Integration of ROS and RT tasks using
message pipe mechanism on Xenomai
for telepresence robot

R. Delgado, B.-J. You, M. Han and B.W. Choi®

A promising approach integrating non-real-time (NRT) robot operating
system (ROS) packages and RT tasks is proposed to enhance the
development of RT robot control applications. Since ROS alone
does not provide RT properties essential for achieving precise
control period in manipulating multiple devices and complicated
software, Xenomai, an RT extension of Linux is adapted. However,
using NRT ROS packages inside RT tasks triggers mode switching
that causes inability to satisfy critical temporal constraints. To
address this issue, a message pipe mechanism termed cross-domain
datagram protocol (XDDP) is applied. In comparison to traditional
inter-task mechanisms, XDDP provides a communication interface
between RT and NRT tasks. This greatly improves robot application
development utilising ROS tools and packages with RT tasks on the
Xenomai domain ensuring priority-based scheduling and deterministic
response in a multitasking environment. Feasibility of the proposed
method was validated for practical use by realisation on the open
embedded controller for a telepresence robot. Experiments were
conducted to actuate the mobile base of the robot using ROS naviga-
tion packages. The results indicate that the robot accomplishes its
objectives while satisfying RT constraints.

Introduction: Telepresence robots are mobile robot platforms designed
to help people communicate across distances focused on the concepts of
remote presence and telecommunication [1]. These robots are equipped
with several types of sensors and actuators operated with algorithms
contingent on expensive proprietary black box software that is vendor
specific and prohibits integration to more complex systems. Robot
operating system (ROS), the prevalent open source robotic framework,
provides an easily redistributable collection of development tools and
libraries to reduce user tasks for creating complex and robust robot
behaviour [2, 3]. However, ROS does not operate in RT which is a criti-
cal requirement to administer precise control period and to meet necess-
ary temporal deadlines of priority-based multi-tasking RT systems.

Some researchers proposed several approaches to make ROS RT.
In [2], a host-guest system is suggested where an RT operating
system (RTOS) is running on the guest hardware while the host
handles the ROS packages. This is a costly approach using a proprietary
RTOS and the performance is highly dependent on the communication
protocol between both devices. Wei e al. [4] exploit the inter-core
mechanisms of a multicore Intel processor; operating ROS under the
standard Linux on one core and an open source RTOS on the other.
However, the flexibility of this solution is questionable because the
main controller of robots is mostly built on embedded platforms [5].

In this Letter, we introduce a promising solution based on Xenomai,
an RT dual-kernel approach of embedded Linux integrating ROS and
real-time (denoted as RT for tasks) tasks through a communication inter-
face termed, cross-domain datagram protocol (XDDP). In comparison to
the prior studies, the method is based on existing open source technol-
ogies allowing redistribution and easy integration of ROS to more com-
plicated RT applications. Practicality and flexibility are verified on a
low-cost and open embedded hardware platform, Raspberry Pi 3 (RPi
3), for the RT control of the M4K telepresence robot [1], using naviga-
tion packages available in ROS.

Integration of ROS using XDDP on Xenomai: Fig. 1 shows the overall
simplified model of an RT application integrating ROS and RT tasks on
Xenomai. ROS core is realised on the standard Linux kernel to handle
applications denoted as ROS nodes. Xenomai runs alongside the
standard Linux through a hardware abstraction layer, termed adaptive
domain environment for operating systems (ADEOSs), that enables
both kernels to exist in the same machine. Using standard Linux or
ROS functions inside an RT task triggers mode switching (MSW) that
causes non-deterministic response and stability problems of the entire
system. Correspondingly, the RT task is scheduled by the standard
Linux scheduler resulting in loss of RT capabilities.

To integrate ROS packages with RT tasks on Xenomai without MSW,
we adopted the message pipe mechanism, XDDP. Compared to the
traditional inter-task communication mechanisms, which is only feasible
between RT tasks [6], XDDP is developed based on the RT driver model

to provide a communication interface for data concurrency between RT
and non-real-time (NRT) tasks. In this Letter, RT tasks are connected to
NRT tasks that perform original ROS operations instead of directly
accessing the NRT resources. Hence, RT tasks are schedulable based
on priorities that ensure deterministic response while utilising the rapid-
development tools and libraries offered by ROS.

“remote monitoring W
RViz

TCPROS

standard Linux
Linux
tasks I

Linux kernel and
ROS core

[devicedrivers |

oo

[Raspberry Pi 3

Xenomai A

RT tasks ||| RT tasks ||
+ITC+ |

J [Xenomai core

Fig. 1 Realisation of RT control application integrating ROS and RT tasks on
Xenomai

Realisation of a low-cost open embedded platform: The RT environ-
ment is implemented on an open embedded hardware, RPi 3, that
serves as the main controller of M4K. Unlike desktop personal computer
based on the Intel architecture in [2, 4], realisation on an embedded plat-
form is more difficult owing to lack of existing systematic documents
and technical support. Therefore, the compatibility of each software
should be analysed to achieve a feasible RT environment. In case of
unavailability, the common solution is to commit a patch written by
the user firsthand.

