computer Society Annual Symposium on VLSI

(ISVLSI), 2022, pp. 273-278.

[71] A. C. Jacob et al., “Compiling for the active

memory cube,” Tech. rep. RC25644 (WAT1612-

008). IBM Research Division, Tech. Rep., 2016.

336 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

[72] S. Lloyd and M. Gokhale, “Design space

exploration of near memory accelerators,” in Proc.

International Symposium on Memory Systems,

2018, pp. 218-220.

[73] M. Gokhale, S. Lloyd, and C. Hajas, “Near

memory data structure rearrangement,” in Proc.

Int. Symp. on Memory Systems, 2015, pp. 283-290.

[74] S. Lloyd and M. Gokhale, “In-memory data

rearrangement for irregular, data-intensive

computing,” Computer, vol. 48, no. 8, pp. 18-25,

2015.

[75] A. Rodrigues, M. Gokhale, and G. Voskuilen,

“Towards a scatter-gather architecture: hardware

and software issues,” in Proc. International

Symposium on Memory Systems, 2019, pp. 261-

271.

[76] S. Lloyd and M. Gokhale, “Near memory

key/value lookup acceleration,” in Proc.

International Symposium on Memory Systems,

2017, pp. 26-33.

[77] J. Landgraf, S. Lloyd, and M. Gokhale,

“Combining emulation and simulation to evaluate

a near memory key/value lookup accelerator,”

arXiv preprint arXiv:2105.06594, 2021.

[78] R. Nair, “Evolution of memory architecture,” Proc.

IEEE, vol. 103, no. 8, pp. 1331-1345, 2015.

[79] L. Ke et al., “Near-Memory Processing in Action:

Accelerating Personalized Recommendation With

AxDIMM,” IEEE Micro, vol. 42, no. 1, pp. 116-

127, 2022.

[80] D. Lee et al., “Improving in-memory database

operations with acceleration DIMM (AxDIMM),”

in Proc. Data Management on New Hardware,

2022, pp. 1-9.

[81] S. Li et al., “Drisa: A dram-based reconfigurable

in-situ accelerator,” in Proc. 50th Annual

IEEE/ACM International Symposium on

Microarchitecture, 2017, pp. 288-301.

[82] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J.

Yang, “DrAcc: A DRAM based accelerator for

accurate CNN inference,” in Proc. annual design

automation conference, 2018, pp. 1-6.

[83] S. Li et al., “Scope: A stochastic computing engine

for dram-based in-situ accelerator,” in Proc. 2018

51st Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2018, pp. 696-709.

[84] X. Xin, Y. Zhang, and J. Yang, “ELP2IM:

Efficient and low power bitwise operation

processing in DRAM,” in Proc. 2020 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), 2020, pp. 303-

314.

[85] V. Seshadri et al., “Ambit: In-memory accelerator

for bulk bitwise operations using commodity

DRAM technology,” in Proc. Annual IEEE/ACM

International Symposium on Microarchitecture,

2017, pp. 273-287.

[86] M. Ali et al., “IMAC: In-memory multi-bit

multiplication and accumulation in 6T SRAM

array,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 67, no. 8, pp. 2521-2531,

2020.

[87] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-

SRAM: In-memory computing SRAM macro for

binary/ternary deep neural networks,” IEEE

Journal of Solid-State Circuits, vol. 55, no. 6, pp.

1733-1743, 2020.

[88] J. Heo, J. Kim, S. Lim, W. Han, and J.-Y. Kim,

“T-PIM: An Energy-Efficient Processing-in-

Memory Accelerator for End-to-End On-Device

Training,” IEEE Journal of Solid-State Circuits,

vol. 58, no. 3, pp. 600-613, March 2023.

[89] A. Biswas and A. P. Chandrakasan, “Conv-RAM:

An energy-efficient SRAM with embedded

convolution computation for low-power CNN-

based machine learning applications,” in Proc.

2018 IEEE International Solid-State Circuits

Conference-(ISSCC), 2018, pp. 488-490.

[90] A. Shafiee et al., “ISAAC: A convolutional neural

network accelerator with in-situ analog arithmetic

in crossbars,” ACM SIGARCH Computer

Architecture News, vol. 44, no. 3, pp. 14-26, 2016.

[91] P. Chi et al., “Prime: A novel processing-in-

memory architecture for neural network

computation in reram-based main memory,” ACM

SIGARCH Computer Architecture News, vol. 44,

no. 3, pp. 27-39, 2016.

