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Abstract—Processing-in-Memory (PIM) is an 

emerging computing architecture that has gained 

significant attention in recent times. It aims to 

maximize data movement efficiency by moving away 

from the traditional von Neumann architecture. PIM 

is particularly well-suited for handling deep neural 

networks (DNNs) that require significant data 

movement between the processing unit and the 

memory device. As a result, there has been substantial 

research in this area. To optimally handle DNNs with 

diverse structures and inductive biases, such as 

convolutional neural networks, graph convolutional 

networks, recurrent neural networks, and 

transformers, within a PIM architecture, careful 

consideration should be given to how data mapping 

and data flow are processed in PIM. This paper aims 

to provide insight into these aspects by analyzing the 

characteristics of various DNNs and providing 

detailed explanations of how they have been 

implemented with PIM architectures using 

commercially available memory technologies like 

DRAM and next-generation memory technologies like 

ReRAM. 

Index Terms—Processing-in-memory, deep learning, 

next-generation memory, near-memory computing, 

deep neural network

I. INTRODUCTION

With the emergence of the backpropagation algorithm 

[8] and multilayer perceptron [3], deep neural networks 

(DNNs) have demonstrated outstanding performance in 

various fields [1, 2, 110]. However, they face the 

challenge of exponentially increasing computational load 

as the number of learnable parameters grows. This poses 

a significant obstacle to the practical implementation of 

DNN models in terms of processing speed and power 

consumption [113]. To tackle these issues, parallel 

processing devices such as graphics processing units 

(GPUs) and neural processing units (NPUs) [4] are being 

utilized, and researchers are actively exploring optimized 

acceleration algorithms for each device [5]. However, 

modern computer architectures based on the von 

Neumann architecture still have limitations regarding 

DNN processing. Specifically, a substantial portion of 

the power consumption, up to 75%, is attributed to 

loading parameters for DNN operations (e.g., feature 

maps and weights) from external memory, such as 

dynamic random-access memory (DRAM), to the 

processor, or storing them back to memory [9, 10, 115]. 

To address this issue, processor-in-memory (PIM) 

architecture has emerged as a promising technology [6]. 

By integrating computing and memory units at the 

processing element (PE) level, PIM significantly reduces 

latency associated with data transmission and enhances 

data processing efficiency [112]. This integrated 

architecture has the potential to significantly reduce

energy consumption during memory access, thereby

enhancing the efficiency of applications that require

high-performance computing [7].

This survey explores diverse PIM architectures and 
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methodologies for enhancing PIM performance in 

different memory types. It analyzes the characteristics of 

various DNN models, including convolutional neural 

networks (CNNs), graph neural networks (GNNs), 

recurrent neural networks (RNNs), and transformer 

models. The focus is on optimizing data mapping and 

dataflows within the context of PIM, providing valuable 

insights into efficient handling of DNNs. This 

comprehensive study aims to deepen researchers' 

understanding of the connection between DNNs and PIM, 

opening up new avenues for future AI research and 

advancements.

Section II shows the background of this work. Section 

III presents the PIM architectures for DNNs, and Section 

IV concludes this paper.

II. BACKGROUND

1. Processing in Memory (PIM)

In this section, we categorize PIM into two main 

types: processing-near-memory (PnM) and processing-

using-memory (PuM), based on where the data 

processing takes place, as classified in [116]. We then 

provide an overview of the characteristics associated 

with each category. Section III highlights representative 

studies that fall within these respective categories, 

offering valuable insights into the field.

1) Processing-using-Memory (PuM)

PuM refers to a technology that performs data 

operation processing within the memory itself. Previous 

research on in-memory computing architectures [81-99] 

has paved the way for PuM, which leverages memory 

cell structures or modifies the minimum unit memory 

structures to carry out computational functions directly in 

the memory. This approach helps alleviate the bottleneck 

between the processor and memory, resulting in minimal 

overhead and without requiring additional space. 

However, due to the need for compatibility with existing 

memory structures, PuM has limitations in terms of the 

range of operations it can support. Typically, PuM 

implementations focus on bitwise operations like AND, 

OR, XOR, and NOR [81, 82, 84, 85]. Implementing PuM 

technology is a notable challenge, particularly with 

DRAM, as it is already highly advanced and optimized 

for its read/write operations. DRAM-based PuM designs 

typically incorporate simple logic after sense-amplifier 

(SA) to perform small-scale operations [81, 82, 84, 85]. 