This Letter focuses on a redistributable and reusable solution for
easier reproduction by RT developers. To establish a cross-development
environment supporting the RPi 3, we utilised a toolchain available in
the repository of the manufacturer. Since the bootloader of the RPi 3
has closed its licence by Broadcom and not available for redistribution,
this is kept intact without any modification. The latest version of
Xenomai is ported alongside the compatible version of the Linux
kernel in accordance with the available ADEOS patch.

Later distribution of ROS is currently existent, but we preferred the
latest stable version which has received extensive testing from the
robot community. For the root filesystem, ROS highly recommends an
Ubuntu distribution. However, owing to the limitation in modifying
the device tree binaries in extending the serial peropheral interface
(SPI) (motor and encoder support), disabling Bluetooth for full RS232
support, and disabling the sound card (pulse-width modulation for
LED), we have selected Raspbian Jessie. This introduces a small trade-
off of manually building the ROS sources and considering toolchain
compatibility. Table 1 shows the software configuration for the RT
environment with the tested version compatibility.

Table 1: RT environment for RPi 3

Item Description
Toolchain | gce-linaro-arm-linux-gnueabihf-raspbian-4.8.3
Bootloader Broadcom Licenced Bootloader
ADEOS ipipe-core-4.1.18-arm-4
Kernel Linux Kernel v4.1.21 with Xenomai 3.0.2
Filesystem Raspbian Jessie (Debian 8)
ROS ROS Kinetic Kame

Navigation of M4K using ROS packages: Here, the M4K is operated in
an environment with a static obstacle which is a common topic in con-
ventional mobile robot navigation. However, our aim is to easily realise
a navigation scheme for the robot using ROS navigation packages while
satisfying RT requirements in a multi-tasking environment.

Fig. 2 shows the specifications of the M4K telepresence robot. The
robot is designed to overcome the spatial limit and extend the interaction
field between participants in a coexistent space [7]. The mobile base
includes actuators and sensors such as a laser rangefinder (LRF), ultra-
sonic (sonar), and an inertial measurement unit (IMU). Standard Linux
device drivers are developed to control each device from the RT tasks.

ELECTRONICS LETTERS 7th February 2019 Vol. 55 No. 3 pp. 127-128

However, direct access of these drivers triggers MSW that causes a
system freeze as shown in the left-hand side of Fig. 3. To address this
issue, device drivers are operated in NRT tasks which are connected
to the RT tasks through XDDP. The right-hand side of the figure
shows the proper behaviour of the device displaying the acquired data
on a terminal. Four instances of MSW are detected due to opening
and binding a socket to an XDDP port. This routine is executed only
once before the RT task loop and does not affect the RT performance.

robot part |specification| details

di . L45xW28
boby 'mensions xH20 cm
weight 30 kg

drive system differential
speed 200 cm/s

actuators -
acceleration| 37 cm/s?
gear ratio 12:1
wheels diameter | 20.32 cm
width 5cm
LRF
position sonar
sensors MU
status LED

Fig. 2 Specifications of M4K telepresence robot

e
RT Thread: Created thread 'RT XDDP Sonar’ ok.
RT Thread: Created thread 'NRT XDDP Sonar' okl
fInit POSIX Tasks done..

RT XDDP Port: /dev/rtp@ is opened

T Task: Created task 'RT Sonar' ok.
Init Tasks done..

gec:d distance: 7.717774
pec:1l distance: 7.717774

very 8.1s: cat /proc/xenomai/sched/stat

1D L= CSwW NAME

11428 4 66 RT XDDP Sonar

11429 82 82 NRT XDDP Sonar

Fig. 3 Execution of standard Linux device driver in RT task

Every B8.1s: cat fproc/xenomaifsched/stat
PID MW CSW NAME

30166 3 4 RT Sonar

Navigation of the M4K requires a multi-tasking environment with
four RT tasks with their respective cyclic periods and priorities as
shown in Fig. 4. An ROS node is developed as a subscriber to the
ROS navigation package, move_base, which produces centre velocity
commands. The node is linked to the highest priority RT task (actuator)
that converts the centre velocity to joint space commands for the actual
actuation of M4K via XDDP. The odometry task acquires data from the
encoder and IMU and calculates the current position of the robot. The
calculated position is sent to the same ROS node via another XDDP,
which then publishes it to a remote monitor running RViz (see Fig. 1),
the visualisation tool provided by ROS. The status and obstacle detec-
tion RT tasks handle the LED and sonar sensor, respectively. An
ROS node for the LRF is connected directly to the ROS navigation
stack because the generation of the environment map does not require
hard RT scheduling. As shown in the figure below, all the scheduled
RT tasks were able to meet the expected temporal deadlines in
accordance with their priorities.