[92] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu,

“XNOR-RRAM: A scalable and parallel resistive

synaptic architecture for binary neural networks,”

in Proc. 2018 Design, Automation & Test in

Europe Conference & Exhibition, 2018, pp. 1423-

1428.

[93] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang,

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 337

“Binary convolutional neural network on RRAM,”

in Proc. Asia and South Pacific Design

Automation Conference (ASP-DAC), 2017, pp.

782-787.

[94] M. Imani, S. Gupta, Y. Kim, and T. Rosing,

“Floatpim: In-memory acceleration of deep neural

network training with high precision,” in Proc.

International Symposium on Computer

Architecture, 2019, pp. 802-815.

[95] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer:

A pipelined reram-based accelerator for deep

learning,” in Proc. IEEE international symposium

on high performance computer architecture

(HPCA), 2017, pp. 541-552.

[96] S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA:

An MRAM-based in-memory accelerator,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 39, no. 5, pp.

1123-1136, 2019.

[97] A. D. Patil, H. Hua, S. Gonugondla, M. Kang, and

N. R. Shanbhag, “An MRAM-based deep in-

memory architecture for deep neural networks,” in

Proc. 2019 IEEE International Symposium on

Circuits and Systems (ISCAS), 2019, pp. 1-5.

[98] S. Angizi, Z. He, F. Parveen, and D. Fan, “IMCE:

Energy-efficient bit-wise in-memory convolution

engine for deep neural network,” in Proc. Asia and

South Pacific Design Automation Conference

(ASP-DAC), 2018, pp. 111-116.

[99] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-

pim: an energy-efficient comparator-based

processing-in-memory neural network accelerator,”

in Proc. Annual Design Automation Conference,

2018, pp. 1-6.

[100] Y. Long, T. Na, and S. Mukhopadhyay, “ReRAM-

based processing-in-memory architecture for

recurrent neural network acceleration,” IEEE

Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 26, no. 12, pp. 2781-2794,

2018.

[101] S. Hochreiter and J. Schmidhuber, “Long short-

term memory,” Neural computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[102] K. Cho et al., “Learning phrase representations

using RNN encoder-decoder for statistical machine

translation,” arXiv preprint arXiv:1406.1078, 2014.

[103] J. Han, H. Liu, M. Wang, Z. Li, and Y. Zhang,

“ERA-LSTM: An efficient ReRAM-based

architecture for long short-term memory,” IEEE

Transactions on Parallel and Distributed Systems,

vol. 31, no. 6, pp. 1328-1342, 2019.

[104] N. Challapalle et al., “Psb-rnn: A processing-in-

memory systolic array architecture using block

circulant matrices for recurrent neural networks,”

in Proc. Design, Automation & Test in Europe

Conference & Exhibition, 2020, pp. 180-185.

[105] A. Vaswani et al., “Attention is all you need,”

Advances in neural information processing

systems, vol. 30, 2017.

[106] M. Zhou, W. Xu, J. Kang, and T. Rosing,

“TransPIM: A Memory-based Acceleration via

Software-Hardware Co-Design for Transformer,”

in Proc. IEEE Int. Symp. on High-Performance

Computer Architecture, 2022, pp. 1071-1085.

[107] X. Yang, B. Yan, H. Li, and Y. Chen,

“ReTransformer: ReRAM-based processing-in-

memory architecture for transformer acceleration,”

in Proc. 39th International Conference on

Computer-Aided Design, 2020, pp. 1-9.

[108] A. Dosovitskiy et al., “An image is worth 16x16

words: Transformers for image recognition at

scale,” arXiv preprint arXiv:2010.11929, 2020.

[109] S. M. Lakew, M. Cettolo, and M. Federico, “A

comparison of transformer and recurrent neural

networks on multilingual neural machine

translation,” arXiv preprint arXiv:1806.06957,

2018.

[110] S. Lee and H. Kim, “GaussianMask: Uncertainty-

aware Instance Segmentation based on Gaussian

Modeling,” in Proc. 26th International Conference

on Pattern Recognition (ICPR 2022), pp. 3851-

3857, Aug. 2022.

[111] J. Jang, H. Lee, and H. Kim, “Performance

Analysis of Phase Change Memory System on

Various CNN Inference Workloads,” in Proc. 19th

International SoC Design Conference (ISOCC

2022), pp. 133-134, Oct. 2022.