On the other hand, static random-access memory 

(SRAM)-based studies have explored analog operator 

units, taking advantage of relatively fewer spatial 

constraints, which enable support for more complex 

operations [86-89]. Another promising candidate for 

PuM is resistive random-access memory (ReRAM), a 

next-generation memory that efficiently carries out

multiple-accumulate (MAC) operations by leveraging the 

crossbar structure [84, 90-94, 100].

2) Processing-near-Memory (PnM)

PnM is a technology that performs data operation 

processing using dedicated operation logic located close 

to the memory. Research is being conducted to apply 

PnM to various memory types [48-80, 118, 119]. The 

goal of PnM is to enhance system performance by 

minimizing data movement between the processor and 

memory for computation or by optimizing the data frame 

structure. Unlike PuM, PnM allows for the

implementation of more complex operations, resulting in 

a wider range of methods. However, it should be noted 

that the improvement in memory bottleneck is not as 

significant as with PuM, as it still involves more data 

movement between the processors and memory. 

Additionally, PnM has the drawback of requiring a 

higher area overhead. Many studies focusing on SRAM-

based PnM have explored implementing multiple

operators in parallel near an SRAM cell array to enable 

parallel operation [48, 49, 89]. On the other hand, 

DRAM-based studies have primarily focused on 

achieving parallel operations by efficiently utilizing bank 

parallelism [50-59].

2. Various Deep Neural Networks

Various types of DNNs have been proposed based on 

diverse inductive biases (e.g., locality, sequentiality, 

arbitrariness) [6]. The computational process of DNNs 

can be broadly classified into two categories: linear 

operations (i.e., operations such as matrix-vector 

multiplication (VMM) and matrix-matrix multiplication 

(MatMul) that utilize MAC as the fundamental unit of 

operation) and non-linear operations (i.e., ReLU [11], 
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tanh [12], and sigmoid [13]). Linear operations are used 

to calculate the weights of the input features and hidden 

layers for feature extraction. Generally, strategies to 

enhance the performance of DNNs involve stacking 

deeper layers [14, 15] or widening a layer [16]. Owing to 

these strategies, MAC operations constitute the largest 

share of all operations in DNNs, leading to potential 

issues. 1) Its computationally intensive nature can lead to 

high latency, necessitating high parallelism. 2) Frequent 

memory access and data movement for the weights and 

input data can result in substantial power consumption, 

creating bottlenecks. 3) Substantial hardware design 

costs can occur in an effort to mitigate these issues. In 

this subsection, DNNs are classified based on their 

network structure and inductive bias.

1) Convolutional Neural Network (CNN)

A CNN is a type of DNN specialized for processing 

two-dimensional (2D) image data. It typically consists of 

convolution (CONV) layers, normalization layers, 

pooling layers, and activation functions. CNN is capable 

of extracting and learning features from the input that are 

then used to perform specific tasks. In particular, within 

the CONV layer, a multichannel kernel extracts local 

features from an image by sliding across the input at a 

certain stride interval [17]. The CONV operation 

constitutes a significant part of the CNN model and 

requires a high external memory bandwidth owing to the 

need to load multichannel intermediary features and a 

large number of weights [18, 19, 111]. Traditionally, 

CNNs have been used as the backbone for vision tasks. 

Recently, they have been used as embedding layers for 

token extraction in transformer-based networks [20].

2) Graph Neural Network (GNN)

A GNN is a general framework for operating on 

complex structures represented by graphs, consisting of 

nodes (vertices) and the edges connecting them. Unlike 

fixed formats such as 2D or 3-dimensional (3D) data, it 

mainly deals with the more abstract relationships used in 

workloads, such as social networks or media influence. 

Traditional algorithms that use graph data (e.g., search 

[21], shortest path finding [22], spanning tree [23], and 

clustering [24]) cannot inherently evolve into research on 

the graph structure itself because they require prior 

knowledge of the input graph. However, GNN applies 

artificial neural networks directly to the graph data, 

enabling predictions at the node, link, and graph levels. 

Through iterative parameter updates, learnable 

parameters are trained to better represent the 

relationships between adjacent nodes within a graph [25]. 