task 1: actuator (period = 10 ms, priority = 99)

run f; C 5]
R NNARTRRRN IRRRRDRRNRTHRNR
10 20 30 40 50
task 2: odometry (period = 10 ms, priority = 98)
run IL m T T L F T
sleep LI : _
0 10 20 30 40 50
task 3: status (period = 20 ms, priority = 97)
unfF - T T T i
sIeep|- - : . il J
0 10 20 30 40 50
task 4: obstacle detection (period = 30 ms, priority = 96)
runfp T T T T
sleep[! . | 1
0 10 20 30 40 50
time, ms

Fig. 4 Execution timeline of RT tasks for navigation of M4K

The trajectory planners [3] included in the ROS navigation package
are configured according to the kinematics of M4K. To avoid any

accidents that could occur due to slip, experiments were conducted at
a reduced speed of 0.25 m/s. The left-hand side of Fig. 5 shows the
reference and feedback velocities of the M4K; travelling along a trajec-
tory that avoids an obstacle as shown in the Cartesian space at the right-
hand side of the figure. These results indicate that the proposed method
is feasible in controlling the telepresence robot using ROS packages
while satisfying real-time requirements in an embedded environment.

0.4 0.4

” reference
= feedback
E o3 0.2
> =
3 e o=
3 0.2 H o
2 N 02
© |
go1y W 0.4

0 . -0.6

0 3 6 9 12 15 18 21 24 0 1 2 3

time, s X, m

Fig. 5 Trajectory of M4K using ROS navigation packages

Conclusion: This Letter proposes a method to integrate ROS and RT
tasks on Xenomai through XDDP. The experiment results obtained
through implementation on an embedded platform for RT control of a
telepresence robot indicate that the proposed method enhances RT appli-
cation design exploiting the rapid-development tools of ROS in a
multi-tasking environment that supports priority-based scheduling and
deterministic response of the entire system. This approach opens up
possibilities to integrate ROS in more complicated RT applications.

Acknowledgments: This work was supported by the Human Resources
Development of the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) grant funded by the Korea Government
Ministry of Trade, Industry & Energy (No. 20174030201840) and by
the Global Frontier R&D Program on ‘Human-centered Interaction for
Coexistence’ funded by the National Research Foundation of Korea
grant funded by the Korean Government (NRF-2010-0029759).

This is an open access article published by the IET under the Creative
Commons Attribution License (http://creativecommons.org/licenses/
by/3.0/)

Submitted: 28 May 2018 E-first: 3 December 2018

doi: 10.1049/e1.2018.5560

One or more of the Figures in this Letter are available in colour online.

R. Delgado and B.W. Choi (Department of Electrical and Information
Engineering, Seoul National University of Science and Technology,
Seoul, Republic of Korea)

50 E-mail: bwchoi@seoultech.ac.kr

B.-J. You and M. Han (Center of Human-centered Interaction for
Coexistence, Seoul, Republic of Korea)

References

1 Lee, H., Kim, Y.H., Lee, K.K., ef al.: ‘Designing the appearance of a
telepresence robot, M4k: a case study’, in Koh, J., Dunstan, B.J.,
Silvera-Tawil, D., et al. (Eds.): ‘Cultural robotics. CR 2015. Lecture
notes in computer science’ (Springer, Cham, Switzerland, 2016)

2 Bouchier, P.: ‘Embedded ROS [ROS topics]’, Robot. Autom. Mag.,
2013, 20, (2), pp. 17-19

3 Marin-Plaza, P., Hussein, A., Martin, D., et al.: ‘Global and local path
planning study in a ROS-based research platform for autonomous
vehicles’, J. Adv. Transp., 2018, 2018, pp. 1-10

4 Wei, H., Shao, Z., Huang, Z., et al.: ‘RT-ROS: a real-time ROS
architecture on multi-core processors’, Future Gener. Comput. Syst.,
2016, 56, pp. 171-178

5 Hu, C., Arvin, F., Xiong, C., et al.: ‘Bio-inspired embedded vision
system for autonomous micro-robots: the LGMD case’, Trans. Cogn.
Dev. Syst., 2017, 9, (3), pp. 241-254

6 Shin, U.C., and Choi, B.W.: ‘Performance evaluation of real-time
mechanisms on open embedded hardware platforms’, J. Inst. Control
Robot. Syst., 2017, 23, (1), pp. 60-66

7 You, B.-J.,, Kwon, J.R., Nam, S.-H., et al.: ‘Coexistent space: toward
seamless integration of real, virtual, and remote worlds for 4d-+
interpersonal interaction and collaboration’. SIGGRAPH Asia 2014
Autonomous Virtual Humans and Social Robot for Telepresence,
Shenzhen, China, December 2014, pp. 1-5

ELECTRONICS LETTERS 7th February 2019 Vol. 55 No. 3 pp. 127-128