[112] J. Jang, H. Lee, and H. Kim, “Characterizing

Memory Access Patterns of Various Convolutional

Neural Networks for Utilizing Processing-In-

Memory,” in Proc. 2023 Int. Conf. on Electronics,

Information, and Communications (ICEIC 2023),

pp. 358-360, Feb. 2023.

[113] D. Chun, J. Choi, H.-J. Lee, and H. Kim, “CP-

338 JI-HOON JANG et al : IN-DEPTH SURVEY OF PROCESSING-IN-MEMORY ARCHITECTURES FOR DEEP NEURAL …

CNN: Computational Parallelization of CNN-

based Object Detectors in Heterogeneous

Embedded Systems for Autonomous Driving,”

IEEE Access, vol. 11, pp. 52812-52823, 2023.

[114] J. Lee and H. Kim, “Discrete Cosine Transformed

Images Are Easy To Recognize in Vision

Transformers,” IEIE Transactions on Smart

Processing & Computing, vol. 12, no. 1, pp. 48-54,

Feb. 2023.

[115] D. Nguyen, N. Hung, H. Kim, and H.-J. Lee, “An

Approximate Memory Architecture for Energy

Saving in Deep Learning Applications,” IEEE

Transactions on Circuits and Systems I: Regular

Papers, vol. 67, no. 5, pp. 1588-1601, May 2020.

[116] Mutlu, Onur, et al. “A Modern Primer on

Processing in Memory”, pp171-243, 2022

[117] S. Lee, H. Lee, H.-J. Lee, and H. Kim, “Evaluation

of Various Workloads in Filebench Suitable for

Phase-Change Memory,” IEIE Transactions on

Smart Processing & Computing, vol. 10, no. 2, pp.

160-166, Apr. 2021.

[118] S. Cho, “Volatile and Nonvolatile Memory

Devices for Neuromorphic and Processing-in-

memory Applications,” Journal of Semiconductor

Technology and Science, vol. 22, no. 1, pp.30-46,

Feb. 2022.

[119] W. Shim, “Impact of 3D NAND Current Variation

on Inference Accuracy for In-memory

Computing,” Journal of Semiconductor Technology

and Science, vol. 22, no. 5, pp. 341-345, Oct. 2022.

Ji-Hoon Jang received a BSc and an

MSc in electrical and information

engineering from the Seoul National

University of Science and

Technology, Seoul, South Korea, in

2021 and 2023. Currently, he is

conducting research at the same

university to obtain a PhD. His current research interests

include the areas of the areas of efficient hardware

accelerator design for deep neural networks, data

prefetcher, phase-change memory system and

processing-in-memory architectures.

Jin Shin received an AS in computer

system and engineering from the

Inha Technical College, Incheon,

South Korea, in 2017, a BSc in

computer science and engineering

from the National Institute for

Lifelong Education, Seoul, South

Korea, in 2019, and an MSc in Electrical and Information

Engineering from Seoul National University of Science

and Technology, Seoul, South Korea, in 2021. Currently,

he is conducting research at the same university to obtain

a PhD. His current research interests include

compression and restoration schemes for multimedia

applications.

Jun-Tae Park received a BSc and an

MSc in Electrical and Information

Engineering from the Seoul National

University of Science and

Technology, Seoul, South Korea, in

2020 and 2023. His current research

interests include the areas of efficient

hardware accelerator design for deep neural networks

and processing-in-memory architectures.

In-Seong Hwang received a BSc in

electrical and information Engi-

neering from Seoul National

University of Science and

Technology, Seoul, South Korea, in

2023. Currently, he is conducting

research at the same university to

obtain an MSc. His current research interests include the

areas of efficient hardware accelerator design for deep

neural networks and the design of Processing-In-Memory

simulators and controllers.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL. 23, NO. 5, OCTOBER, 2023 339

Hyun Kim received a BSc, an MSc,

and a PhD in electrical engineering

and computer science from Seoul

National University, Seoul, South

Korea, in 2009, 2011, and 2015,

respectively. From 2015 to 2018, he

was a BK Assistant Professor for

BK21 Creative Research Engineer Development for IT,

Seoul National University. In 2018, he joined the

Department of Electrical and Information Engineering,

Seoul National University of Science and Technology,

Seoul, where he is an Associate Professor. His current

research interests include algorithm, computer

architecture, memory, and SoC design for low-

complexity multimedia applications and deep neural

networks.