Additionally, a GNN is capable of mimicking most deep 

learning models (e.g., CNN, RNN, and self-attention 

mechanisms) by applying the relationships between 

nodes. In particular, the graph convolutional network 

(GCN), a prominent network derived from the GNN, 

focuses on aggregating information from neighboring 

nodes, similar to how a 2D CNN learns the locality 

between pixels, as shown in Fig. 1, which can reduce the 

computational complexity of GNNs with little 

performance degradation as they do not include 

unnecessary node connections [26, 27].

3) Recurrent Neural Network (RNN)

An RNN is designed for tasks that involve learning 

patterns in sequential data or understanding contextual 

information in sentences. They are designed to retain 

previous information and incorporate new information, 

thereby effectively learning the patterns or dependencies 

in sequential data. RNN architecture employs recurrent 

neurons that sequentially process each element of the 

data sequence. The result of the operation in the previous 

hidden state is used as an input for the calculations in the 

current hidden state. This allows for the simultaneous 

processing of the output of the previous hidden state and 

the current input data, enabling the network to 

understand the interrelationships and dependencies 

within the data.

Long short-term memory (LSTM) [101] and gated 

recurrent unit (GRU) [102] are variants of RNNs 

designed to learn long-term dependencies in data. Fig. 2 

shows the structures of the RNN and LSTM. LSTM has a 

more complex structure than an RNN and includes three 

gates: forget, input, and output. The LSTM 

computational process involves numerous MAC 

operations and uses various parameters. Because the 

output of one cell is used as the input for the next cell, 

significant data movement is required. In summary, the 

operations within an RNN are performed sequentially, 

making the overall workflow challenging to parallelize. 

Furthermore, given various weight parameters, the value 

of one cell block is reused and its operation is repeated, 
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leading to constant data movement. To improve this 

situation, it is necessary to carefully consider the 

mapping of the data required for computation and 

manage the data flow effectively.

4) Transformer

Transformer [105] is a model that significantly 

outperforms the performance of RNNs in terms of 

processing sequence data. It consists of an encoder-

decoder structure that incorporates a self-attention 

mechanism. The model is capable of training on 

sequence data more comprehensively and learning long-

term dependencies effectively owing to its ability to 

process all elements in parallel. The more these encoder-

decoder layers are stacked, the better the model 

understands the complex patterns and interrelationships 

among the embeddings. Because of these characteristics, 

transformers outperform RNNs, particularly in the field 

of natural language processing (NLP) [109]. Furthermore, 

owing to their scalability and flexibility, variants without 

decoders, such as the vision transformer (ViT) [108], 

have been introduced into the field of computer vision 

[114], where they demonstrate excellent performance.

Fig. 3 shows the structure of the transformer. The 

transformer consists of three main components: an 

embedding layer, a multihead self-attention (MHA), and 

a feed-forward network (FFN). The embedding layer 

converts each sequence element into a continuous high-

dimensional vector, thereby allowing the model to 

consistently extract complex information from each 

element and facilitate deeper learning. Transformer 

operations are primarily concentrated in MHA and FFN. 

MHA maintains interdependencies by training different 

feature maps from multiple attention heads and 

combining them into the output. Each attention head 

obtains a query (Q), key (K), and value (V) through 

matrix multiplication of weights. This process, which 

involves the parallel operation of different weights, 

requires high memory bandwidth and frequent data 

transfers. Self-attention is then applied through Q, K, and 

V, and the attentional head is updated. The FFN serves to 

mix the attention from the heads obtained through the 

MHA, preventing bias towards any single attention value. 

In summary, the transformer processes the inputs based 

on various weights and continually reuses the outputs as 

inputs for subsequent operations. Therefore, to optimize 

the operational process of the transformer, data mapping 

must be carefully considered so that the input/output 

values and weights can be effectively reused.

III. PIM FOR DEEP NEURAL NETWORKS

1. Technologies and Representative Architectures 

Needed for PIM

PIM fundamentally offers high throughput because it 

minimizes data transfer with the host processor by 

integrating data processing logic directly into memory, 

thus resolving the associated bottleneck [28, 29]. In the 

Fig. 1. 2D (two-dimensional) convolutional neural networks 
and graph convolution networks.

Fig. 2. RNN and LSTM architectures.

Fig. 3. Transformer architecture.
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DNN inference process, the most frequently performed 

MAC operations are executed in the PIM core to achieve

high energy efficiency. In addition, during the DNN 

training process, PIM can reduce both processing time

and power consumption by performing the computations 

necessary for weight updates directly within the memory 

[88, 94]. However, not all functions benefit from the 

application of PIM. For instance, it can be burdensome to 

process functions with high computational complexity 

and memory reusability using in-memory logic. 

Therefore, to determine where a specific function should 

be computed, it is necessary to establish appropriate

metrics and analyze them using a benchmark simulator. 

DAMOV [30] is a memory simulator comprising a 

frequently used ramulator [31] and a zsim CPU simulator 

[32]. It extracts memory traces for each workload [117]

using an Intel VTune profiler [33]. The extracted traces 

calculate the temporal/spatial locality and divide the 

causes of memory bottlenecks into six classes using three 

indicators: the last-to-first miss-ratio (LFMR), last-level-

cache misses per kilo-instruction (LLC MPKI), and 

arithmetic intensity. Moreover, by conducting an 

experimental analysis with 77 K functions, we 

demonstrated its reliability and applicability across 

various research areas.

Current PIM research is largely categorized into 

commercially accessible DRAM-based PIM research 

[52-59, 81-85] and research utilizing next-generation 

memory [90-99], both of which are presented in a 

competitive manner. Unlike academic research, mass-

producible PIM products fundamentally utilize bank-

level parallelism of DRAM for computation processing. 

In addition, they also consider maximizing compatibility 

with existing mass-produced products and prioritizing 

cost aspects, such as minimizing the area occupied by 

logic operations and addressing heat-dissipation issues. 

The HBM-PIM [58] is an addition of PIM functionality 

to the HBM architecture, designed to increase memory 

bandwidth and energy efficiency by performing 

computational processing within the memory. It proposes 

not only a hardware architecture but also a software stack. 

The software stack supports FP16 operations, MAC, 

general matrix-matrix product (GEMM), and activation 

functions, along with the operation logic loaded onto the 

HBM by applying the LUT. In addition, it allows 

programmers to write PIM microkernels using PIM 

commands to maximize performance. The hardware 

architecture was implemented based on 20 nm DRAM 

technology and integrated with an unmodified 

commercial processor to prove its practicality and 

effectiveness at the system level. Furthermore, it is 

designed to be replaceable because it is compatible with 

existing HBM. By implementing the proposed PIM 

architecture, there was a significant improvement in the 

performance of memory-bound neural network kernels 

and applications. Specifically, the performance of neural 

network kernels increased by 11.2×, while applications 

showed a 3.5× improvement. Additionally, the energy 

consumption per bit transfer was reduced by 3.5×, 

resulting in an overall enhancement of the system's 

energy efficiency by 3.2× when running applications. 

Newton’s architecture [59] was designed as an 

accelerator in memory (AiM) for DNNs. In this design, a 

minimum number of computing units were placed in the 

DRAM to satisfy the area constraints, which can be a 

problem in the hardware design for PIM. The computing 

units included MAC operations and buffers. It also uses 

an interface similar to that of DRAM so that the host can 

issue commands for PIM computing. The PIM matches 

the internal DRAM bandwidth and speed, captures input 

reuse, and uses a global input vector buffer to divide the 

buffer area costs across all channels. The three 

optimization techniques proposed by Newton helped the 

PIM-host interface overcome bottlenecks: 1) Grouping 

multiple computational tasks in the in-bank and bank 

groups. 2) Support complex, multistep computing 

commands to process multiple stages of operations 

simultaneously. 3) The strength of the internal low-

dropout (LDO) regulator and DC-DC pump driver should 

be increased to allow for higher current and faster 

voltage recovery. As a result, Newton applied to HBM2E 

achieves an average speed improvement of 10× over a 

system assumed to ideally use the external DRAM 

bandwidth without applying PIM and 54× over a GPU.

The UPMEM PIM architecture [52] was the first 

commercialized PIM architecture that combined 

traditional DRAM memory arrays and a common 

instruction sequence core: the DRAM processing unit 

(DPU). DPUs are a concept proposed for UPMEM and 

are used to perform operations within memory chips. The 

DPU has exclusive access to a 64MB DRAM bank, 
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known as the main random-access memory (MRAM), 24

KB of command memory, and 64 KB of scratchpad 

memory, called the working random access memory 

(WRAM). This allows programmers to write code to be 

executed on the DPU and process the data within the 

memory. This implies that the data transfer between the 

host processor and DPU can be controlled, allowing for 

the selection of parallel and sequential processing. 

On the other hand, the most commonly used next-

generation memory in PIM architecture is ReRAM [36, 

39, 91, 95, 100, 103, 107]. The ReRAM crossbar array

consists of cells arranged in rows and columns. This 

array can be used for memory purposes and can 

efficiently perform computations such as the general 

matrix-vector product (GEMV), composed of MAC 

operations. In addition, the use of a crossbar array can 

significantly reduce the overhead and energy related to 

memory movement. In particular, as a pioneering study 

on ReRAM-based PIM, PRIME [91] distinguished the 

internal array space of a bank as memory a subarray 

(MemS), full function subarray (FFS), and buffer 

subarray. MemS is a circuit that stores only data. FFS 

allows the crossbar to be used for both memory and 

operation logic, achieving minimum area overhead. To 

enable this, multiple voltage sources are added to provide 

an accurate input voltage. The column multiplexer 

provides an analog subtraction unit and a nonlinear 

threshold value unit, and the SA is modified to achieve 

high precision.

2. PIM for CNN

Numerous PIM studies primarily support the MAC 

operation required by CNN [46, 47, 52-59]. However, 

this study focuses on PIM research that employs data 

mapping methods and dataflow necessary for CNN 

operations. Efficient data handling in the CNN inference 

process is crucial, with particular emphasis on 

maximizing the reuse of weights as well as the input and 

output feature maps used between layers.

1) Inference Phase

Peng et al. [45] proposed an ReRAM-based PIM 

accelerator that adapted the data-mapping technique 

proposed by Fey et al. [44] for the CONV layer. This 

reduces the use of interconnects and buffers by reusing 

the input data and weights. As shown in Fig. 4(a), a 3D 

kernel of size K×K×D is arranged in vertical columns, 

and the input feature map (IFM) is arranged in a similar 

manner in K×K submatrices within 1×1×D kernels. As 

shown in Fig. 4(b), computation of the subarrays 

proceeds as a single PE within the ReRAM subarray. 

This method is designed to maximize the reuse of IFMs 

and weights as the kernel (i.e., weights) slides over them 

during computation. Consequently, this study achieved a 

2.1× increase in speed and 17% improvement in energy 

efficiency (measured in TOPS/W) during the inference 

phase with the VGG-16 model compared with [92].

(a)

(b)

Fig. 4. Processing-in-Memory for CNN proposed in [45]: (a) A 
basic mapping method of input and weight data, with kernel 
moving in multiple cycles; (b) An example of IFMs transferred 
among PEs and how the kernel slides over the input.
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2) End-to-End Training Phase

Backpropagation in CNNs requires a significant 

amount of computation because it involves computing 

the gradients for each layer and updating the weights to 

train the model. It is considered memory-bound because 

it includes storing and tracking the intermediate features 

and gradients of all the layers, which is more intensive 

than inferring the CONV layer. Therefore, higher 

efficiency can be expected by optimizing the training 

process in the PIM.

T-PIM [88] is a DRAM-based PIM study considering

the end-to-end training of CNN models. Fig. 5 represents 

the data mapping of T-PIM that reduces the overhead 

caused by data rearrangement in DRAM and optimizes 

the data access to weights. Fig. 5(a) and (b) show the 

data mapping methods during the forward pass (FWP) 

and backward pass (BWP) within the MLP layer, 

respectively. To maximize the utilization of DRAM's cell 

array without rearranging data, the size of the tile is set to 

t tM N´  and each weight is mapped to DRAM's column 

addresses. During the FWP process, the input vector is 

flattened to size tM  (InputL ( ))tM  and multiplied 

with the weights arranged in DRAM. Each column is 

then accumulated into an output buffer of size tN

(OutputL ( )tN ). For the BWP process, to use the 

weights aligned in the FWP process without additional 

rearrangement, the loss (ErrorL ( tN )) is flattened into 

tN  elements and performs vector operations with the 

weights. Each row is then accumulated into an output 

buffer of size tM  (OutputL ( ))tM . Fig. 5(c) and (d) 

represent the data mapping methods used during the 

FWP and BWP in the CONV layer, respectively. Similar 

to the MLP layer, weights (WeightL) are arranged to 

column addresses by kernel size ( k HkW= ´ ), so the 

weights can be reused without the need for data 

rearrangement. T-PIM shows high efficiency of 0.84-

7.59 TOPS/W for 8-bit input data and 0.25-2.21 

TOPS/W for 16-bit input data in VGG16 model training, 

using the non-zero computing, powering off computing 

method.

3. PIM for GCN

The processing steps of a GCN (e.g., aggregation, 

combination, embedding, message passing, and readout) 

are mostly low in operational complexity, data-dependent, 

and performed repetitively. Among these, aggregation 

must process large amounts of data to combine the 

information of each node with that of its neighboring 

nodes. Moreover, these operations have the characteristic 

that they must be performed as different operation 

combinations depending on the relationship between 

each node and its neighbors. These characteristics require 

a large amount of computation and high memory 

bandwidth. Therefore, these drawbacks can be 

effectively mitigated using PIM. The PIM for GCN has 

also been approached by actively utilizing an ReRAM 

crossbar to perform operation processing as an analog 

computing method [36].

Two representative techniques are the MAC crossbar 

and content addressable memory (CAM) crossbar [37]. 

Among these two, the CAM crossbar performs content-

based searches. This allows a parallel associative search 

by broadcasting the search key across multiple rows. 

Fig. 5. Data mapping of T-PIM: (a) FWP layer; (b) BWP layer; (c) FWP, CONV layer; (d) BWP, CONV layer (Reprinted from [88] 
with permission).
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This enabled the storage of more data on a chip in the 

same area. It was shown in TCAM [38] that 2-transistor-

2-resistor ReRAM can achieve 3× higher density than 

the existing 8-transistor SRAM. The MAC crossbar can 

effectively perform the VMM with low energy 

consumption through bit-line current accumulation. This 

process can be described in three steps. 1) The elements 

of the matrix were converted to voltage and assigned to 

the crossbar, and the resistor of the cell was precisely 

adjusted to correspond to the elements. 2) The vector is 

converted to a voltage, which is accumulated on the word 

line. 3) The current of the bit line was measured, and the 

sum of the currents of all cells connected to the bit line 

was obtained as the product of the column and vector.

Fig. 6 shows the overall architecture of PIM-GCN [39], 

which consists of a central controller, a search engine, 

and two computing engines. Each of these comprises a 

CAM crossbar and a MAC crossbar, and the two 

computing engines operate in a typical ping-pong 

architecture, alternately performing aggregation and 

combination. The central controller initially loaded the 

graph data and finally exported the GCN results back to 

the external DRAM. It also generates the necessary 

control logic for the CAM crossbar, the MAC crossbar, 

and the special function unit (SFU). The SFU, composed 

of a shift-and-add (S&A) unit and scalar arithmetic and 

logic (sALU) units, processes the partial results derived 

from the MAC crossbar. PIM-GCN introduces not only a 

hardware architecture that can maximize inter-vertex 

parallelism, but also a technique for optimizing node 

grouping without violating independence, providing 

scheduling for these groups to operate independently at 

each layer. It also proposes a timing strategy to reduce 

idle time owing to differences in read/write latency.

GCIM [40] is an accelerator research that presents a 

software-hardware co-design approach, becoming the 

first to enable efficient data processing of GCNs in 3D 

stack memory. From a hardware design perspective, the 

GCIM proposes a logic-in-memory (LIM) die that 

integrates light computing units near the DRAM bank, 

fully utilizing the bandwidth and parallelism at the bank 

level. The GCIM offloads memory-bound aggregation 

operations onto the LIM die. Each LIM bank group is 

equipped with an LLU consisting of a MAC array, vertex 

feature buffer (VFB), look-ahead FIFO, CAM, and a 

controller to accelerate the aggregation phase. A MAC 

array was used to execute the aggregation operations. 

VFB is used to buffer the output features during the 

aggregation phase. Look-ahead FIFO is a special edge 

buffer implemented as a scratch-pad memory that 

processes the frontmost edge upon receiving a signal 

from the controller. The CAM provides key-value 

storage that records the ID of nonlocal vertices and the 

local addresses where their replicas are buffered. The 

controller is a data-based control unit that processes the 

aggregation operations of local vertices. On the software 

side, GCIM proposes a data-mapping algorithm that 

considers locality. It balances the workload by splitting 

the input graph into subgraphs considering the 

connection strength of the nodes. Here, if the weight 

between two vertices is large or if multiple paths exist, 

the strength is determined to be strong. The divided 

subgraphs are assigned to the vault and mapped to the 

LIM bank group. This was optimized to utilize a high 

bandwidth and reduce unnecessary data movement. This 

significantly improves the computational efficiency 

while preventing redundant calculations. In addition, the 

GCIM adopts a sequential mapping strategy to maximize 

data locality and minimize the processing delay of the 

aggregation. This optimization technique uses dynamic 

programming [41], a mechanism that saves the optimal 

solution of a subproblem and reuses it to determine the 

optimal solution of the entire problem. Based on 

experimental results, GCIM demonstrated a remarkable 

improvement in inference speed compared to other 

models. Specifically, it achieved a speed enhancement of 

Fig. 6. PIMGCN architecture overview (Reprinted from [39] 
with permission).
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580.02× compared to HyGCN [42], 275.37× compared 

to CIM-HyGCN, and 272.01× compared to PyG-CPU 

[43]. These results highlight the significant performance 

boost offered by GCIM in terms of inference speed.

Although the two studies mentioned earlier were based 

on different memory-based PIM hardware architectures, 

they both proposed algorithms for grouping and mapping 

graph data nodes in a memory-friendly manner, and 

effectively handled GCN aggregation and combination 

operations.

4. PIM for RNN

RNN and LSTM structures can be effectively applied 

with PIM owing to their similarity to CONV layers and 

their ability to reuse feature maps and weights. ERA-

LSTM [103] is a PuM architecture that uses ReRAM 

crossbars. It optimized the RNN's weight precision and 

digital-to-analog converter (DAC) in Long et al. [100] 

PIM architecture and applied systolic dataflow to 

improve computing efficiency and performance. Fig. 7(a) 

shows the overall structure of ERA-LSTM. The VMM 

unit in Fig. 7(b) stores the weights of the four LSTM 

gates and uses a digital-to-analog converter to deliver the 

input data and hidden states from the I/O buffer to the 

analog ReRAM crossbar. The computational results of 

the VMM unit are transmitted to an element-wise (EW) 

unit. The EW unit enables EW operation of the LSTM 

cell in the three feedforward layers. In addition, the 

VMM and EW units efficiently handle each of the four 

gate weights ( . ., , , , )f i g oe g W W W W  by splitting each 

weight into four weights 00 11( . ., )e g W W- and tiling 

each weight into a tile for computation. In addition, the 

NN operation used an approximator to minimize the 

overhead caused by analog-to-digital converters, 

achieving a 6.1× operational efficiency compared with 

Long et al. [100].

PSB-RNN [104] is another PuM architecture that uses 

a ReRAM crossbar. PSB-RNN transforms the MAC 

operation required for the RNN model into a single 

weights matrix using Fast Fourier Transform (FFT). The 

real ( Re ) and imaginary ( Im ) components of the 

resulting matrix are mapped onto the ReRAM crossbar, 

thereby enabling the retrieval of complex number 

operation results from each PE result. This method 

yielded a computational efficiency that was 17× higher 

than that of Long et al. [100] for the LSTM model. 

Although this study requires additional operations and 

tasks beyond data mapping for the traditional LSTM 

model, it proposes an effective method for ReRAM 

crossbar PIM by mapping data for a complex number of 

operations necessary for MAC and utilizing the data flow.

5. PIM for Transformer

TransPIM [106] is an HBM-based PnM designed for 

efficient transformer utilization. An arithmetic control 

unit (ACU) was allocated to each bank for computation, 

and a token-based data shading scheme was proposed to 

allow parallel processing by dividing and assigning the 

data required for the calculation to the HBM's bank stack. 

The study also optimizes data using a token-based 

transformer operat ion method,  which enables 

independent operations between tokens, in contrast to the 

existing layer-operated transformer structure. Fig. 8(a) 

illustrates the encoder process of TransPIM. The input 

token size is L×D, where L signifies the number of 

tokens and D indicates the size of the embedding vector's 

dimension. Input tokens 1 2,I I  and 3 I  are allocated to 

each bank using a technique that distributes each input 

token to N banks. Based on this, the embedding values 

, ,i i iQ K V  corresponding to each input token are 

calculated and assigned to the same bank, followed by a 

(a)

(b)

Fig. 7. ERA-LSTM: (a) architecture overview; (b) Mapping a 
LSTM cell to multiple tiles.
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self-attention operation. For the MHA,  iK  and  iV  are 

sequentially transferred to bank i +1 and sent to another 

bank for calculation using the ring-broadcast technique, 

thus enabling computation with minimal data 

transmission between banks. Fig. 8(b) shows a decoder 

block, where K and V are received from the encoder 

vector for reuse, and only the last bank obtains new Q, K, 

and V vectors for the fully connected layer computation. 

The new  newQ  is broadcast to all other banks to 

calculate the attention score, and  newK  and  newV  are 

concatenated with the previous  iK  and  iV  of the last 

bank. Each bank stores the weights for Q, K, and V 

during this time, and the ring broadcast technique is 

employed to reuse the stored weights and Q, K, and V 

values in the other banks, facilitating the efficient 

processing of repeated NN operations. To this end, this 

study incorporates the ACU onto the banks of HBM 

memory and adds a ring broadcast unit between the 

banks. This allows for a reduction of more than 30.8% in 

the data movement overhead on average compared with 

the existing transformer, with only 4% additional area 

overhead relative to the original DRAM. This study 

ensured that the PIM power remained below the DRAM 

power budget of 60 W.

ReTransformer [107] proposed and applied 

optimization techniques to effectively accelerate GEMV 

operations within the transformer inference process, and 

softmax is suitable for low-power implementation in 

ReRAM-based PIM. This study has a similar direction to 

the existing ReRAM-based transformer-based workload 

target PIM study implementing MatMul operations 

inside ReRAM and applying optimization techniques. 

Thus, the latency of the operational process can be 

reduced. Specifically, this paper proposes a method of 

decomposing the operation into two consecutive 

multiplication steps to solve the compute-write-compute 

dependency that occurs when implementing the MatMul 

operation between Q and TK during the transformer 

inference process using ReRAM. Consequently, the 

latency recorded in the crossbar of the ReRAM can be 

eliminated. In addition, a modified hybrid softmax 

formula that can maximize the crossbar arrangement of 

the ReRAM was proposed and applied to the softmax 

operation; as a result, only 0.691 mW was consumed and 

implemented, unlike 1.023 mW for the existing softmax 

(a)

(b)

Fig. 8. Token-based data sharding scheme and the dataflow of 
Transformer: (a) encoder; (b) decoder in TransPIM (Reprinted 
from [106] with permission).
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operation. Finally, this study achieved a 23.21× 

computational efficiency improvement and a 1,086× 

power consumption reduction compared to NVIDIA 

TITAN RTX GPUs.

6. Discussions

The PIM is a new architecture that integrates 

processing and memory units into the PE, thereby 

enabling efficient data processing. However, owing to 

the integration of computational functions into memory 

cells, PIM may be limited in handling complex 

operations, and can cause performance degradation when 

computationally intensive operations are required. 

Moreover, PIM's complex control structure and limited 

memory capacity pose limit the full and effective 

handling of increasingly large AI workloads. For PIM 

cores to be effectively applied to AI workloads, clear 

criteria are required to determine whether operands 

should be computed in the host processor or the PIM 

core. These criteria are typically derived by statistically 

analyzing the results measured at the functional level 

using benchmark simulators [34, 35]. In addition, in the 

PIM design process, the mapping of processes and 

parameters, as well as the data flow considering complex 

operations, must be carefully incorporated. In previous 

PIM studies, these considerations were designed 

heuristically. However, with increasingly diverse PIM 

architectures and algorithms, there is an urgent need for 

research on compilers that can automatically optimize 

workload functions, data mapping, and data flow.

IV. CONCLUSIONS

In this paper, we present industrial products and 

analyze previous studies on PIM architectures for DNNs. 

We provide detailed explanations of the characteristics of 

representative DNNs and the overall structure of PIM. 

Specifically, we delve into how processing techniques, 

data mapping, and data flow are handled in PIM from a 

DNN perspective, drawing insights from representative 

studies. Additionally, we highlight the challenges that 

need to be addressed for PIM to replace the traditional 

von Neumann architecture. We emphasize the 

importance of conducting research on a universal 

software stack and compiler to effectively implement 

existing studies. We anticipate that this study will offer 

valuable insights to researchers exploring PIM 

technology.
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